Agronomy for Sustainable Development

, Volume 34, Issue 3, pp 609–621 | Cite as

New biological model to manage the impact of climate warming on maize corn borers

  • Andrea MaioranoEmail author
  • Iacopo Cerrani
  • Davide Fumagalli
  • Marcello Donatelli
Research Article


Climate change can modify the development of insect pests and their impact on crops. The study of future impacts on maize remains relatively unexplored. Here we modeled the distribution and development of the maize borer Sesamia nonagrioides Lef. in Europe using a 25 × 25 km grid. We studied the pest potential winter survival, distribution, and phenological development at three time horizons, 2000, 2030, and 2050, using the A1B scenario of the international panel on climate change (IPCC). A new model based on the lethal dose exposure concept was developed to simulate winter survival. Two approaches for the simulation of winter survival were compared: the first using air temperature only as weather input, named AirMS; the second taking into account the fraction of larvae overwintering in the soil, therefore considering also soil temperature, named SoilAirMS. The survival model was linked to a phenological model to simulate the potential development. Results show that soil temperature is an essential input for correctly simulating S. nonagrioides distribution. The SoilAirMS approach showed the best agreement (+537 grid cells), compared to the AirMS approach (−2,039 grid cells). Nevertheless, the AirMS approach allowed identifying areas where the agronomic practice suggested for controlling S. nonagrioides should be considered ineffective. This practice consists in uprooting and exposing the stubble on the soils surface for exposing larvae to winter cold. The projections to 2030 and 2050 suggested an overall slight increase of more suitable conditions for the S. nonagrioides in almost all the areas where it develops under the baseline. In these areas, S. nonagrioides could become a new insect pest with a potential strong impact on maize. This is the first attempt to provide extensive estimates on the effects of climate change on S. nonagrioides distribution, development, and on possible management changes.


Process-based models Spatialized simulations Insect pest Winter survival model Phenological model Climate change Potential distribution Sesamia nonagrioides 



This research was supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme and partially supported by the project AgroScenari of the Italian Ministry of Agricultural, Food and Forestry Policies. Thanks to Raúl López Lozano (EC-JRC) for his help with some mapping-related issues.


