Agronomy for Sustainable Development

, Volume 35, Issue 1, pp 145–150 | Cite as

Network simulations to study seed exchange for agrobiodiversity conservation

  • Marco PautassoEmail author
Research Article


Crop diversity is essential for sustainable development because diverse crops cope better with disease and climate change. A way to maintain crop diversity is to sustain seed exchange among farmers. Network simulations help in establishing which network properties promote crop diversity conservation. Here, we modelled the likelihood that an introduced crop variety will spread in a seed exchange network. The network model is based on published data on a directed network of barley seed flows in seven villages of Northern Ethiopia. Results show that the number of households that can be reached when introducing a new variety depends on the number of outgoing links of the household that first received the new variety. The distribution of the number of both incoming and outgoing links shows a departure from a normal distribution. This trend is explained by the presence of a minority of highly connected households and of a majority of weakly connected households. For the whole network, there is no significant correlation between the number of incoming and outgoing links of households. The findings explain the common observation that individual farmers do not cultivate all varieties present in a seed system. Absence of reciprocal exchange makes such networks less vulnerable to wholesale displacement of farmer varieties by improved ones.


Biodiversity Complex networks Degree distribution Methods in ecology and evolution Seeds Simulation models Small-world networks 



Many thanks to F. Abay, W. de Boef and Å. Bjørnstad for making their network available in Abay et al. (2011) for further analysis; to O. Holdenrieder, M. Jeger, H. Joly, F. Laso, M. Moslonka-Lefebvre, C. Soler and the participants of the Netseed research project for insights and discussions; to E. Lichtfouse, T. Matoni and anonymous reviewers for helpful comments on a previous draft; and to the French Foundation for Research on Biodiversity (FRB) for supporting this work through its Centre for Synthesis and Analysis of Biodiversity (CESAB).


