Agronomy for Sustainable Development

, Volume 34, Issue 1, pp 1–20 | Cite as

Agroecological practices for sustainable agriculture. A review

  • Alexander WezelEmail author
  • Marion Casagrande
  • Florian Celette
  • Jean-François Vian
  • Aurélie Ferrer
  • Joséphine Peigné
Review Article


The forecasted 9.1 billion population in 2050 will require an increase in food production for an additional two billion people. There is thus an active debate on new farming practices that could produce more food in a sustainable way. Here, we list agroecological cropping practices in temperate areas. We classify practices according to efficiency, substitution, and redesign. We analyse their advantages and drawbacks with emphasis on diversification. We evaluate the potential use of the practices for future agriculture. Our major findings are: (1) we distinguish 15 categories of agroecological practices (7 practices involve increasing efficiency or substitution, and 8 practices need a redesign often based on diversification). (2) The following agroecological practices are so far poorly integrated in actual agriculture: biofertilisers; natural pesticides; crop choice and rotations; intercropping and relay intercropping; agroforestry with timber, fruit, or nut trees; allelopathic plants; direct seeding into living cover crops or mulch; and integration of semi-natural landscape elements at field and farm or their management at landscape scale. These agroecological practices have only a moderate potential to be broadly implemented in the next decade. (3) By contrast, the following practices are already well integrated: organic fertilisation, split fertilisation, reduced tillage, drip irrigation, biological pest control, and cultivar choice.


Agroecology Diversification of cropping system Efficiency increase Substitution Systems redesign 



We highly appreciate the numerous discussions we had with many colleagues in France and elsewhere in the world about what constitute an agroecological practice, and which are qualifying agricultural practices.


  1. Ae N, Arihara J, Okada K, Yoshihara T, Johansen C (1990) Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent. Science 248:477–480. doi: 10.1126/science.248.4954.477 PubMedGoogle Scholar
  2. Ahuja I, Rohloff J, Bones A (2010) Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. A review. Agron Sustain Dev 30:311–348. doi: 10.1051/agro/2009025 Google Scholar
  3. Altieri MA (1995) Agroecology: the science of sustainable agriculture. Westview Press, BoulderGoogle Scholar
  4. Altieri MA (2000) Enhancing the productivity and multifunctionality of traditional farming in Latin America. Int J Sustain Dev World 7:50–61Google Scholar
  5. Altieri MA (2002) Agroecology: the science of natural resource management for poor farmers in marginal environments. Agric Ecosyst Environ 93:1–24Google Scholar
  6. Altieri MA, Nicholls CI (2004) Biodiversity and pest management in agroecosystems. Food Product Press, New YorkGoogle Scholar
  7. Anderson RL (2007) Managing weeds with a dualistic approach of prevention and control. A review. Agron Sustain Dev 27:13–18. doi: 10.1051/agro:2006027 Google Scholar
  8. Arrignon J (1987) Agro-écologie des zones arides et sub-humides. G-P Masonneuve & Larose/ACCT, ParisGoogle Scholar
  9. Ball BC, Tebrügge F, Sartori L, Giráldez JV, González P (1998) Influence of no-tillage on physical, chemical and biological soil properties. In: Tebrügge F, Böhrnsen A (eds) Experiences with the applicability of no-tillage crop production in the West European countries, review papers, summaries and conclusions of the concerted action. Justus-Liebig University, Giessen, pp 7–27Google Scholar