  1. Albajes R, Konstantopoulou M, Etchepare O et al (2002) Mating disruption of the corn borer Sesamia nonagrioides (Lepidoptera: Noctuidae) using sprayable formulations of pheromone. Crop Prot 21:217–225. doi: 10.1016/S0261-2194(01)00088-6 CrossRefGoogle Scholar
  2. Alexandri MP, Tsitsipis JA (1990) Influence of the egg parasitoid Platytelenomus busseolae [Hym.: Scelionidae] on the population of Sesamia nonagrioides [Lep.: Noctuidae] in central Greece. Entomophaga 35:61–70. doi: 10.1007/BF02374302 CrossRefGoogle Scholar
  3. Andreadis SS, Vryzas Z, Papadopoulou-Mourkidou E, Savopoulou-Soultani M (2011) Cold tolerance of field-collected and laboratory reared larvae of Sesamia nonagrioides (Lepidoptera: Noctuidae). CryoLetters 32:297–307PubMedGoogle Scholar
  4. Avantaggiato G, Quaranta F, Desiderio E, Visconti A (2003) Fumonisin contamination of maize hybrids visibly damaged by Sesamia. J Sci Food Agr 83:13–18CrossRefGoogle Scholar
  5. Bale JS, Hayward AL (2010) Insect overwintering in a changing climate. J Exp Biol 213:980–994PubMedCrossRefGoogle Scholar
  6. Bayram A, Gültekin A, Bruce TJ, Gezan S (2007) Factors associated with mortality of the overwintering generation of Sesamia nonagrioides under field conditions. Phytoparasitica 35:490–506. doi: 10.1007/BF03020608 CrossRefGoogle Scholar
  7. Boselli F (1959) Un nuovo importante parassita del riso in Sardegna: la perforatrice dei culmi Sesamia nonagrioides (Lef.) Tams (Lep. Noctuide). Annali di Sperimentazione Agraria (Nuova Serie) (IT) 13:47–49Google Scholar
  8. Curry GL, Feldman RM (1987) Mathematical foundations of population dynamics. Texas A&M University Press, Texas University, College StationGoogle Scholar
  9. Delgado de Torres D (1929) Las orugas del maìz. Bol Patol Veg Entomol Agric (SP) 4:1–20Google Scholar
  10. Diffenbaugh NS, Krupke CH, White MA, Alexander CE (2008) Global warming presents new challenges for maize pest management. Environ Res Lett 3:044007. doi: 10.1088/1748-9326/3/4/044007 CrossRefGoogle Scholar
  11. Dimou I, Pitta E, Angelopoulos K (2007) Note: Corn stalk borer (Sesamia nonagrioides) infestation on sorghum in central Greece. Phytoparasitica 35:191–193. doi: 10.1007/BF02981113 CrossRefGoogle Scholar
  12. Donatelli M, Rizzoli AE (2008) A design for framework-independent model component of biophysical systems. In: Sànchez-Marrè M, Béjar J, Comas J et al (eds) International Congress on Environmental Modelling and Software. Integrating Sciences and Information Technology for Environmental Assessment and Decision Making. iEMSs, Barcelona, pp 727–734Google Scholar
  13. Donatelli M, Carlini L, Bellocchi G (2006) A software component for estimating solar radiation. Environ Modell Softw 21:411–416. doi: 10.1016/j.envsoft.2005.04.002 CrossRefGoogle Scholar
  14. Donatelli M, Bellocchi G, Habyarimana E et al (2010) AirTemperature: extensible software library to generate air temperature data. SRX Comput Sc 2010:1–8. doi: 10.3814/2010/812789 CrossRefGoogle Scholar
  15. Donatelli M, Fumagalli D, Zucchini A et al (2012) A EU 27 database of derived daily weather data from climate change scenarios for use with crop simulation models. In: Seppelt R, Voinov A, Lange S, Bankamp D (eds) iEMSs 6th International Congress—Managing Resources of a Limited Planet: Pathways and Visions under Uncertainty. iEMSs, Leipzig, pp 868–875Google Scholar
  16. Dosio A, Paruolo P (2011) Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. J Geophys Res 116:D16106. doi: 10.1029/2011JD015934
  17. Eizaguirre M, Fantinou AA (2012) Abundance of Sesamia nonagrioides (Lef.) (Lepidoptera: Noctuidae) on the Edges of the Mediterranean Basin. Psyche 2012:1–7. doi: 10.1155/2012/854045 CrossRefGoogle Scholar
  18. Eizaguirre M, López C, Sans A (2007) Maize phenology influences field diapause induction of Sesamia nonagrioides (Lepidoptera: Noctuidae). Bull Entomol Res 92:439–443. doi: 10.1079/BER2002183 Google Scholar
  19. ENDURE (2010) Final report on the maize case study: key pests and options to reduce pesticides in eleven European regions. Project ENDURE, Deliverables DR3.7, DR1.18 & DR1.19,, Accessed 4 September 2013
  20. Fantinou AA, Chourdas MT (2005) Thermoperiodic effects on larval growth parameters of the Sesamia nonagrioides (Lepidoptera: Noctuidae). J Pest Sci 79:43–49. doi: 10.1007/s10340-005-0107-4 CrossRefGoogle Scholar
  21. Fantinou AA, Chatzoglou CS, Kagkou A (2002) Thermoperiodi effects on diapause of Sesamia nonagrioides (Lepidoptera: Noctuidae). Eur J Entom 99:421–425CrossRefGoogle Scholar
  22. Fantinou AA, Perdikis DC, Zota KF (2004) Reproductive responses to photoperiod and temperature by diapausing and nondiapausing populations of Sesamia nonagrioides Lef. (Lepidoptera—Noctuidae). Physiol Entomol 29:169–175. doi: 10.1111/j.1365-3032.2004.00381.x CrossRefGoogle Scholar