  1. Abay F, de Boef W, Bjørnstad Å (2011) Network analysis of barley seed flows in Tigray, Ethiopia: supporting the design of strategies that contribute to on-farm management of plant genetic resources. Plant Genet Res 9:495–505. doi: 10.1017/S1479262111000773 CrossRefGoogle Scholar
  2. Abebe TD, Bauer AM, Léon J (2010) Morphological diversity of Ethiopian barleys (Hordeum vulgare L.) in relation to geographic regions and altitudes. Hereditas 147:154–164. doi: 10.1111/j.1601-5223.2010.02173.x PubMedCrossRefGoogle Scholar
  3. Abebe TD, Mathew B, Léon J (2013) Barrier analysis detected genetic discontinuity among Ethiopian barley (Hordeum vulgare L.) landraces due to landscape and human mobility on gene flow. Genet Resour Crop Evol 60:297–309. doi: 10.1007/s10722-012-9834-6 CrossRefGoogle Scholar
  4. Almekinders CJM, Louwaars NP, Bruijn GH (1994) Local seed systems and their importance for an improved seed supply in developing countries. Euphytica 78:207–216. doi: 10.1007/BF00027519 CrossRefGoogle Scholar
  5. Aw-Hassan A, Mazid A, Salahieh H (2008) The role of informal farmer-to-farmer seed distribution in the diffusion of new barley varieties in Syria. Exp Agric 44:413–431. doi: 10.1017/S001447970800642X CrossRefGoogle Scholar
  6. Bajracharya J, Brown AHD, Joshi BK, Panday D, Baniya BK, Sthapit BR, Jarvis DI (2012) Traditional seed management and genetic diversity in barley varieties in high-hill agro-ecosystems of Nepal. Genet Resour Crop Evol 59:389–398. doi: 10.1007/s10722-011-9689-2 CrossRefGoogle Scholar
  7. Bellon MR, Hodson D, Hellin J (2011) Assessing the vulnerability of traditional maize seed systems in Mexico to climate change. Proc Natl Acad Sci U S A 108:13432–13437. doi: 10.1073/pnas.1103373108 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bjørnstad A, Abay F (2010) Multivariate patterns of diversity in Ethiopian barleys. Crop Sci 50:1579–1586. doi: 10.2135/cropsci2009.12.0719 CrossRefGoogle Scholar
  9. Calvet-Mir L, Calvet-Mir M, Luis Molina J, Reyes-García V (2012) Seed exchange as an agrobiodiversity conservation mechanism. A case study in Vall Fosca, Catalan Pyrenees, Iberian Peninsula. Ecol Soc 17:29Google Scholar
  10. Cavatassi R, Lipper L, Narloch U (2011) Modern variety adoption and risk management in drought prone areas: insights from the sorghum farmers of eastern Ethiopia. Agric Econ 42:279–292. doi: 10.1111/j.1574-0862.2010.00514.x CrossRefGoogle Scholar
  11. Chadès I, Martin TG, Nicol S, Burgman MA, Possingham HP, Buckley YM (2011) General rules for managing and surveying networks of pests, diseases, and endangered species. Proc Natl Acad Sci U S A 108:8323–8328. doi: 10.1073/pnas.1016846108 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Chakrabarti D, Wang Y, Wang C, Leskovec J, Faloutsos C (2008) Epidemic thresholds in real networks. ACM Trans Info Syst Secur 10:1–26. doi: 10.1145/1284680.1284681 CrossRefGoogle Scholar
  13. de Boef WS, Dempewolf H, Byakweli JM, Engels JMM (2010) Integrating genetic resource conservation and sustainable development into strategies to increase the robustness of seed systems. J Sust Agric 34:504–531. doi: 10.1080/10440046.2010.484689 CrossRefGoogle Scholar
  14. Delaunay S, Tescar R-P, Oualbego A, vom Brocke K, Lançon J (2009) La culture du coton ne bouleverse pas les échanges traditionnels de semences de sorgho. Cah Agric 17:189–194Google Scholar
  15. Döring TF, Vieweger A, Pautasso M, Vaarst M, Finckh MR, Wolfe MS (2014) Resilience as a universal criterion of health. J Sci Food Agric. doi: 10.1002/jsfa.6539 Google Scholar
  16. Dyer GA, González C, Lopera DC (2011) Informal “seed” systems and the management of gene flow in traditional agroecosystems: the case of cassava in Cauca, Colombia. PLoS One 6:e29067. doi: 10.1371/journal.pone.0029067 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Fuentes FF, Bazile D, Bhargava A, Martinez EA (2012) Implications of farmers’ seed exchanges for on-farm conservation of quinoa, as revealed by its genetic diversity in Chile. J Agric Sci 150:702–716. doi: 10.1017/S0021859612000056 CrossRefGoogle Scholar
