Agronomy for Sustainable Development

, Volume 35, Issue 1, pp 203–212 | Cite as

Free-air CO2 enrichment modifies maize quality only under drought stress

  • Martin Erbs
  • Remy Manderscheid
  • Liane Hüther
  • Anke Schenderlein
  • Herbert Wieser
  • Sven Dänicke
  • Hans-Joachim Weigel
Research Article


Climate scenarios show that atmospheric CO2 concentrations will continue to increase. As a consequence, more frequent and severe drought periods are expected. Drought will thus modify plant growth. Although maize is a major crop globally, little information is available on how atmospheric and climatic changes will change maize quality. Here, in a field experiment, maize was grown in 2007 and 2008 under ambient (380 ppm) and elevated CO2 (550 ppm) using free-air CO2 enrichment. In 2007, maize was grown under well-watered conditions only. In 2008, we applied a drought stress treatment in which the plants received only half the amount of water of the well-watered treatment. We measured the concentrations of minerals and quality-related traits in aboveground biomass and kernels at the end of each growing season. Results show first the absence of effect of elevated CO2 under well-watered conditions. By contrast, drought stress modified several traits and interactions under elevated CO2. These results support the hypothesis that the C4 plant maize does not react to an increase in atmospheric CO2 as long as no drought stress is prominent. This finding contrasts with the impact of elevated CO2 on C3 plants. Several drought stress effects found in our study will have important implications for food and feed use. However, the effects of drought stress on the traits were less pronounced under elevated CO2 than under ambient CO2 level. Hence, an elevated CO2 concentration mitigates the drought stress impacts on elemental composition and quality traits of maize.


Carbon dioxide Climate change FACE Fiber fractions Food and feed Free-air CO2 enrichment Microelements Minerals Protein fractions Rain shelter Stoichiometry Water availability Water deficit Zeamaize 



This research was part of the research project LandCaRe 2020 funded by the German Federal Ministry of Education and Research (BMBF). The FACE apparatus was engineered by Brookhaven National Laboratory and we are grateful to Dr. George Hendrey, Keith Lewin, and Dr. John Nagy for their support. We acknowledge the technical assistance and the work of the people from the Thünen-Institutes of Biodiversity and Climate-Smart Agriculture and from the Institute of Animal Nutrition of the Friedrich Loeffler-Institut contributing to the Braunschweig FACE experiment. The experimental station of the Friedrich Loeffler-Institut, Braunschweig, is thanked for carrying out the agricultural measures at the experimental area.


