Agronomy for Sustainable Development

, Volume 34, Issue 2, pp 361–380 | Cite as

Legumes for feed, food, biomaterials and bioenergy in Europe: a review

  • Anne-Sophie VoisinEmail author
  • Jacques Guéguen
  • Christian Huyghe
  • Marie-Hélène Jeuffroy
  • Marie-Benoit Magrini
  • Jean-Marc Meynard
  • Christophe Mougel
  • Sylvain Pellerin
  • Elise Pelzer
Review Article


Legume growing has many benefits. Indeed legumes provide plant proteins for animal feed and human food. Legumes fix atmospheric N2 and, in turn, provide cheap and green N fertilisers. Additionally, legumes are used as diversification crops in rotations based on oilseed rape and cereals. Despite those benefits, legume crops in Europe represent less than 4 % of arable lands, and European legume seeds are underused for animal and human nutrition. Nonetheless, European authorities are now fostering the development of legume crops for sustainable agriculture. Here, we analyse forage and grain legume-producing systems since 1950 in order to identify the actual constraints of legume development. We show that legumes can contribute to the agroecological transition for sustainable agriculture, food and energy and for sustainable agri-food systems. Then, we point out that high added-value niche markets are required for supporting legume production. The major research needs identified are (1) analysing the constraints of the current systems and identifying ways of moving towards systems that include more legumes, (2) identifying new and diversified uses for legumes in a sustainable food chain, (3) assessing and improving the ecosystem services provided by legumes at cropping system and territory scales and (4) promoting agroecology through and for legume crop management.


Legumes Ecosystem services Outlets Agri-food system Agroecology Bioenergy Biomaterials Intercropping France Europe 



This papers brings about the main conclusions of the wokshop that was held in Dijon, France, on 27–28 September 2011 and entitled “Atelier de réflexion pour un renouvellement des questions de recherche sur les légumineuses: du gène à la filière” (in English: “brainstorming workshop on the renewal of research questions on legumes: from gene to supply chain”). The authors therefore thank all the participants for the fruitful discussion during this workshop. Our grateful thanks are also due to Jane Curtis-Williams for editing the English.


  1. Allaire G (2012) The multidimensional definition of quality. In: Saavedra-Rivano N, Ilbert H, Augustin-Jean L (eds) Geographical indications and international agricultural trade. Macmillan, New York, pp 71–90Google Scholar
  2. Altieri MA, Martin PB, Lewis WJ (1983) A quest for ecologically based pest management systems. JEnviron Manag 7:91–100. doi: 10.1007/bf01867047 CrossRefGoogle Scholar
  3. Altieri MA (1992) Agroecological foundations of alternative agriculture in California. Agric Ecosyst Environ 39:23–53. doi: 10.1016/0167-8809(92)90203-n CrossRefGoogle Scholar
  4. Altieri MA, Nicholls CI (2012) Agroecology scaling up for food sovereignty and resiliency. Sustain Agric Rev 11:1–29. doi: 10.1007/978-94-007-5449-2_1 CrossRefGoogle Scholar
  5. Amossé C, Jeuffroy MH, David C (2013) Relay intercropping of legume cover crops in organic winter wheat: effects on performance and resource availability. Field Crop Res 145:78–87. doi: 10.1016/j.fcr.2013.02.010 CrossRefGoogle Scholar
  6. Anderson JW, Major AW (2002) Pulses and lipaemia, short- and long-term effect: potential in the prevention of cardiovascular disease. Br J Nutr 88:263–271. doi: 10.1079/bjn.2002716 CrossRefGoogle Scholar
  7. Arthur WB (ed) (1994) Increasing returns and path dependence in the economy. University Michigan press.Google Scholar
  8. Aubertot JN, Barbier JM, Carpentier A, Gril JJ, Guichard L, Luca S, Savary S, Savini S, Voltz M (2005) Pesticides, agriculture et environnement. Réduire l’utilisation des pesticides et limiter leurs impacts environnementaux. Accessed 18 Oct 2013