  10. Bàrberi P (2002) Weed management in organic agriculture: are we addressing the right issues? Weed Res 42:177–193. doi: 10.1046/j.1365-3180.2002.00277.x Google Scholar
  11. Batish DR, Sing HP, Kohli RK, Kaur S (2008) Eucalyptus essential oil as a natural pesticide. For Ecol Manag 256:2166–2174. doi: 10.1016/j.foreco.2008.08.008 Google Scholar
  12. Baudry J, Jouin A (2003) De la haie aux bocages. Organisation, dynamique et gestion. INRA, ParisGoogle Scholar
  13. Bedoussac L, Justes E (2010) Dynamic analysis of competition and complementarity for light and N use to understand the yield and the protein content of a durum wheat–winter pea intercrop. Plant Soil 330:37–54. doi: 10.1007/s11104-010-0303-8 Google Scholar
  14. Bilbro JD (1991) Cover crops for wind erosion control in semiarid regions. In: Hargrove WL (ed) Cover crops for clean water: the proceedings of an international conference, West Tennessee Experiment Station, April 9–11, 1991. Jackson, Tennessee, pp 36–38Google Scholar
  15. Birkhofer K, Bezemer TM, Bloem J, Bonkowski M, Christensen S, Dubois D, Ekelund F, Fließbach A, Gunst L, Hedlund K, Mäder P, Mikola J, Robin C, Setälä H, Tatin-Froux F, Van der Putten WH, Scheu S (2008) Long-term organic farming fosters below and aboveground biota: implications for soil quality, biological control and productivity. Soil Biol Biochem 40:2297–2308. doi: 10.1016/j.soilbio.2008.05.007 Google Scholar
  16. Borlaug NE (2000) Ending world hunger. The promise of biotechnology and the threat of antiscience zealotry. Plant Phys 124:487–490. doi: 10.1104/pp. 124.2.487 Google Scholar
  17. Bruce RR, Hendrix PF, Langdale GW (1991) Role of cover crops in recovery and maintenance of soil productivity. In: Hargrove WL (ed) Cover crops for clean water: the proceedings of an international conference, West Tennessee Experiment Station, April 9–11, 1991. Jackson, Tennessee, pp 109–115Google Scholar
  18. Buck LE, Lassoie JP, Fernandes E (1998) Agroforestry in sustainable agricultural systems. CRC Press, Boca Raton, 411 pGoogle Scholar
  19. Capowiez Y, Cadoux S, Bouchant P, Ruy S, Roger-Estrade J, Richard G, Boizard H (2009) The effect of tillage type and cropping system on earthworm communities, macroporosity and water infiltration. Soil Till Res 105:209–216. doi: 10.1016/j.still.2009.09.002 Google Scholar
  20. Carof M, de Tourdonnet S, Saulas P, Le Floch D, Roger-Estrade J (2007) Undersowing wheat with different living mulches in a no-till system. I. Yield analysis. Agron Sustain Dev 27:347–356. doi: 10.1051/agro:2007016 Google Scholar
  21. Celette F, Gaudin R, Gary C (2008) Spatial and temporal changes in the water regime of a Mediterranean vineyard due to the adoption of cover cropping. Eur J Agron 29:153–162. doi: 10.1016/j.eja.2008.04.007 Google Scholar
  22. Charleston DS, Kfir R, Dicke M, Vet LEM (2005) Impact of botanical pesticides derived from Melia azedarach and Azadirachta indica on the biology of two parasitoid species of the diamond back moth. Biol Control 33:131–142. doi: 10.1016/j.biocontrol.2005.02.007 Google Scholar
  23. Colbach N, Duby C, Cavelier A, Meynard JM (1997a) Influence of cropping systems on foot and root diseases of winter wheat: fitting of a statistical model. Eur J Agron 6:61–77. doi: 10.1016/S1161-0301(96)02033-3 Google Scholar