  1. Ainsworth EA, Beier C, Calfapietra C, Ceulemans R, Durand-Tardif M, Farquhar GD, Godbold DL, Hendrey GR, Hickler T, Kaduk J, Karnosky DF, Kimball BA, Körner C, Koornneef M, Lafarge T, Leakey ADB, Lewin KF, Long SP, Manderscheid R, McNeil DL, Mies TA, Miglietta F, Morgan JA, Nagy J, Norby RJ, Norton RM, Percy KE, Rogers A, Soussana J-F, Stitt M, Weigel H-J, White JW (2008) Next generation of elevated [CO2] experiments with crops: a critical investment for feeding the future world. Plant Cell Environ 31:1317–1324. doi: 10.1111/j.1365-3040.2008.01841.x PubMedCrossRefGoogle Scholar
  2. Cox WJ, Cherney JH, Cherney DJR, Pardee WD (1994) Forage quality and harvest index of corn hybrids under different growing conditions. Agron J 86:277–282. doi: 10.2134/agronj1994.00021962008600020013x CrossRefGoogle Scholar
  3. Crasta OR, Cox WJ, Cherney JH (1997) Factors affecting maize forage quality development in the northeastern USA. Agron J 89:251–256. doi: 10.2134/agronj1997.00021962008900020016x CrossRefGoogle Scholar
  4. Erbs M, Manderscheid R, Jansen G, Seddig S, Pacholski A, Weigel H-J (2010) Effects of free-air CO2 enrichment and nitrogen supply on grain quality parameters and elemental composition of wheat and barley grown in a crop rotation. Agric Ecosyst Environ 136:59–68. doi: 10.1016/j.agee.2009.11.009 CrossRefGoogle Scholar
  5. Erbs M, Manderscheid R, Weigel H-J (2012) A combined rain shelter and free-air CO2 enrichment system to study climate change impacts on plants in the field. Methods Ecol Evol 3:81–88. doi: 10.1111/j.2041-210X.2011.00143.x CrossRefGoogle Scholar
  6. FAO (2011) FAOSTAT. Accessed 31 Jan 2013
  7. Ge T, Sui F, Nie SA, Sun N, Xiao HA, Tong C (2010) Differential responses of yield and selected nutritional compositions to drought stress in summer maize grains. J Plant Nutr 33:1811–1818. doi: 10.1080/01904167.2010.503829 CrossRefGoogle Scholar
  8. Ghannoum O (2009) C4 photosynthesis and water stress. Ann Bot 103:635–644. doi: 10.1093/aob/mcn093 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Ghannoum O, von Caemmerer S, Ziska LH, Conroy JP (2000) The growth response of C4 plants to rising atmospheric CO2 partial pressure: a reassessment. Plant Cell Environ 23:931–942. doi: 10.1046/j.1365-3040.2000.00609.x CrossRefGoogle Scholar
  10. Ghannoum O, Searson MJ, Conroy JP (2006) Nutrient and water demands of plants under global climate change. In: Newton PCD, Carran RA, Edwards GR, Niklaus PA (eds) Agroecosystems in a changing climate. CRC Taylor & Francis, Boca Raton, pp 53–83. doi: 10.1201/9781420003826.ch3 Google Scholar
  11. Högy P, Fangmeier A (2008) Effects of elevated atmospheric CO2 on grain quality of wheat. J Cereal Sci 48:580–591. doi: 10.1016/j.jcs.2008.01.006 CrossRefGoogle Scholar
  12. Högy P, Wieser H, Koehler P, Schwadorf K, Breuer J, Franzaring J, Muntifering R, Fangmeier A (2009) Effects of elevated CO2 on grain yield and quality of wheat: results from a 3-year free-air CO2 enrichment experiment. Plant Biol 11:60–69. doi: 10.1111/j.1438-8677.2009.00230.x PubMedCrossRefGoogle Scholar
  13. Johnson L, Harrison JH, Hunt C, Shinners K, Doggett CG, Sapienza D (1999) Nutritive value of corn silage as affected by maturity and mechanical processing: a contemporary review. J Dairy Sci 82:2813–2825. doi: 10.3168/jds.S0022-0302(99)75540-2 PubMedCrossRefGoogle Scholar
  14. Kakani VG, Vu JCV, Allen LH, Boote KJ (2011) Leaf photosynthesis and carbohydrates of CO2-enriched maize and grain sorghum exposed to a short period of soil water deficit during vegetative development. J Plant Physiol 168:2169–2176. doi: 10.1016/j.jplph.2011.07.003 PubMedCrossRefGoogle Scholar
  15. Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. Adv Agron 77:293–368. doi: 10.1016/S0065-2113(02)77017-X CrossRefGoogle Scholar
  16. Kruse S, Herrmann A, Kornher A, Taube F (2008) Evaluation of genotype and environmental variation in fibre content of silage maize using a model-assisted approach. Eur J Agron 28:210–223. doi: 10.1016/j.eja.2007.07.007 CrossRefGoogle Scholar
  17. Leakey ADB, Uribelarrea M, Ainsworth EA, Naidu SL, Rogers A, Ort DR, Long SP (2006) Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiol 140:779–790. doi: 10.1104/pp. 105.073957 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Lindroth RL, Dearing MD (2005) Herbivory in a world of elevated CO2. In: Ehleringer JR, Cerling TE, Dearing MD (eds) A history of atmospheric CO2 and its effects on plants, animals, and ecosystems. Springer, New York, pp 468–486. doi: 10.1007/0-387-27048-5_21 CrossRefGoogle Scholar
  19. Lohölter M, Meyer U, Manderscheid R, Weigel H-J, Erbs M, Flachowsky G, Daenicke S (2012) Effects of free air carbon dioxide enrichment and drought stress on the feed value of maize silage fed to sheep at different thermal regimes. Arch Anim Nutr 66:335–346. doi: 10.1080/1745039x.2012.697352 PubMedCrossRefGoogle Scholar
  20. Loladze I (2002) Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry? Trends Ecol Evol 17:457–461. doi: 10.1016/S0169-5347(02)02587-9 CrossRefGoogle Scholar
  21. Long SP, Ainsworth EA, Leakey ADB, Nösberger J, Ort DR (2006) Food for thought: lower-than-expected crop yield stimulations with rising CO2 concentrations. Science 312:1918–1921. doi: 10.1126/science.1114722 PubMedCrossRefGoogle Scholar
