Agronomy for Sustainable Development

, Volume 35, Issue 1, pp 169–181 | Cite as

Fourteen years of evidence for positive effects of conservation agriculture and organic farming on soil life

  • Ludovic Henneron
  • Laetitia Bernard
  • Mickaël Hedde
  • Céline Pelosi
  • Cécile Villenave
  • Claire Chenu
  • Michel Bertrand
  • Cyril Girardin
  • Eric BlanchartEmail author


Conventional agriculture strongly alters soil quality due to industrial practices that often have negative effects on soil life. Alternative systems such as conservation agriculture and organic farming could restore better conditions for soil organisms. Improving soil life should in turn improve soil quality and farming sustainability. Here, we have compared for the first time the long-term effects of conservation agriculture, organic farming, and conventional agriculture on major soil organisms such as microbes, nematofauna, and macrofauna. We have also analyzed functional groups. Soils were sampled at the 14-year-old experimental site of La Cage, near Versailles, France. The microbial community was analyzed using molecular biology techniques. Nematofauna and macrofauna were analyzed and classified into functional groups. Our results show that both conservation and organic systems increased the abundance and biomass of all soil organisms, except predaceous nematodes. For example, macrofauna increased from 100 to 2,500 %, nematodes from 100 to 700 %, and microorganisms from 30 to 70 %. Conservation agriculture showed a higher overall improvement than organic farming. Conservation agriculture increased the number of many organisms such as bacteria, fungi, anecic earthworms, and phytophagous and rhizophagous arthropods. Organic farming improved mainly the bacterial pathway of the soil food web and endogeic and anecic earthworms. Overall, our study shows that long-term, no-tillage, and cover crops are better for soil biota than periodic legume green manures, pesticides, and mineral fertilizers.


Soil biodiversity Functional groups Soil food web Soil functioning Soil quality Land management Agricultural sustainability Agroecosystems Agroecology 



This study was financially supported by the ANR Systerra-PEPITES research program coordinated by Dr. S. de Tourdonnet (IRC—Montpellier SupAgro). We greatly thank O. Ba, J. Thénard, C. Marraud, J.P. Pétraud, N. Cheviron, E. Kouakoua, L. Amenc, E. Tournier, A. Martin, D. Viratel, R. Lefèvre, C. Naisse, and S. Lutfalla for laboratory, technical, and field support. We are also grateful to A. Marmeys, G. Grandeau, and Dr. J.F. Vian for valuable discussions and P. Deleporte, A. Gauffreteau, and Dr. C. Salomé for their advice on statistical issues.