  24. Colbach N, Lucas P, Cavelier N, Cavelier A (1997b) Influence of cropping system on sharp eyespot in winter wheat. Crop Prot 16:415–422. doi: 10.1016/S0261-2194(97)00018-5 Google Scholar
  25. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. doi: 10.1016/j.soilbio.2009.11.024 Google Scholar
  26. Coulibaly O, Mbila D, Sonwa JJ, Adesina A, Bakala J (2002) Responding to economic crisis in sub-Saharan Africa: new farmer-developed pest management strategies in cocoa-based plantations in Southern Cameroon. Integr Pest Manag Rev 7:165–172. doi: 10.1023/B:IPMR.0000027500.24459.fe Google Scholar
  27. De Albuquerque MB, Santos RC, Lima LM, Melo Filho PDA, Nogueira RJMC, Câmara CAG, Ramos A (2011) Allelopathy, an alternative tool to improve cropping systems. A review. Agron Sustain Dev 31:379–395. doi: 10.1051/agro/2010031 Google Scholar
  28. De Schutter O (2011) Agroecology and the right to food. Report of the Special Rapporteur on the right to food. United Nations. Accessed October 2011
  29. De Schutter O (2012) Agroecology, a tool for the realization of the right to food. In: Lichtfouse E (ed) Agroecology and strategies for climate change. Sustainable agriculture reviews vol. 8. Springer, Dordrecht, pp 1–16Google Scholar
  30. Deike S, Pallutt B, Melander B, Strassemeyer J, Christen O (2008) Long-term productivity and environmental effects of arable farming as affected by crop rotation, soil tillage intensity and strategy of pesticide use: a case study of two long-term field experiments in Germany and Denmark. Eur J Agron 29:191–199. doi: 10.1016/j.eja.2008.06.001 Google Scholar
  31. Dogliotti S, Rossing WAH, Van Ittersum MK (2003) ROTAT, a tool for systematically generating crop rotations. Eur J Agron 19:239–250. doi: 10.1016/S1161-0301(02)00047-3 Google Scholar
  32. Dogliotti S, Rossing WAH, van Ittersum MK (2004) Systematic design and evaluation of crop rotations enhancing soil conservation, soil fertility and farm income: a case study for vegetable farms in South Uruguay. Agric Syst 80:277–302. doi: 10.1016/j.agsy.2003.08.001 Google Scholar
  33. Dury J, Schaller N, Garcia F, Reynaud A, Bergez J-E (2011) Models to support cropping plan and crop rotation decisions. A review. Agron Sustain Dev 32:567–580. doi: 10.1007/s13593-011-0037-x Google Scholar
  34. El Titi A (2003) Implications of soil tillage for weed communities. In: El Titi A (ed) Soil tillage in agroecosystems. CRC Press, Boca Raton, pp 147–185Google Scholar
  35. Fageria NK, Baligar VC (2005) Enhancing nitrogen use efficiency in crop plants. Adv Agron 88:97–185. doi: 10.1016/S0065-2113(05)88004-6 Google Scholar
  36. Fustec J, Lesuffleur F, Mahieu S, Cliquet J-B (2010) Nitrogen rhizodeposition of legumes. A review. Agron Sustain Dev 30:57–66. doi: 10.1051/agro/2009003 Google Scholar
  37. Gardiner MM, Fiedler AK, Costamagna AC, Landis DA (2009) Integrating conservation biological control into IPM systems. In: Radcliffe EB, Hutchison WD, Cancelado RE (eds) Integrated pest management. Concepts, tactics, strategies and case studies. Cambridge University Press, Cambridge, pp 151–162Google Scholar
  38. Gaudin R, Celette F, Gary C (2010) Contribution of runoff to incomplete off season soil water refilling in a Mediterranean vineyard. Agric Wat Manag 97:1534–1540. doi: 10.1016/j.agwat.2010.05.007 Google Scholar
  39. Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza. doi: 10.1007/s00572-010-0333-3 Google Scholar
  40. Gliessman SR (1997) Agroecology: ecological processes in sustainable agriculture. CRC Press, Boca RatonGoogle Scholar
  41. Gurr GM, Wratten SD (2000) Biological control: measure of success. Springer, DordrechtGoogle Scholar