  9. Axelos M, Bérot S, Schmidt I, Guéguen J (2006) Propriétés tensioactives de biopolymères amphiphiles. In: Colonna P (ed) La Chimie verte. Lavoisier, Paris, pp 271–304Google Scholar
  10. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. doi: 10.1146/annurev.arplant.57.032905.105159 PubMedCrossRefGoogle Scholar
  11. Berthet ETA, Bretagnolle V, Segrestin B (2012) Analyzing the design process of farming practices ensuring little bustard conservation: lessons for collective landscape management. J Sustain Agric 36:319–336. doi: 10.1080/10440046.2011.627988 CrossRefGoogle Scholar
  12. Boland MJ, Rae AN, Vereijken JM, Meuwissen MPM, Fischer ARH, van Boekel MAJS, Rutherfurd SH, Gruppen H, Moughan PJ, Hendriks WH (2013) The future supply of animal-derived protein for human consumption. Trends Food SciTechnol 29:62–73. doi: 10.1016/j.tifs.2012.07.002 CrossRefGoogle Scholar
  13. Bousseau D (2009) Mixtures of cereals and protein crops and mixtures of bread wheat varieties: agronomic point of view and practices of a coop. Innov Agronomiques 7:129–137Google Scholar
  14. Bridet-Guillaume F, Millot D, Buitink J, Gueguen J, Jeuffroy MH, Le Gall M, Munier-Jolain NG, Duc G (2010) Bibliometric analysis of French and worldwide scientific literature on grain legume crops from 2000 to 2009: comparison to soyabean and model species. Innov Agronomiques 11:137–145Google Scholar
  15. Butault JP, Dedryver CA, Gary C, Guichard L, Jacquet F, Meynard JM, Nicot P, Pitrat M, Reau R, Sauphanor B, Savini I, Volay T (2010) Ecophyto R&D, Quelles voies pour réduire l’usage des pesticides ? INRA-Cemagref Multidisciplinary Scientific Assessment, France. Accessed 18 Oct 2013
  16. Carrouée B, Schneider A, Flénet F, Jeuffroy MH, Nemecek T (2012) Introduction of dry pea crop in rotations of cereals and rapeseed: impact on the economic and environmental performances. Innov Agronomiques 25:125–142Google Scholar
  17. Cavaillès E (2009) La relance des légumineuses dans le cadre d’un plan protéines: quels bénéfices environnementaux? Etudes et Documents, n°15, Commissariat Général au Développement Rural, France. Accessed 18 Oct 2013
  18. Chatellier V, Gaigné C (2012) Les logiques économiques de la spécialisation productive du territoire agricole français. Innov Agronomiques 22:185–203Google Scholar
  19. Colonna P, Mercier C (1985) Pisum sativum and Vicia faba carbohydrates. 6. Gelatinization and melting of maize and pea starches with normal and high amylase genotypes. Phytochemistry 24:1667–1674. doi: 10.1016/S0031-9422(00)82532-7 CrossRefGoogle Scholar
  20. Corre-Hellou G, Crozat Y (2005) N2 fixation and N supply in organic pea (Pisum sativum L.) cropping systems as affected by weeds and peaweevil (Sitona lineatus L.). Eur J Agron 22(4):449–458. doi: 10.1016/j.eja.2004.05.005 CrossRefGoogle Scholar
  21. Corre-Hellou G, Fustec J, Crozat Y (2006) Interspecific competition for soil N and its interaction with N2 fixation, leaf expansion and crop growth in pea-barley intercrops. Plant Soil 282:195–208. doi: 10.1007/s11104-005-5777-4 CrossRefGoogle Scholar
  22. Corre-Hellou G, Dibet A, Hauggaard-Nielsen H, Crozat Y, Gooding M, Ambus P, Dahlmann C, von Fragstein P, Pristeri A, Monti M, Jensen ES (2011) The competitive ability of pea-barley intercrops against weeds and interactions with crop productivity and soil N acquisition. Field Crop Res 122:264–272. doi: 10.1016/j.fcr.2011.04.004 CrossRefGoogle Scholar
  23. Cowan R, Gunby P (1996) Sprayed to death: path dependence, lock-in and pest control strategies. Econ J 106:521–542Google Scholar
  24. David C, Jeuffroy MH, Henning J, Meynard JM (2005) Yield variation in organic winter wheat: a diagnostic study in the Southeast of France. Agron Sustain Dev 25:213–223. doi: 10.1051/agro:2005016 CrossRefGoogle Scholar
  25. Dorin B, Treyer S, Paillard S (2011) Agrimonde—scenarios and challenges for feeding the world in 2050. Editions Quae, Paris. Accessed 18 Oct 2013
  26. Esnouf C, Russel M, Bricas N (2011) Pour une alimentation durable. Réflexion stratégique duALIne. Editions Quae, Paris.