  23. Farinós GP, Andreadis SS, de la Poza M et al (2011) Comparative assessment of the field-susceptibility of Sesamia nonagrioides to the Cry1Ab toxin in areas with different adoption rates of Bt maize and in Bt-free areas. Crop Prot 30:902–906. doi: 10.1016/j.cropro.2011.03.011 CrossRefGoogle Scholar
  24. Figueiredo D, Araujo J (1990) Introdução à protecção integrada da cultura do milho de regadio. Bol San Veg Plagas 16:135–138Google Scholar
  25. Finney DJ (1971) Probit analysis. University Press, Cambridge [Eng.]Google Scholar
  26. Germinara GS, Rotundo G (2011) Attrattività di composti volatili di origine vegetale verso gli adulti di Sesamia nonagrioides (Lepidoptera, Noctuidae). Proceedings of the XXIII Italian Congress of Entomology, Genova. Available at:,%2013-16.VI.2011).pdf. Accessed 4 September 2013. p 151
  27. Gillyboeuf N, Anglade P, Lavenseau L, Peypelut L (1994) Cold hardiness and overwintering strategy of the pink maize stalk borer, Sesamia nonagrioides Lef (Lepidoptera, Noctuidae). Oecologia 99:366–373. doi: 10.1007/BF00627750 CrossRefGoogle Scholar
  28. Gutierrez AP, Ponti L, Gilioli G (2010) Climate change effects on plant–pest–natural enemy interactions. In: Daniel H, Cynthia R (eds) Handbook of climate change and agroecosystems: impacts, adaptation, and mitigation. Imperial College Press, London, pp 209–237CrossRefGoogle Scholar
  29. Hilal A (1981) Etude du développement de Sesamia nonagrioides et établissement de modèles pour la prévision de ses populations dans la nature. EPPO Bulletin 11:107–112. doi: 10.1111/j.1365-2338.1981.tb01775.x CrossRefGoogle Scholar
  30. Kavut H (1987) Ege Bölgesi misirlarinda zarar yapan Misir Koçan Kurdu (Sesamia nonagrioides Lef. Lepidoptera: Noctuidae)’ nun mücadelesine esas bazi biyolojik bulgular (Eng: Some biological investigations relating with control of corn stalk borer (Sesamia nonagrioides Lef.) which harmful on corn in Aegean Region. Türkiye Entomoloji Kongresi, 13–16 October 1987, Izmir. Bornova/Izmir, Turkey, pp. 157–166. Available at:
  31. Leniaud L, Audiot P, Bourguet D et al (2006) Genetic structure of European and Mediterranean maize borer populations on several wild and cultivated host plants. Entomol Exp App 120:51–62. doi: 10.1111/j.1570-7458.2006.00427.x CrossRefGoogle Scholar
  32. López C, Sans A, Asin L, EizaGuirre M (2001) Phenological model for Sesamia nonagrioides (Lepidoptera: Noctuidae). Environ Entomol 30:23–30. doi: 10.1603/0046-225X-30.1.23 CrossRefGoogle Scholar
  33. Maiorano A, Bregaglio S, Donatelli M et al (2012) Comparison of modelling approaches to simulate the phenology of the European corn borer under future climate scenarios. Ecol Model 245:65–74. doi: 10.1016/j.ecolmodel.2012.03.034 CrossRefGoogle Scholar
  34. Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Physiol 247:C125–C142PubMedGoogle Scholar
  35. Mendes C (1913) Lepidopteros mais daninhos á agricultura nos arredores de S. Fiel. Brotér, Sér Zool (PR) 11:40–44Google Scholar
  36. Novillo C, Fernández-Anero FJ, Costa J (2003) Resultados en España con variedades de maíz derivadas de la línea MON 810, protegidas genéticamente contra los taladros. Bol San Veg Plagas 29:427–439Google Scholar
  37. Nucifora A (1966) Appunti sulla biologia di Sesamia nonagrioides (Lef.) in Sicilia. Tecnica Agricola (IT) 18:395–419Google Scholar
  38. Porcelli F, Parenzan P (1993) Damage by Opogona sacchari and Sesamia nonagrioides to Strelitzia in southern Italy. Informatore Fitopatologico (IT) 43:21–24Google Scholar
  39. Régnière J (2009) Predicting insect continental distributions from species physiology. Unasylva 60:37–42Google Scholar
  40. Régnière J, Logan JA (2003) Animal life cycle models. In: Schwartz M (ed) Phenology: an integrative environmental science. Kluwer, Dordrecht, pp. 237–254Google Scholar
  41. Trnka M, Muska F, Semeradova D et al (2007) European corn borer life stage model: regional estimates of pest development and spatial distribution under present and future climate. Ecol Model 207:61–84CrossRefGoogle Scholar
  42. Velasco P, Revilla P, Monetti L et al (2007) Corn borers (Lepidoptera: Noctuidae; Crambidae) in northwestern Spain: population dynamics and distribution. Maydica 52:195–203Google Scholar
  43. Vincent K (2013) Probit analysis. Available from:, Accessed 19 August 2013
  44. Yan W, Hunt LA (1999) An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann Bot 84:607–614. doi: 10.1006/anbo.1999.0955 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2013

Authors and Affiliations

  • Andrea Maiorano
    • 1
    Email author
  • Iacopo Cerrani
    • 1
  • Davide Fumagalli
    • 1
  • Marcello Donatelli
    • 2
  1. 1.European Commission DG Joint Research Centre, MARS—AGRI4CASTInstitute for Environment and SustainabilityIspraItaly
  2. 2.Consiglio per la Ricerca e sperimentazione in Agricoltura, Centro di ricerca per le colture industrialiBolognaItaly

Personalised recommendations