Advertisement

Agronomy for Sustainable Development

, Volume 35, Issue 1, pp 157–167 | Cite as

New multi-model approach gives good estimations of wheat yield under semi-arid climate in Morocco

  • Simone Bregaglio
  • Nicolò Frasso
  • Valentina Pagani
  • Tommaso Stella
  • Caterina Francone
  • Giovanni Cappelli
  • Marco Acutis
  • Riad Balaghi
  • Hassan Ouabbou
  • Livia Paleari
  • Roberto Confalonieri
Research Article

Abstract

Wheat production in Morocco is crucial for economy and food security. However, wheat production is difficult because the semi-arid climate causes very variable wheat yields. To solve this issue, we need better prediction of the impact of drought on wheat yields to adapt cropping management to the semi-arid climate. Here, we adapted the models WOFOST and CropSyst to agro-climatic conditions in Morocco. Six soft and durum wheat varieties were grown during the 2011–2012 and 2012–2013 growing seasons in the experimental sites of Sidi El Aydi, Khemis Zemamra and Marchouch. Drip irrigation and rainfed treatments were arranged in a randomised-block design with three replicates. We determined the phenological stages of emergence, tillering, stem elongation, flowering and maturity. We measured aboveground biomass six times along the season. These data were used to adapt WOFOST and CropSyst to local conditions. Our results show that both models achieved good estimations, with R 2 always higher than 0.91, and positive values for Nash and Sutcliffe modelling efficiencies. Results of spatially distributed simulations were then analysed for the whole country in terms of different response to drought.

Keywords

Food security Drought Water stress Crop monitoring WOFOST CropSyst 

Notes

Acknowledgments

This study has been partially funded under the EU FP7 collaborative project, Grant Agreement No. 270351, Crop monitoring as an E-agriculture tool in developing countries (E-Agri).