  27. Evans J, McNeill AM, Unkovich MJ, Fettell NA, Heenan DP (2001) Net nitrogen balances for cool-season grain legume crops and contributions to wheat nitrogen uptake: a review. Aust J Exp Agric 41:347–359. doi: 10.1071/ea00036 CrossRefGoogle Scholar
  28. FAO (2009) The state of food and agriculture. Livestock in the balance. Accessed 18 Oct 2013
  29. Fares M, Magrini MB, Triboulet P (2012) Agroecological transition, innovation and lock-in effects: the impact of the organizational design of supply chains. Cah Agric 21:34–45. doi: 10.1684/agr.2012.0539 Google Scholar
  30. Francis C, Lieblein G, Gliessman S, Breland TA, Creamer N, Harwood R, Salomonsson L, Helenius J, Rickerl D, Salvador R, Wiedenhoeft M, Simmons S, Allen P, Altieri M, Flora C, Poincelot R (2003) Agroecology: the ecology of food systems. J Sustain Agr 22:99–118. doi: 10.1300/J064v22n02_07 Google Scholar
  31. Friesen ML, Porte SS, Stark SC, von Wettber EJ, Sachc JL, Martinez-Romero E (2011) Microbially mediated plant functional traits. Ann Rev Ecol Evol Syst 42:23–46. doi: 10.1146/annurev-ecolsys-102710-145039 CrossRefGoogle Scholar
  32. Geels FW (2011) The multi-level perspective on sustainability transitions: response to seven criticisms. Environn Innov Soc Transit 1:24–40CrossRefGoogle Scholar
  33. Géhin B, Guéguen J, Bassot P, Seger A (2010) To specific quality requirements to increase use of legumes for industrial processing. Innov Agronomiques 11:115–127Google Scholar
  34. Ghaley BB, Hauggaard-Nielsen H, Hogh-Jensen H, Jensen ES (2005) Intercropping of wheat and pea as influenced by nitrogen fertilization. Nutr Cycl Agroecosys 73:201–212. doi: 10.1007/s10705-005-2475-9 CrossRefGoogle Scholar
  35. Guéguen J (1983) Legume seed protein extraction, processing and end product characteristics. Qualitas Plantarum Plant foods for Human Nutrition 33:267–303CrossRefGoogle Scholar
  36. Guéguen J (1999) Les protéines végétales: un réservoir de macromolécules multifonctionnelles. OCL 6:498–504. doi: 10.1007/BF01091191 Google Scholar
  37. Guilbert S, Morel MH, Cuq B (2006) Protéines matériaux. In: Colonna P (ed) La Chimie verte. Lavoisier, Paris, pp 179–204Google Scholar
  38. Hauggaard-Nielsen H, Ambus P, Jensen ES (2003) The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley. Nutr Cycl Agroecosys 65:289–300CrossRefGoogle Scholar
  39. Hauggaard-Nielsen H, Gooding M, Ambus P, Corre-Hellou G, Crozat Y, Dahlmann C, Dibet A, von Fragstein P, Pristeri A, Monti M, Jensen ES (2009) Pea-barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crops Res 113:64–67. doi: 10.1016/j.fcr.2009.04.009 CrossRefGoogle Scholar
  40. Heng L, Vincken JP, Koningsveld V, Legger A, Gruppen H, Van Boekel T, Roozen J, Voragen F (2006a) Bitterness of saponins and their content in dry peas. J Sci Food Agric 26(8):1225–1231. doi: 10.1002/jsfa.2473 CrossRefGoogle Scholar
  41. Heng L, Vincken JP, Hoppe K, Koningsveld V, Decroos K, Gruppen H, Van Boekel MAJS, Voragen AGJ (2006b) Stability of pea DDMP saponin and the mechanism of its decomposition. Food Chem 99(2):326–334. doi: 10.1016/j.foodchem.2005.07.045 CrossRefGoogle Scholar
  42. Hill SB, MacRae RJ (1995) Conceptual framework for the transition from conventional to sustainable agriculture. J Sustain Agr 7:81–87CrossRefGoogle Scholar
  43. Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol 168:293–303. doi: 10.1111/j.1469-8137.2005.01512.x PubMedCrossRefGoogle Scholar
  44. Jensen ES (1996) Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant Soil 182:25–38. doi: 10.1007/bf00010992 CrossRefGoogle Scholar