  1. Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74(1–3):19–31. doi: 10.1016/s0167-8809(99)00028-6 CrossRefGoogle Scholar
  2. Bardgett RD, McAlister E (1999) The measurement of soil fungal:bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol Fertil Soils 29(3):282–290. doi: 10.1007/s003740050554 CrossRefGoogle Scholar
  3. Bengtsson J, Ahnstrom J, Weibull AC (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol 42(2):261–269. doi: 10.1111/j.1365-2664.2005.01005.x CrossRefGoogle Scholar
  4. Bernard L, Mougel C, Maron PA, Nowak V, Leveque J, Henault C, Haichar FEZ, Berge O, Marol C, Balesdent J, Gibiat F, Lemanceau P, Ranjard L (2007) Dynamics and identification of soil microbial populations actively assimilating carbon from C-13-labelled wheat residue as estimated by DNA- and RNA-SIP techniques. Environ Microbiol 9(3):752–764. doi: 10.1111/j.1462-2920.2006.01197.x PubMedCrossRefGoogle Scholar
  5. Birkhofer K, Bezemer TM, Bloem J et al (2008a) Long-term organic farming fosters below and aboveground biota: implications for soil quality, biological control and productivity. Soil Biol Biochem 40(9):2297–2308. doi: 10.1016/j.soilbio.2008.05.007 CrossRefGoogle Scholar
  6. Birkhofer K, Wise DH, Scheu S (2008b) Subsidy from the detrital food web, but not microhabitat complexity, affects the role of generalist predators in an aboveground herbivore food web. Oikos 117:494–500. doi: 10.1111/j.0030-1299.2008.16361.x CrossRefGoogle Scholar
  7. Blanchart E, Villenave C, Viallatoux A, Barthes B, Girardin C, Azontonde A, Feller C (2006) Long-term effect of a legume cover crop (Mucuna pruriens var. utilis) on the communities of soil macrofauna and nematofauna, under maize cultivation, in southern Benin. Eur J Soil Biol 42:S136–S144. doi: 10.1016/j.ejsobi.2006.07.018 CrossRefGoogle Scholar
  8. Bommarco R, Kleijn D, Potts SG (2012) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28(4):230–238. doi: 10.1016/j.tree.2012.10.012 PubMedCrossRefGoogle Scholar
  9. Bongers T (1990) The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83:14–19. doi: 10.1007/BF00324627 CrossRefGoogle Scholar
  10. Bongers T, Bongers M (1998) Functional diversity of nematodes. Appl Soil Ecol 10(3):239–251. doi: 10.1016/s0929-1393(98)00123-1 CrossRefGoogle Scholar
  11. Boström U (1995) Earthworm populations (Lumbricidae) in ploughed and undisturbed leys. Soil Tillage Res 35(3):125–133. doi: 10.1016/0167-1987(95)00489-0 CrossRefGoogle Scholar
  12. Bouché MB, Gardner RH (1984) Earthworm functions. VII. Population estimation techniques. Rev Ecol Biol Sols 21:37–63Google Scholar
  13. Bunemann EK, Schwenke GD, Van Zwieten L (2006) Impact of agricultural inputs on soil organisms—a review. Aust J Soil Res 44(4):379–406. doi: 10.1071/sr05125 CrossRefGoogle Scholar
  14. Chan KY (2001) An overview of some tillage impacts on earthworm population abundance and diversity—implications for functioning in soils. Soil Tillage Res 57(4):179–191. doi: 10.1016/s0167-1987(00)00173-2 CrossRefGoogle Scholar
  15. De Vries FT, Thébault E, Liiri M, Birkhofer K, Tsiafouli MA, Bjornlund L, Jorgensen HB, Brady MV, Christensen S, de Ruiter PC, d’Hertefeldt T, Frouz J, Hedlund K, Hemerik L, Gera Hol WH, Hotes S, Mortimer SR, Setälä H, Sgardelis SP, Uteseny K, van der Putten WH, Wolters V, Bardgett RD (2013) Soil food web properties explain ecosystem services across European land use systems. PNAS. doi: 10.1073/pnas.1305198110 Google Scholar
  16. Debaeke P, Munier-Jolain N, Bertrand M, Guichard L, Nolot JM, Faloya V, Saulas P (2009) Iterative design and evaluation of rule-based cropping systems: methodologies and case-studies. A review. Agron Sustain Dev 29:73–86. doi: 10.1007/978-90-481-2666-8_43 CrossRefGoogle Scholar
  17. Diehl E, Wolters V, Birkhofer K (2012) Arable weeds in organically managed wheat fields foster carabid beetles by resource- and structure-mediated effects. Arthropod-Plant Interactions 6:75–82. doi: 10.1007/s11829-011-9153-4 CrossRefGoogle Scholar
  18. DuPont ST, Ferris H, van Horn H (2009) Effects of cover crop quality and quantity on nematode-based soil food webs and nutrient cycling. Appl Soil Ecol 41:157–167CrossRefGoogle Scholar
  19. Ferris H, Bongers T, de Goede RGM (2001) A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Appl Soil Ecol 18(1):13–29. doi: 10.1016/s0929-1393(01)00152-4 CrossRefGoogle Scholar
  20. Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71(7):4117–4120. doi: 10.1128/aem.71.7.4117-4120.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88(6):1354–1364. doi: 10.1890/05-1839 PubMedCrossRefGoogle Scholar
  22. Frey SD, Elliott ET, Paustian K (1999) Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biol Biochem 31(4):573–585. doi: 10.1016/s0038-0717(98)00161-8 CrossRefGoogle Scholar
  23. Helgason BL, Walley FL, Germida JJ (2009) Fungal and bacterial abundance in long-term no-till and intensive-till soils of the Northern Great Plains. Soil Sci Soc Am J 73(1):120–127. doi: 10.2136/sssaj2007.0392 CrossRefGoogle Scholar