  42. Gurr GM, Wratten SD, Altieri MA (2004) Ecological engineering for pest management. Advances in habitat manipulation for arthropods. CSIRO, AustraliaGoogle Scholar
  43. Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257. doi: 10.1007/s11104-008-9814-y Google Scholar
  44. Hauggaard-Nielsen H, Ambus P, Jensen ES (2001) Interspecific competition, N use and interference with weeds in pea–barley intercropping. Field Crops Res 70:101–109. doi: 10.1016/S0378-4290(01)00126-5 Google Scholar
  45. Hauggaard-Nielsen H, Andersen MK, Jornsgaard B, Jensen ES (2006) Density and relative frequency effects on competitive interactions and resource use in pea–barley intercrops. Field Crops Res 95:256–267. doi: 10.1016/j.fcr.2005.03.003 Google Scholar
  46. Hill SB, MacRae RJ (1995) Conceptual framework for the transition from conventional to sustainable agriculture. J Sust Agric 7:81–87Google Scholar
  47. Hokkanen HMT (1991) Trap cropping in pest management. Annu Rev Entomol 36:119–138. doi: 10.1146/annurev.ento.36.1.119 Google Scholar
  48. Holland JM (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric Ecosyst Environ 103:1–25. doi: 10.1016/j.agee.2003.12.018 Google Scholar
  49. Huang J, Pray C, Rozelle S (2002) Enhancing the crops to feed the poor. Nature 418:678–684. doi: 10.1038/nature01015 PubMedGoogle Scholar
  50. INRA, CIRAD (2009) Agrimonde. Scenarios and challenges for feeding the world in 2050. Summary report. Paris, FranceGoogle Scholar
  51. Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and increasingly regulated world. Annu Rev Entomol 51:45–66. doi: 10.1146/annurev.ento.51.110104.151146 PubMedGoogle Scholar
  52. Isman MB (2008) Botanical insecticides: for richer, for poorer. Pest Manag Sci 64:8–11. doi: 10.1002/ps.1470 PubMedGoogle Scholar
  53. Jackson LE, Pascual U, Hodgkin T (2007) Utilizing and conserving agrobiodiversity in agricultural landscapes. Agric Ecosyst Environ 121:196–210. doi: 10.1016/j.agee.2006.12.017 Google Scholar
  54. Jensen ES, Peoples MB, Hauggaard-Nielsen H (2010) Faba bean in cropping systems. Field Crops Res 115:203–216. doi: 10.1016/j.fcr.2009.10.008 Google Scholar
  55. Justes E, Dorsainvil F, Thiébeau P, Alexandre M (2002) Effect of catch crops on the water budget of the fallow period and the succeeding main crop. Proceedings 7th ESA Congress, Cordoba, Spain, pp 503–504Google Scholar
  56. Khan ZR, Pickett JA (2004) The ‘push–pull’ strategy for stemborer management: a case study in exploiting biodiversity and chemical ecology. In: Gurr GM, Wratten SD, Altieri MA (eds) Ecological engineering for pest management. Advances in habitat manipulation for arthropods. CSIRO, Australia, pp 155–164Google Scholar
  57. Koocheki A, Nassiri M, Alimoradi L, Ghorbani R (2009) Effect of cropping systems and crop rotations on weeds. Agron Sustain Dev 29:401–408. doi: 10.1051/agro/2008061 Google Scholar
  58. Köpke U, Nemecek T (2009) Ecological services of faba bean. Field Crops Res 115:217–233Google Scholar
  59. Kromp B (1999) Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agric Ecosyst Environ 74:187–228. doi: 10.1016/S0167-8809(99)00037-7 Google Scholar
  60. Kruidhof H, Bastiaans L, Kropff MJ (2008) Ecological weed management by cover cropping: effects on weed growth in autumn and weed establishment in spring. Weed Res 48:492–502. doi: 10.1111/j.1365-3180.2008.00665.x Google Scholar
  61. Latif MA, Mehuys GR, Mackenzie AF, Alli I, Faris MA (1992) Effects of legumes on soil physical quality in a maize crop. Plant Soil 140:15–23. doi: 10.1007/BF00012802 Google Scholar