  45. Jensen E, Peoples M, Boddey R, Gresshoff P, Hauggaard-Nielsen H, Alves BJR, Morrison M (2012) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Sustain Dev 32:329–364. doi: 10.1007/s13593-011-0056-7 Google Scholar
  46. Jensen ES, Hauggaard-Nielsen H (2003) How can increased use of biological N2 fixation in agriculture benefit the environment? Plant Soil 252:177–186. doi: 10.1023/a:1024189029226 CrossRefGoogle Scholar
  47. Jeuffroy MH, Baranger E, Carrouée B, de Chezelles E, Gosme M, Hénault C, Schneider A, Cellier P (2013) Nitrous oxide emissions from crop rotations including wheat, rapeseed and dry peas. Biogeosciences 10:1787–1797CrossRefGoogle Scholar
  48. Kemp R, Schot J, Hoogma R (1998) Regime shifts to sustainability through processes of niche formation: the approach of strategic niche management. Tech Anal Strat Manag 10:175–195. doi: 10.1080/09537329808524310 CrossRefGoogle Scholar
  49. Kinzig AP, Perrings C, Chapin FS, Polasky S, Smith VK, Tilman D, Turner BL (2011) Paying for ecosystem services—promise and peril. Science 334:603–604. doi: 10.1126/science.1210297 PubMedCrossRefGoogle Scholar
  50. Labarthe P (2010) Services immatériels et verrouillage technologique. Le cas du conseil technique aux agriculteurs. Econ Soc 44:173–196Google Scholar
  51. Lamb JFS, Jung HJG, Sheaffer CC, Samac DA (2007) Alfalfa leaf protein and stem cell wall polysaccharide yields under hay and biomass management systems. Crop Sci 47:1407–1415. doi: 10.2135/cropsci2006.10.0665 CrossRefGoogle Scholar
  52. Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115. doi: 10.1007/s11104-009-0042-x CrossRefGoogle Scholar
  53. Lamine C (2005) Settling the shared uncertainties: local partnerships between producers and consumers. Sociol Rural 45(4):324–345. doi: 10.1111/j.1467-9523.2005.00308.x CrossRefGoogle Scholar
  54. Le Roux X, Barbault R, Baudry J, Burel F, Doussan I, Garnier E, Herzog F, Lavorel S, Lifran R, Roger-Estrade J, Sarthou JP, Trommetter M (2008) Agriculture and biodiversity benefiting from synergies. INRA Multidisciplinary Scientific Assessment. Accessed 18 Oct 2013
  55. Lessirard J (2009) Amélioration de la qualité nutritionnelle des produits alimentaires. Rapport du Conseil général de l’agriculture, de l’alimentation et des espaces ruraux. CGAAER no 1824, 71 p.
  56. Leterme P (2002) Recommendations by health organizations for pulse consumption. Br J Nutr 88:239–242. doi: 10.1079/BJN2002712 CrossRefGoogle Scholar
  57. Lourdin D, Della Valle G, Colonna P (1995) Influence of amylose content on starch films and foams. Carbohyd Polym 27:261–270. doi: 10.1016/0144-8617(95)00071-2 CrossRefGoogle Scholar
  58. Lourdin D, Colonna P (2006) Matériaux à base d’amidons et de leurs dérivés. In: Colonna P (ed) La Chimie verte. Lavoisier, France, pp 145–178Google Scholar
  59. Magrini MB, Triboulet P, Bedoussac L (2013) Pratiques agricoles innovantes et logistique des coopératives agricoles. Une étude ex-ante sur l'acceptabilité de cultures associées blé dur-légumineuses. Economie Rurale 38, in pressGoogle Scholar
  60. Malézieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, de Tourdonnet S, Valantin-Morison M (2009) Mixing plant species in intercropping systems: concepts, tools and models. A review. Agron Sustain Dev 29:43–62. doi: 10.1051/agro:2007057 CrossRefGoogle Scholar
  61. Martin C, Thomsen MH, Hauggaard-Nielsen H, Thomsen AB (2008) Wet oxidation pretreatment, enzymatic hydrolysis and simultaneous saccharification and fermentation of clover-ryegrass mixtures. Bioresource Technol 99:8777–8782. doi: 10.1016/j.biortech.2008.04.039 CrossRefGoogle Scholar