  24. Hendrix PF, Parmelee RW, Crossley DA, Coleman DC, Odum EP, Groffman PM (1986) Detritus food webs in conventional and no-tillage agroecosystems. Bioscience 36(6):374–380. doi: 10.2307/1310259 CrossRefGoogle Scholar
  25. Hole DG, Perkins AJ, Wilson JD, Alexander IH, Grice F, Evans AD (2005) Does organic farming benefit biodiversity? Biol Conserv 122:113–130. doi: 10.1016/j.biocon.2004.07.018 CrossRefGoogle Scholar
  26. House GJ, Brust GE (1989) Ecology of low-input, no-tillage agroecosystems. Agric Ecosyst Environ 27(1–4):331–345. doi: 10.1016/0167-8809(89)90096-0 CrossRefGoogle Scholar
  27. ISO 23611-4 (2007) Soil quality—sampling of soil invertebrates—part 4: sampling, extraction and identification of soil-inhabiting nematodesGoogle Scholar
  28. Kibblewhite MG, Ritz K, Swift MJ (2008) Soil health in agricultural systems. Philos Trans R Soc B-Biol Sci 363(1492):685–701CrossRefGoogle Scholar
  29. Kladivko EJ (2001) Tillage systems and soil ecology. Soil Tillage Res 61:61–76CrossRefGoogle Scholar
  30. Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697. doi: 10.1126/science.1071148 PubMedCrossRefGoogle Scholar
  31. Marasas ME, Sarandon SJ, Cicchino AC (2001) Changes in soil arthropod functional group in a wheat crop under conventional and no-tillage systems in Argentina. Appl Soil Ecol 18:61–68. doi: 10.1016/S0929-1393(01)00148-2 CrossRefGoogle Scholar
  32. Menalled FD, Smith RG, Dauer JT, Fox TB (2007) Impact of agricultural management on carabid communities and weed seed predation. Agric Ecosyst Environ 118(1–4):49–54. doi: 10.1016/j.agee.2006.04.011 CrossRefGoogle Scholar
  33. Mühling M, Woolven-Allen, Murrell JC, Joint I (2008) Improved group-specific PCR primers for denaturating gradient gel electrophoresis analysis of the genetic diversity of complex microbial community. Int Soc Microb Ecol 2:379–392Google Scholar
  34. Pascault N, Nicolardot B, Bastian F, Thiebeau P, Ranjard L, Maron PA (2010) In situ dynamics and spatial heterogeneity of soil bacterial communities under different crop residue management. Microb Ecol 60(2):291–303. doi: 10.1007/s00248-010-9648-z PubMedCrossRefGoogle Scholar
  35. Pelosi C, Bertrand M, Roger-Estrade J (2009a) Earthworm community in conventional, organic and direct seeding with living mulch cropping systems. Agron Sustain Dev 29(2):287–295. doi: 10.1051/agro/2008069 CrossRefGoogle Scholar
  36. Pelosi C, Bertrand M, Capowiez Y, Boizard H, Roger-Estrade J (2009b) Earthworm collection from agricultural fields: Comparisons of selected expellants in presence/absence of hand-sorting. Eur J Soil Biol 45:176–183. doi: 10.1016/j.ejsobi.2008.09.013 CrossRefGoogle Scholar
  37. Philippot L, Bru D, Saby NPA, Cuhel J, Arrouays D, Simek M, Hallin S (2009) Spatial patterns of bacterial taxa in nature reflect ecological traits of deep branches of the 16S rRNA bacterial tree. Environ Microb 11:1096–1104Google Scholar
  38. Philippot L, Andersson SGE, Battin TJ, Prosser JI, Schimel JP, Whitman WB, Hallin S (2010) The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol 8(7):523–529. doi: 10.1038/nrmicro2367 PubMedCrossRefGoogle Scholar
  39. Postma-Blaauw MB, de Goede RGM, Bloem J, Faber JH, Brussaard L (2010) Soil biota community structure and abundance under agricultural intensification and extensification. Ecology 91(2):460–473. doi: 10.1890/09-0666.1 PubMedCrossRefGoogle Scholar
  40. Robertson LN, Kettle BA, Simpson GB (1994) The influence of tillage practices on soil macrofauna in a semi-arid agroecosystem in northeastern Australia. Agric Ecosys Environ 48(2):149–156CrossRefGoogle Scholar
  41. Straub CS, Finke DL, Snyder WE (2008) Are the conservation of natural enemy biodiversity and biological control compatible goals? Biol Control 45(2):225–237. doi: 10.1016/j.biocontrol.2007.05.013 CrossRefGoogle Scholar
  42. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677. doi: 10.1038/nature01014 PubMedCrossRefGoogle Scholar
  43. Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturating gel electrophoresis of amplified ribosomal DNA. Mycol Res 104:927–936Google Scholar
  44. Vandermeer J (1995) The ecological basis of alternative agriculture. Annual review of Ecology, Evolution, and Systematics 26 (201–224)Google Scholar
  45. Wardle DA (1995) Impacts of disturbance on detritus food webs in agro-ecosystems of contrasting tillage and weed management practices. In: Begon M, Fitter AH (eds) Advances in ecological research, vol 26. Academic Press, pp 105–185. doi: 10.1016/s0065-2504(08)60065-3
  46. Wardle DA, Yeates GW, Bonner KI, Nicholson KS, Watson RN (2001) Impacts of ground vegetation management strategies in a kiwifruit orchard on the composition and functioning of the soil biota. Soil Biol Biochem 33(7–8):893–905. doi: 10.1016/s0038-0717(00)00235-2 CrossRefGoogle Scholar
  47. Yeates GW, Bongers T, Degoede RGM, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera—an outline for soil ecologists. J Nematol 25(3):315–331PubMedCentralPubMedGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2014