  22. Manderscheid R, Erbs M, Weigel H-J (2014) Interactive effects of free-air CO2 enrichment and drought stress on maize growth. Eur J Agron 52:11–21. doi: 10.1016/j.eja.2011.12.007 CrossRefGoogle Scholar
  23. Markelz RJC, Strellner RS, Leakey ADB (2011) Impairment of C-4 photosynthesis by drought is exacerbated by limiting nitrogen and ameliorated by elevated CO2 in maize. J Exp Bot 62:3235–3246. doi: 10.1093/jxb/err056 PubMedCrossRefGoogle Scholar
  24. McGrath JM, Lobell DB (2013) Reduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO2 concentrations. Plant Cell Environ 36:697–705. doi: 10.1111/pce.12007 PubMedCrossRefGoogle Scholar
  25. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of the working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 747–845Google Scholar
  26. Mota Oliveira EM, Ruiz HA, Alvarez VVH, Ferreira PA, Costa FO, Carreiro Almeida IC (2010) Nutrient supply by mass flow and diffusion to maize plants in response to soil aggregate size and water potential. Rev Bras Cienc Solo 34:317–327. doi: 10.1590/S0100-06832010000200005 CrossRefGoogle Scholar
  27. Nuss ET, Tanumihardjo SA (2010) Maize: a paramount staple crop in the context of global nutrition. Compr Rev Food Sci F 9:417–436. doi: 10.1111/j.1541-4337.2010.00117.x CrossRefGoogle Scholar
  28. Oktem A (2008) Effect of water shortage on yield, and protein and mineral compositions of drip-irrigated sweet corn in sustainable agricultural systems. Agric Water Manag 95:1003–1010. doi: 10.1016/j.agwat.2008.03.006 CrossRefGoogle Scholar
  29. Pingali PL (2009) CIMMYT 1999–2000 World maize facts and trends. Meeting world maize needs: technological opportunities and priorities for the public sector. CIMMYT, Mexico. ISSN: 0257–8743Google Scholar
  30. Rastija M, Kovacevic V, Rastija D, Simic D (2010) Manganese and zinc concentrations in maize genotypes grown on soils differing in acidity. Acta Agron Hung 58:385–393. doi: 10.1556/AAgr.58.2010.4.7 CrossRefGoogle Scholar
  31. Taub DR, Wang X (2008) Why are nitrogen concentrations in plant tissue lower under elevated CO2? A critical examination of hypotheses. J Integr Plant Biol 50:1365–1374. doi: 10.1111/j.1744-7909.2008.00754.x PubMedCrossRefGoogle Scholar
  32. Taub DR, Miller B, Allen H (2008) Effects of elevated CO2 on protein concentration of food crops: a meta-analysis. Glob Chang Biol 14:565–575. doi: 10.1111/j.1365-2486.2007.01511.x CrossRefGoogle Scholar
  33. Tolera A, Sundstol F (1999) Morphological fractions of maize stover harvested at different stages of grain maturity and nutritive value of different fractions of the stover. Anim Feed Sci Technol 81:1–16. doi: 10.1016/s0377-8401(99)00072-3 CrossRefGoogle Scholar
  34. Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597. doi: 10.3168/jds.S0022-0302(91)78551-2 PubMedCrossRefGoogle Scholar
  35. VDLUFA Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (2006) Die chemische Untersuchung von Futtermitteln. Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik (VDLUFA-Methodenbuch), Band III. Darmstadt, Germany. VDLUFA-Verlag. ISSN: 3-922712-94-0Google Scholar
  36. Wang Y, Frei M (2011) Stressed food—the impact of abiotic environmental stresses on crop quality. Agric Ecosyst Environ 141:271–286. doi: 10.1016/j.agee.2011.03.017 CrossRefGoogle Scholar
  37. Weigel H-J, Manderscheid R (2005) CO2 enrichment effects on forage and grain nitrogen content of pasture and cereal plants. J Crop Improv 13:73–89. doi: 10.1300/J411v13n01_05 CrossRefGoogle Scholar
  38. Wiersma DW, Carter PR, Albrecht KA, Coors JG (1993) Kernel milkline stage and corn forage yield, quality, and dry matter content. J Prod Agric 6:94–99. doi: 10.2134/jpa1993.0094 CrossRefGoogle Scholar
  39. Wieser H, Antes S, Seilmeier W (1998) Quantitative determination of gluten protein types in wheat flour by reversed-phase high-performance liquid chromatography. Cereal Chem 75:644–650. doi: 10.1094/CCHEM.1998.75.5.644 CrossRefGoogle Scholar
  40. Wieser H, Manderscheid R, Erbs M, Weigel H-J (2008) Effects of elevated atmospheric CO2 concentrations on the quantitative protein composition of wheat grains. J Agric Food Chem 56:6531–6535. doi: 10.1021/jf8008603 PubMedCrossRefGoogle Scholar
  41. Wroblewitz S, Hüther L, Manderscheid R, Lebzien P, Danicke S (2013) The effect of free air carbon dioxide enrichment (FACE) during maize cultivation on the in sacco degradability of the grains. Proc Soc Nutr Physiol 22:118Google Scholar

Copyright information

© INRA and Springer-Verlag France 2014

Authors and Affiliations

  • Martin Erbs
    • 1
  • Remy Manderscheid
    • 1
  • Liane Hüther
    • 2
  • Anke Schenderlein
    • 2
  • Herbert Wieser
    • 3
  • Sven Dänicke
    • 2
  • Hans-Joachim Weigel
    • 1
  1. 1.Thünen Institute of BiodiversityFederal Research Institute for Agriculture, Fisheries and ForestryBraunschweigGermany
  2. 2.Institute of Animal Nutrition, Friedrich Loeffler-InstitutFederal Research Institute for Animal HealthBraunschweigGermany
  3. 3.German Research Centre for Food ChemistryFreisingGermany

Personalised recommendations