References

  1. Asseng S, Ewert F, Rosenzweig C et al (2013) Quantifying uncertainties in simulating wheat yields under climate change. Nat Clim Chang 3:827–832. doi: 10.1038/nclimate1916 CrossRefGoogle Scholar
  2. Balaghi R, Tychon B, Eerens H, Jilbene M (2008) Empirical regression models using NDVI, rainfall and temperature data for the early prediction of wheat grain yields in Morocco. Int J Appl Earth Obs 10:438–452. doi: 10.1016/j.jag.2006.12.001 CrossRefGoogle Scholar
  3. Balaghi R, Jlibene M, Tychon B, Eerens H (2012) La prédiction agrométéorologique des rendements céréaliers au Maroc. INRA, MarocGoogle Scholar
  4. Basso B, Cammarano D, Carfagna E (2013) Review of crop yield forecasting methods and early warning systems. Food and Agriculture Organization. http://www.fao.org/fileadmin/templates/ess/documents/meetings_and_workshops/GS_SAC_2013/Improving_methods_for_crops_estimates/Crop_Yield_Forecasting_Methods_and_Early_Warning_Systems_Lit_review.pdf. Accessed 14 Feb 2014
  5. Bastiaanssen WGM, Ali S (2003) A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agric Ecosyst Environ 94:321–340. doi: 10.1016/S0167-8809(02)00034-8 CrossRefGoogle Scholar
  6. Bechini L, Bocchi S, Maggiore T, Confalonieri R (2006) Parameterization of a crop growth and development simulation model at sub-model components level. An example for winter wheat (Triticum aestivum L.). Environ Model Softw 21:1024–1054. doi: 10.1016/j.envsoft.2005.05.006 CrossRefGoogle Scholar
  7. Bouftass F, Labhilili M, Ezzahiri B, Ziouti A (2010) Molecular polymorphism of the wheat leaf rust fungus in Morocco using amplified fragment length polymorphism. Phytopathology 158:111–116. doi: 10.1111/j.1439-0434.2009.01573.x CrossRefGoogle Scholar
  8. Bouman BAM, Van Laar HH (2006) Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agric Syst 87:249–273. doi: 10.1016/j.agsy.2004.09.011 CrossRefGoogle Scholar
  9. Confalonieri R, Bregaglio S, Acutis M (2010) A proposal of an indicator for quantifying model robustness based on the relationship between variability of errors and of explored conditions. Ecol Model 221:960–964. doi: 10.1016/j.ecolmodel.2009.12.003 CrossRefGoogle Scholar
  10. Confalonieri R, Francone C, Cappelli G, Stella T, Frasso N, Carpani M, Bregaglio S, Acutis M, Tubiello FN, Fernandes E (2013a) A multi-approach software library for estimating crop suitability to environment. Comput Electron Agric 90:170–175. doi: 10.1016/j.compag.2012.09.016 CrossRefGoogle Scholar
  11. Confalonieri R, Bregaglio S, Cappelli G, Francone C, Carpani M, Acutis M, El Aydam M, Niemeyer S, Balaghi R, Dong Q (2013b) Wheat modelling in Morocco unexpectedly reveals predominance of photosynthesis versus leaf area expansion plant traits. Agron Sustain Dev 33:393–403. doi: 10.1007/s13593-012-0104-y CrossRefGoogle Scholar
  12. Duchemin B, Maisongrande P, Boulet G, Benhadj I (2008) A simple algorithm for yield estimates: evaluation for semi-arid irrigated winter wheat monitored with green leaf area index. Environ Model Softw 23:876–892. doi: 10.1016/j.envsoft.2007.10.003 CrossRefGoogle Scholar
  13. El Bouhssini M, Ogbonnaya FC, Chen M, Lhaloui S, Rihawi F, Dabbous A (2013) Sources of resistance in primary synthetic hexaploid wheat (Triticum aestivum L.) to insect pests: Hessian fly, Russian wheat aphid and Sunn pest in the fertile crescent. Genet Resour Crop Evol 60:121–127. doi: 10.1007/s10722-012-9861-3 CrossRefGoogle Scholar
  14. Gommes R, El Hairech T, Rosillon D, Balaghi R (2009) Impact of climate change on agricultural yields in Morocco. World Bank - Morocco study on the impact of climate change on the agricultural sector. Food and Agriculture Organization of the United Nations (FAO). Roma, Italy. http://www.fao.org/nr/climpag/pub/FAO_WorldBank_Study_CC_Morocco_2008.pdf. Accessed 14 Feb 2014
  15. Gourdji SM, Mthews KL, Reynolds M, Crossa J, Lobell DB (2012) An assessment of wheat yield sensitivity and breeding gains in hot environments. Proc R Soc B 20122190. doi: 10.1098/rspb.2012.2190
  16. Hertel TW, Martin W, Leister AM (2010) Potential implications of a special safeguard mechanism in the world trade organization: the case of wheat. World Bank Econ Rev 24:330–359. doi: 10.1093/wber/lhq010%U CrossRefGoogle Scholar