  62. Le Bissonnais Y, Lecomte V, Cerdan O (2004) Grass strip effects on runoff and soil loss. Agronomie 24:129–136. doi: 10.1051/agro:2004010 Google Scholar
  63. Lemaire G, Jeuffroy M-H, Gastal F (2008) Diagnosis tool for plant and crop N status in vegetative stage. Eur J Agron 28:614–624. doi: 10.1016/j.eja.2008.01.005 Google Scholar
  64. Li W, Li L, Sun J, Guo T, Zhang F, Bao X, Peng A, Tang C (2005) Effects of intercropping and nitrogen application on nitrate present in the profile of an Orthic anthrosol in northwest China. Agric Ecosyst Environ 105:483–491. doi: 10.1016/j.agee.2004.07.008 Google Scholar
  65. Lopes CM, Santos TP, Monteiro A, Rodrígues ML, Costa JM, Chaves MM (2011) Combining cover cropping with deficit irrigation in a Mediterranean low vigor vineyard. Sci Hort 129:603–612. doi: 10.1016/j.scienta.2011.04.033 Google Scholar
  66. Loreau M (2000) Biodiversity and ecosystem functioning: recent theoretical advances. Oikos 91:3–17. doi: 10.1034/j.1600-0706.2000.910101.x Google Scholar
  67. Malézieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, de Tourdonnet S, Valantin-Morison M (2009) Mixing plant species in cropping systems: concepts, tools and models. A review. Agron Sustain Dev 29:43–62. doi: 10.1051/agro:2007057 Google Scholar
  68. Malusá E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J. doi: 10.1100/2012/491206 Google Scholar
  69. McNeely JA, Scherr SJ (2003) Ecoagriculture. Strategies to feed the world and save biodiversity. Island Press, Washington D.CGoogle Scholar
  70. Médiène S, Valantin-Morison M, Sarthou J-P, de Tourdonnet S, Gosme M, Bertrand M, Roger-Estrade J, Aubertot J-N, Rusch A, Motisi N, Pelosi C, Doré T (2011) Agroecosystem management and biotic interactions: a review. Agron Sust Dev. doi: 10.1007/s13593-011-0009-1 Google Scholar
  71. Midmore DJ (1993) Agronomic modification of resource use and intercrop productivity. Field Crops Res 34:357–380. doi: 10.1016/0378-4290(93)90122-4 Google Scholar
  72. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resource Institute, Washington, D.CGoogle Scholar
  73. Mordue AJ, Nisbet AJ (2000) Azadirachtin from the Neem tree Azadirachta indica: its action against insects. An Soc Entomol Brasil 29:615–632Google Scholar
  74. Nearing MA, Jetten V, Baffaut C, Cerdan O, Couturier A, Hernandez M, Le Bissonnais Y, Nichols MH, Nunes JP, Renschle CS (2005) Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 61:131–154. doi: 10.1016/j.catena.2005.03.007 Google Scholar
  75. Obrycki JJ, Harwood JD, Kring TJ, O'Neil RJ (2009) Aphidophagy by Coccinellidae: application of biological control in agroecosystems. Biol Control 51:244–254. doi: 10.1016/j.biocontrol.2009.05.009 Google Scholar
  76. Ong CK (1995) The “dark side” of intercropping: manipulation of soil resources. In: Sinoquet H, Cruz P (eds) Ecophysiology of tropical intercropping. INRA, Paris, pp 45–66Google Scholar
  77. Ortas I (2012) The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crops Res 125:35–48. doi: 10.1016/j.fcr.2011.08.005 Google Scholar
  78. Östman O, Ekbom B, Bengtsson J (2001) Landscape heterogeneity and farming practice influence biological control. Basic Appl Ecol 2:365–371. doi: 10.1078/1439-1791-00072 Google Scholar
  79. Ozier-Lafontaine H, Vercambre G, Tournebize R (1997) Radiation and transpiration partitioning in a maize–sorghum intercrop: test and evaluation of two models. Field Crops Res 49:127–145. doi: 10.1016/S0378-4290(96)01047-7 Google Scholar