  62. Meynard JM, Messéan A, Charlier A, Charrier F, Farès M, Le Bail M, Magrini MB, Savini I (2013) Freins et leviers à la diversification des cultures. Etude au niveau des exploitations agricoles et des filières. INRA Multidisciplinary Scientific Assessment. Accessed 18 Oct 2013
  63. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: general synthesis. World Resources Institute. Island Press, Washington DC. Accessed 18 Oct 2013
  64. Mougel C, Offre P, Ranjard L, Corberand T, Gamalero E, Robin C, Lemanceau P (2006) Dynamic of the genetic structure of bacterial and fungal communities at different development stages of Medicago truncatula Jemalong J5. New Phytol 170:165–175PubMedCrossRefGoogle Scholar
  65. Muchnik J, de Sainte Marie C (2009) Le temps des Systèmes Agro-alimentaires Localisés. QUAE editions, ParisGoogle Scholar
  66. Munier-Jolain NG, Salon C (2005) Are the carbon costs of seed production related to the quantitative and qualitative performance? An appraisal for legumes and other crops. Plant Cell Environ 28: 1388–1395. doi: 10.1111/j.1365-3040.2005.01371.x Google Scholar
  67. Naudin C, Corre-Hellou G, Pineau S, Crozat Y, Jeuffroy MH (2011) The effect of various dynamics of N availability on winter pea-wheat intercrops: crop growth, N partitioning and symbiotic N2 fixation. Field Crops Res 119:2–11. doi: 10.1016/j.fcr.2010.09.007 CrossRefGoogle Scholar
  68. Nemecek T, Von Richthofen JS, Dubois G, Casta P, Charles R, Pahl H (2008) Environmental impacts of introducing grain legumes into European crop rotations. Eur J Agron 28:380–393CrossRefGoogle Scholar
  69. Nguyen C (2003) Rhizodeposition of organic C by plants: mechanism and controls. Agronomie 23:375–396. doi: 10.1051/agro:2003011 CrossRefGoogle Scholar
  70. Pelzer E, Bazot M, Makowski D, Corre-Hellou G, Naudin C, Al Rifaï M, Baranger E, Bedoussac BV, Boucheny P, Carrouée B, Dorvillez D, Foissy D, Gaillard B, Guichard L, Mansard MC, Omon B, Prieur L, Yvergniaux M, Justes E, Jeuffroy MH (2012) Pea–wheat intercrops in low-input conditions combine high economic performances and low environmental impacts. Eur J Agron 40:39–53. doi: 10.1016/j.eja.2012.01.010 CrossRefGoogle Scholar
  71. Petersson A, Thomsen MH, Hauggaard-Nielsen H, Thomsen AB (2007) Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. Biomass and Bioenerg 31:812–819. doi: 10.1016/j.biombioe.2007.06.001 CrossRefGoogle Scholar
  72. Petit MS, Challan-Belval C, Blosseville N, Blancard S, Castel T, Lecomte C, Duc G (2012) The management of crop-livestock systems at a territory level: the example of grain legume crops and of monogastric livestock in Burgundy. France Innov Agronomiques 22:135–157Google Scholar
  73. Ratnadass A, Fernandes P, Avelino J, Habib R (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sustain Dev 32:273–303. doi: 10.1007/s13593-011-0022-4 CrossRefGoogle Scholar
  74. Rochette P, Janzen HH (2005) Towards a revised coefficient for estimating N2O emissions from legumes. Nutr Cycl Agroecosys 73:171–179. doi: 10.1007/s10705-005-0357-9 CrossRefGoogle Scholar
  75. Roep D, Wiskerke JSC (2012) Reshaping the foodscape. In: Spaargaren G, Oosterveer P, Loeber A (eds) Food practices in transition: changing food consumption, retail and production in the age of reflexive modernity. Routledge, New York, pp 207–228Google Scholar
  76. Schott C, Mignolet C, Meynard JM (2010) Les oléoprotéagineux dans les systèmes de culture: évolution des assolements et des successions culturales depuis les années 1970 dans le bassin de la Seine. OCL 17:1–16CrossRefGoogle Scholar