  17. Institute National de la Recherche Agronomique (INRA) (2002) Caractérisation du climat et stratégies de lutte contre les effets de la sécheresse au Maroc. Note interne pour le Ministère de l’Agriculture. Département d’Agronomie, INRA, MoroccoGoogle Scholar
  18. Jørgensen SE, Kamp-Nielsen L, Christensen T, Windolf-Nielsen J, Westergaard B (1986) Validation of a prognosis based upon a eutrophication model. Ecol Model 32:165–182. doi: 10.1016/0304-3800(86)90024-4 CrossRefGoogle Scholar
  19. Karrou M (1998) Observations on effect of seeding pattern on water-use efficiency of durum wheat in semi-arid areas of Morocco. Field Crop Res 59:175–179. doi: 10.1016/S0378-4290(98)00118-X CrossRefGoogle Scholar
  20. Lancashire PD, Bleiholder H, Langelüddecke P, Stauss R, Van den Boom T, Weber E, Witzenberger A (1991) An uniform decimal code for growth stages of crops and weeds. Ann Appl Biol 119:561–601. doi: 10.1111/j.1744-7348.1991.tb04895.x CrossRefGoogle Scholar
  21. Loague K, Green RE (1991) Statistical and graphical methods for evaluating solute transport models: overview and application. J Contam Hydrol 7:51–73. doi: 10.1016/0169-7722(91)90038-3 CrossRefGoogle Scholar
  22. Micale F, Genovese G (2004) Methodology of the MARS crop yield forecasting system. Meteorological data collection, processing and analysis. European Communities, ItalyGoogle Scholar
  23. Mrabet R (2000) Differential response of wheat to tillage management systems in a semiarid area of Morocco. Field Crop Res 66:165–174. doi: 10.1016/S0378-4290(00)00074-5 CrossRefGoogle Scholar
  24. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part I—a discussion of principles. J Hydrol 10:282–290. doi: 10.1016/0022-1694(70)90255-6 CrossRefGoogle Scholar
  25. Porter JR, Semenov MA (2005) Crop responses to climatic variation. Philos Trans R Soc B 360:2021–2035. doi: 10.1098/rstb.2005.1752 CrossRefGoogle Scholar
  26. Richter GM, Acutis M, Trevisiol P, Latiri K, Confalonieri R (2010) Sensitivity analysis for a complex crop model applied to durum wheat in the Mediterranean. Eur J Agron 32:127–136. doi: 10.1016/j.eja.2009.09.002 CrossRefGoogle Scholar
  27. Romano N, Brunone B, Santini A (1998) Numerical analysis of one-dimensional unsaturated flow in layered soils. Adv Water Resour 21:315–324. doi: 10.1016/S0309-1708(96)00059-0 CrossRefGoogle Scholar
  28. Stöckle CO, Donatelli M, Nelson R (2003) CropSyst, a cropping systems simulation model. Eur J Agron 18:289–307. doi: 10.1016/S1161-0301(02)00109-0 CrossRefGoogle Scholar
  29. Szulczewski W, Zyromsky A, Biniak-Pieróg M (2012) New approach in modeling spring wheat yielding based on dry periods. Agric Water Manag 103:105–113. doi: 10.1016/j.agwat.2011.10.023 CrossRefGoogle Scholar
  30. Tanner CB, Sinclair TR (1983) Efficient water use in crop production: research or re-search? In: Taylor HM, Jordan WR, Sinclair TR (ed) Limitations to efficient water use in crop production. Amer Soc Agron, Madison, WI, pp 1–27Google Scholar
  31. Thorp KR, Hunsaker DJ, French AN, White JW, Clarke TR, Pinter PJ Jr (2010) Evaluation of the CSM-CROPSIM-CERES-wheat model as a tool for crop water management. Trans ASABE 53:87–102. doi: 10.13031/2013.29505 CrossRefGoogle Scholar
  32. Van Keulen H, Wolf J (1986) Modelling of agricultural production: weather soils and crops. Simulation monographs. Pudoc, Wageningen, The NetherlandsGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2014

Authors and Affiliations

  • Simone Bregaglio
    • 1
  • Nicolò Frasso
    • 1
  • Valentina Pagani
    • 1
  • Tommaso Stella
    • 1
  • Caterina Francone
    • 1
  • Giovanni Cappelli
    • 1
  • Marco Acutis
    • 1
  • Riad Balaghi
    • 2
  • Hassan Ouabbou
    • 3
  • Livia Paleari
    • 1
  • Roberto Confalonieri
    • 1
  1. 1.Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Cassandra labUniversità degli Studi di MilanoMilanItaly
  2. 2.Department of Environment and Natural ResourcesInstitut National de la Recherche AgronomiqueRabatMorocco
  3. 3.Department of Plant Breeding and Genetic Resources, Centre Régional de la Recherche Agronomique de SettatInstitut National de la Recherche AgronomiqueSettatMorocco

Personalised recommendations