  80. Ozier-Lafontaine H, Lafolie F, Bruckler L, Tournebize R, Mollier A (1998) Modelling competition for water in intercrops: theory and comparison with field experiments. Plant Soil 204:183–201. doi: 10.1023/A:1004399508452 Google Scholar
  81. Pala M, Ryan J, Zhang H, Singh M, Harris HC (2007) Water-use efficiency of wheat-based rotation systems in a Mediterranean environment. Agric Wat Manag 93:136–144. doi: 10.1016/j.agwat.2007.07.001 Google Scholar
  82. Peigné J, Ball B, Roger-Estrade J, David C (2007) Is conservation tillage suitable for organic farming? A review. Soil Use Manag 23:129–144. doi: 10.1111/j.1475-2743.2006.00082.x Google Scholar
  83. Peigné J, Cannavaciuolo M, Gautronneau Y, Aveline A, Giteau JL, Cluzeau D (2009) Earthworm populations under different tillage systems in organic farming. Soil Tillage Res 104:207–214. doi: 10.1016/j.still.2009.02.011 Google Scholar
  84. Pellegrino E, Bedini S, Avio L, Bonari E, Giovannetti M (2011) Field inoculation effectiveness of native and exotic arbuscular mycorrhizal fungi in a Mediterranean agricultural soil. Soil Biol Biochem 43:367–376. doi: 10.1016/j.soilbio.2010.11.002 Google Scholar
  85. Pelosi C, Bertrand M, Roger-Estrade J (2009) Earthworm community in conventional, organic and direct seeding with living mulch cropping systems. Agron Sustain Dev 29:287–295. doi: 10.1051/agro/2008069 Google Scholar
  86. Perfecto I, Vandermeer J (2010) The agroecological matrix as alternative to the land-sparing/agriculture intensification model. Proc Natl Acad Sci 107:5786–5791. doi: 10.1073/pnas.0905455107 PubMedCentralPubMedGoogle Scholar
  87. Phipps RH, Park JR (2002) Environmental benefits of genetically modified crops: global and European perspectives on their ability to reduce pesticide use. J Anim Feed Sci 11:1–18Google Scholar
  88. Prasifka JR, Hellmich RL, Weiss MJ (2009) Role of biotechnology in sustainable agriculture. In: Radcliffe EB, Hutchison WD, Cancelado RE (eds) Integrated pest management. Concepts, tactics, strategies and case studies. Cambridge University Press, Cambridge, pp 260–272Google Scholar
  89. Pretty JN, Morison JIL, Hine RE (2003) Reducing food poverty by increasing agricultural sustainability in developing countries. Agric Ecosyst Environ 95:217–234. doi: 10.1016/S0167-8809(02)00087-7 Google Scholar
  90. Ratnadass A, Fernandes P, Avelino J, Habib R (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agro Sust Dev 32:273–303. doi: 10.1007/s13593-011-0022-4 Google Scholar
  91. Regnault-Roger C, Philogène BJR (2008) Past and current prospects for the use of botanicals and plant allelochemicals in integrated pest management. Pharm Biol 46:41–52. doi: 10.1080/13880200701729794 Google Scholar
  92. Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339. doi: 10.1007/s11104-009-9895-2 Google Scholar
  93. Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A, Gemmill-Herren B, Greenleaf SS, Klein AM, Mayfield MM, Morandin LA, Ochieng A, Viana BF (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11:499–515. doi: 10.1111/j.1461-0248.2008.01157.x PubMedGoogle Scholar
  94. Rigueiro-Rodrígues A, McAdam J, Mosquera-Losada MR (2009) Agroforestry in Europe. Current status and future prospects. Springer, DordrechtGoogle Scholar
  95. Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383. doi: 10.1007/s11104-009-0001-6 Google Scholar
  96. Salado-Navarro LR, Sinclair TR (2009) Crop rotations in Argentina: analysis of water balance and yield using crop models. Agric Syst 102:11–16. doi: 10.1016/j.agsy.2009.06.004 Google Scholar