Authors and Affiliations

  • Ludovic Henneron
    • 1
  • Laetitia Bernard
    • 1
  • Mickaël Hedde
    • 2
  • Céline Pelosi
    • 2
  • Cécile Villenave
    • 1
    • 3
  • Claire Chenu
    • 4
  • Michel Bertrand
    • 5
    • 6
  • Cyril Girardin
    • 7
  • Eric Blanchart
    • 1
    Email author
  1. 1.IRD, UMR Eco&Sols (Montpellier SupAgro, CIRAD, INRA, IRD)Montpellier Cedex 2France
  2. 2.INRA, UR251 PESSACVersailles CedexFrance
  3. 3.ELISOL EnvironnementMontpellier Cedex 2France
  4. 4.AgroParisTech, UMR BioEMCo (Univ. Paris 6, Univ. Paris 12, AgroParisTech, ENS, CNRS, INRA, IRD)Thiverval-GrignonFrance
  5. 5.INRA, UMR Agronomie INRA, AgroParisTechThiverval-GrignonFrance
  6. 6.AgroParisTech, UMR Agronomie INRA, AgroParisTechThiverval-GrignonFrance
  7. 7.INRA, UMR BioEMCo (Univ. Paris 6, Univ. Paris 12, AgroParisTech, ENS, CNRS, INRA, IRD)Thiverval-GrignonFrance

Personalised recommendations