  77. Thomsen IK, Kjellerup V, Christensen BT (2001) Leaching and plant offtake of N in field pea/cereal cropping sequences with incorporation of 15N-labelled pea harvest residues. Soil Use Manag 17:209–216. doi: 10.1079/SUM200179 CrossRefGoogle Scholar
  78. Thomsen MH, Hauggaard-Nielsen H (2008) Sustainable bioethanol production combining biorefinery principles using combined raw materials from wheat undersown with clover-grass. J Ind Microbiol Biotechnol 35:303–311. doi: 10.1007/s10295-008-0334-9 PubMedCrossRefGoogle Scholar
  79. Trenbath BR (1993) Intercropping for the management of pests and diseases. Field Crops Res 34:381–405. doi: 10.1016/0378-4290(93)90123-5 CrossRefGoogle Scholar
  80. Vadez V, Berger JD, Warkentin T, Asseng S, Ratnakumar PC, Rao KP, Gaur PM, Munier-Jolain NG, Larmure A, Voisin AS, Sharma HC, Pande S, Sharma M, Krishnamurthy L, Zaman MA (2012) Adaptation of grain legumes to climatic changes: a review. Agron Sustain Dev 32(1):31–44. doi: 10.1007/s13593-011-0020-6 CrossRefGoogle Scholar
  81. Valantin-Morison M Butier A, Berder J, Pinochet X (2012) Crop growth and nitrogen utilisation of a mixture of winter oilseed rape (Brassica napus-WOSR) and legume in multi-local trials. Proceedings of the XIIth congress of the European Society of Agronomy, Helsinki, 19–24 August 2012Google Scholar
  82. Vanloqueren G, Baret PV (2009) How agricultural research systems shape a technological regime that develops genetic engineering but locks out agroecological innovations. Res Policy 38:971–983CrossRefGoogle Scholar
  83. Vose JR (1980) Production and functionality of starches and protein isolates from legume seeds (field peas and horsebeans). Cereal Chem 57:406–410Google Scholar
  84. Wezel A, Bellon S, Doré T, Francis C, Vallod D, David C (2009) Agroecology as a science, a movement and a practice. A review. Agron Sustain Dev 29:503–515. doi: 10.1051/agro/2009004 Google Scholar
  85. Zancarini A, Mougel C, Terrat S, Salon C, Munier-Jolain NG (2013a) Combining ecophysiological and microbial ecological approaches to study the relationship between Medicago truncatula genotypes and their associated rhizosphere bacterial communities. Plant Soil 365:183–199CrossRefGoogle Scholar
  86. Zancarini A, Lépinay C, Burstin J, Duc G, Lemanceau P, Moreau D, Munier-Jolain NG, Pivato B, Rigaud T, Salon C, Mougel C (2013b) Combining molecular microbial ecology with ecophysiology and plant genetics for a better understanding of plant-microbial communities interactions in the rhizosphere. In: Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley, New York, in pressGoogle Scholar
  87. Zhang W, Ricketts TH, Kremenc C, Carneyd K, Swintona SM (2007) Ecosystem services and dis-services to agriculture. Ecol Econ 64:253–260. doi: 10.1016/j.ecolecon.2007.02.024 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2013

Authors and Affiliations

  • Anne-Sophie Voisin
    • 1
    Email author
  • Jacques Guéguen
    • 2
  • Christian Huyghe
    • 3
  • Marie-Hélène Jeuffroy
    • 4
  • Marie-Benoit Magrini
    • 5
  • Jean-Marc Meynard
    • 6
  • Christophe Mougel
    • 1
  • Sylvain Pellerin
    • 7
  • Elise Pelzer
    • 4
  1. 1.INRA, UMR1347 AgroécologieDijonFrance
  2. 2.INRA, UR1268 Biopolymères Interactions AssemblagesNantesFrance
  3. 3.INRA, Centre Poitou-CharentesLusignanFrance
  4. 4.INRA, UMR211 AgronomieThiverval-GrignonFrance
  5. 5.INRA, UMR 1248 AGIRCastanet-TolosanFrance
  6. 6.INRA, UAR1218 Département SADThiverval-GrignonFrance
  7. 7.INRA, UMR 1220 TCEMVillenave d’OrnonFrance

Personalised recommendations