  18. Gildemacher PR, Demo P, Barker I, Kaguongo W, Woldegiorgis G, Wagoire WW, Wakahiu M, Leeuwis C, Struik PC (2009) A description of seed potato systems in Kenya, Uganda and Ethiopia. Am J Potato Res 86:373–382. doi: 10.1007/s12230-009-9092-0 CrossRefGoogle Scholar
  19. Hodgkin T, Rana R, Tuxill J, Balma D, Subedi A, Mar I, Karamura D, Valdivia R, Collado L, Latournerie L, Sadiki M, Sawadogo M, Brown AHD, Jarvis DI (2007) Seed systems and crop genetic diversity in agroecosystems. In: Jarvis DI, Padoch C, Cooper HD (eds) Managing biodiversity in agricultural systems. Columbia University Press, New York, pp 77–116Google Scholar
  20. Jarvis DI, Hodgkin T, Sthapit BR, Fadda C, Lopez-Noriega I (2011) An heuristic framework for identifying multiple ways of supporting the conservation and use of traditional crop varieties within the agricultural production system. Crit Rev Plant Sci 30:125–176. doi: 10.1080/07352689.2011.554358 CrossRefGoogle Scholar
  21. Jeger MJ, Pautasso M, Holdenrieder O, Shaw MW (2007) Modelling disease spread and control in networks: implications for plant sciences. New Phytol 174:279–297. doi: 10.1111/j.1469-8137.2007.02028.x PubMedCrossRefGoogle Scholar
  22. Jensen HR, Belqadi L, De Santis P, Sadiki M, Jarvis DI, Schoen DJ (2013) A case study of seed exchange networks and gene flow for barley (Hordeum vulgare subsp. vulgare) in Morocco. Genet Resour Crop Evol 60:1119–1138. doi: 10.1007/s10722-012-9909-4 CrossRefGoogle Scholar
  23. Johnson JC, Christian RR, Brunt JW, Hickman CR, Waide RB (2010) Evolution of collaboration within the US Long Term Ecological Research Network. Bioscience 60:931–940. doi: 10.1525/bio.2010.60.11.9 CrossRefGoogle Scholar
  24. Kawa NC, McCarty C, Clement CR (2013) Manioc varietal diversity, social networks, and distribution constraints in rural Amazonia. Curr Anthropol 54:764–770CrossRefGoogle Scholar
  25. Labeyrie V, Rono B, Leclerc C (2014) How social organization shapes crop diversity: an ecological anthropology approach among Tharaka farmers of Mount Kenya. Agric Hum Values 31:97–107. doi: 10.1007/s10460-013-9451-9 CrossRefGoogle Scholar
  26. Leclerc C, Coppens d’Eeckenbrugge G (2012) Social organization of crop genetic diversity. The G × E × S interaction model. Diversity 4:1–32. doi: 10.3390/d4010001 CrossRefGoogle Scholar
  27. Lindström T, Grear DA, Buhnerkempe M, Webb CT, Miller RS, Portacci K, Wennergren U (2013) A Bayesian approach for modeling cattle movements in the United States: scaling up a partially observed network. PLoS One 8:e53432. doi: 10.1371/journal.pone.0053432 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Louwaars NP, de Boef WS (2012) Integrated seed sector development in Africa: a conceptual framework for creating coherence between practices, programs, and policies. J Crop Improv 26:39–59. doi: 10.1080/15427528.2011.611277 CrossRefGoogle Scholar
  29. Marfo KA, Dorward PT, Craufurd PQ, Ansere-Bioh F, Haleegoah J, Bam R (2008) Identifying seed uptake pathways: the spread of Agya amoah rice cultivar in southwestern Ghana. Exp Agric 44:257–269. doi: 10.1017/S0014479708006170 CrossRefGoogle Scholar
  30. May RM (2006) Network structure and the biology of populations. Trends Ecol Evol 21:394–399. doi: 10.1016/j.tree.2006.03.013 PubMedCrossRefGoogle Scholar
  31. Moslonka-Lefebvre M, Pautasso M, Jeger MJ (2009) Disease spread in small-size directed networks: epidemic threshold, correlation between links to and from nodes, and clustering. J Theor Biol 260:402–411. doi: 10.1016/j.jtbi.2009.06.015 PubMedCrossRefGoogle Scholar
  32. Moslonka-Lefebvre M, Finley A, Dorigatti I, Dehnen-Schmutz K, Harwood T, Jeger MJ, Xu XM, Holdenrieder O, Pautasso M (2011) Networks in plant epidemiology: from genes to landscapes, countries and continents. Phytopathology 101:392–403. doi: 10.1094/PHYTO-07-10-0192 PubMedCrossRefGoogle Scholar
  33. Moslonka-Lefebvre M, Harwood T, Jeger MJ, Pautasso M (2012) SIS along a continuum (SISc) epidemiological modelling and control of diseases on directed trade networks. Math Biosci 236:44–52. doi: 10.1016/j.mbs.2012.01.004 PubMedCrossRefGoogle Scholar
  34. Pautasso M, Jeger MJ (2008) Epidemic threshold and network structure: the interplay of probability of transmission and of persistence in directed networks. Ecol Compl 5:1–8. doi: 10.1016/j.ecocom.2007.07.001 CrossRefGoogle Scholar
  35. Pautasso M, Jeger MJ (2014) Network epidemiology and plant trade networks. AoB Plants. doi: 10.1093/aobpla/plu007 PubMedCentralPubMedGoogle Scholar
  36. Pautasso M, Moslonka-Lefebvre M, Jeger MJ (2010a) The number of links to and from the starting node as a predictor of epidemic size in small-size directed networks. Ecol Compl 7:424–432. doi: 10.1016/j.ecocom.2009.10.003 CrossRefGoogle Scholar
  37. Pautasso M, Xu XM, Jeger MJ, Harwood TD, Moslonka-Lefebvre M, Pellis L (2010b) Disease spread in small-size directed trade networks: the role of hierarchical categories. J Appl Ecol 47:1300–1309. doi: 10.1111/j.1365-2664.2010.01884.x CrossRefGoogle Scholar
  38. Pautasso M, Aistara G, Barnaud A, Caillon S, Clouvel P, Coomes OT, Delêtre M, Demeulenaere E, De Santis P, Döring T, Eloy L, Emperaire L, Garine E, Goldringer I, Jarvis D, Joly HI, Leclerc C, Louafi S, Martin P, Massol F, McGuire S, McKey D, Padoch C, Soler C, Thomas M, Tramontini S (2013) Seed exchange networks for agrobiodiversity conservation. A review. Agron Sustain Dev 33:151–175. doi: 10.1007/s13593-012-0089-6 CrossRefGoogle Scholar
  39. Portis E, Baudino M, Magurno F, Lanteri S (2012) Genetic structure and preservation strategies of autochthonous vegetable crop landraces of north-western Italy. Ann Appl Biol 160:76–85. doi: 10.1111/j.1744-7348.2011.00522.x CrossRefGoogle Scholar
  40. Rana RB, Garforth C, Sthapit B, Jarvis D (2007) Influence of socio-economic and cultural factors in rice varietal diversity management on-farm in Nepal. Agric Hum Values 24:461–472. doi: 10.1007/s10460-007-9082-0 CrossRefGoogle Scholar
  41. Ruiz KB, Biondi S, Oses R, Acuña-Rodríguez IS, Antognoni F, Martinez-Mosqueira EA, Coulibaly A, Canahua-Murillo A, Pinto M, Zurita-Silva A, Bazile D, Jacobsen S-E, Molina-Montenegro MA (2014) Quinoa biodiversity and sustainability for food security under climate change. A review. Agric Sustain Dev. doi: 10.1007/s13593-013-0195-0 Google Scholar
  42. Samberg LH, Fishman L, Allendorf FW (2013) Population genetic structure in a social landscape: barley in a traditional Ethiopian agricultural system. Evol Appl 6:1133–1145. doi: 10.1111/eva.12091 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Stromberg PM, Pascual U, Bellon MR (2010) Seed systems and farmers’ seed choices: the case of maize in the Peruvian Amazon. Hum Ecol 38:539–553. doi: 10.1007/s10745-010-9333-3 CrossRefGoogle Scholar
  44. Stumpf MPH, Wiuf C, May RM (2005) Subnets of scale-free networks are not scale-free: sampling properties of networks. Proc Natl Acad Sci U S A 102:4221–4224. doi: 10.1073/pnas.0501179102 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Subedi A, Chaudhary P, Baniya BK, Rana RB, Tiwari RK, Rijal DK, Sthapit BR, Jarvis DI (2003) Who maintains crop genetic diversity and how?: implications for on-farm conservation and utilization. Cult Agric 25:41–50. doi: 10.1525/cag.2003.25.2.41 CrossRefGoogle Scholar
  46. Thomas M, Dawson JC, Goldringer I, Bonneuil C (2011) Seed exchanges, a key to analyze crop diversity dynamics in farmer-led on-farm conservation. Genet Resour Crop Evol 58:321–338. doi: 10.1007/s10722-011-9662-0 CrossRefGoogle Scholar
  47. van Leur JAG, Gebre H (2003) Diversity between some Ethiopian farmer's varieties of barley and within these varieties among seed sources. Genet Resour Crop Evol 50:351–357. doi: 10.1023/A:1023966702389 CrossRefGoogle Scholar
  48. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442. doi: 10.1038/30918 PubMedCrossRefGoogle Scholar
  49. Woolhouse MEJ, Shaw DJ, Matthews L, Liu WC, Mellor DJ, Thomas MR (2005) Epidemiological implications of the contact network structure for cattle farms and the 20–80 rule. Biol Lett 1:350–352. doi: 10.1098/rsbl.2005.0331 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2014

Authors and Affiliations

  1. 1.Forest Pathology and DendrologySwiss Federal Institute of Technology, ETH ZurichZurichSwitzerland

Personalised recommendations