  97. Sanchez JE, Harwood RR, Willson TC, Kizilkaya K, Smeenk J, Parker E, Paul EA, Knezek BD, Robertson GP (2004) Managing soil carbon and nitrogen for productivity and environmental quality. Agron J 96:769–775Google Scholar
  98. Schmidt O, Clements RO, Donaldson G (2003) Why do cereal–legume intercrops support large earthworm populations? App Soil Ecol 22:181–190. doi: 10.1016/S0929-1393(02)00131-2 Google Scholar
  99. Schmidtke K, Neumann A, Hof C, Rauber R (2004) Soil and atmospheric nitrogen uptake by lentil (Lens culinaris Medik.) and barley (Hordeum vulgare ssp. nudum L.) as monocrops and intercrops. Field Crops Res 87:245–256. doi: 10.1016/j.fcr.2003.11.006 Google Scholar
  100. Scholberg JMS, Dogliotti S, Leoni C, Cherr CM, Zotarelli L, Rossing WAH (2010) Cover crops for sustainable agrosystems in the Americas. In: Lichtfouse E (ed) Genetic engineering, biofertilisation, soil quality and organic farming. Springer, Dordrecht, pp 23–58Google Scholar
  101. Scholte K (2000a) Screening of non-tuber bearing Solanaceae for resistance to and induction of juvenile hatch of potato cyst nematodes and their potential for trap cropping. Ann Appl Biol 136:239–246. doi: 10.1111/j.1744-7348.2000.tb00030.x Google Scholar
  102. Scholte K (2000b) Growth and development of plants with potential for use as trap crops for potato cyst nematodes and their effects on the number of juveniles in cysts. Ann Appl Biol 137:31–42. doi: 10.1111/j.1744-7348.2000.tb00054.x Google Scholar
  103. Scholte K, Vos J (2000) Effects of potential trap crops and planting date on soil infestation with potato cyst nematodes and root-knot nematodes. Ann Appl Biol 137:153–164. doi: 10.1111/j.1744-7348.2000.tb00047.x Google Scholar
  104. Shelton AM, Badenes-Perez FR (2006) Concepts and applications of trap cropping in pest management. Annu Rev Entomol 51:285–308. doi: 10.1146/annurev.ento.51.110104.150959 PubMedGoogle Scholar
  105. Shepherd MA, Harrison R, Webb J (2002) Managing soil organic matter: implications for soil structure on organic farms. Soil Use Manag 18:284–292. doi: 10.1079/SUM2002134 Google Scholar
  106. Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353. doi: 10.1016/j.agee.2011.01.017 Google Scholar
  107. Sinoquet H, Caldwell RM (1995) Estimation of light capture and partitioning in intercropping systems. In: Sinoquet H, Cruz P (eds) Ecophysiology of tropical intercropping. INRA, Paris, pp 79–98Google Scholar
  108. Sinzogan AAC, Kossou DK, Atachi P, van Huis A (2006) Participatory evaluation of synthetic and botanical pesticide mixtures for cotton bollworm control. Int J Trop Ins Sci 26:246–255. doi: 10.1017/S1742758406415691 Google Scholar
  109. Soane BD, Ball BC, Arvidsson J, Basch G, Moreno F, Roger-Estrade J (2012) No-till in northern, western and south-western Europe: a review of problems and opportunities for crop production and the environment. Soil Till Res 118:66–87. doi: 10.1016/j.still.2011.10.015 Google Scholar
  110. Srinivasan A (2006) Handbook of precision agriculture: principles and applications. Haworth Press, New York, USAGoogle Scholar
  111. Steenwerth K, Belina KM (2008) Cover crops and cultivation: impacts on soil N dynamics and microbiological function in a Mediterranean vineyard agroecosystem. App Soil Ecol 40:370–380. doi: 10.1016/j.apsoil.2008.06.004 Google Scholar
  112. Swaminathan MS (2007) Can science and technology feed the world in 2025? Field Crop Res 104:3–9. doi: 10.1016/j.fcr.2007.02.004 Google Scholar
  113. Tabaglio V, Gavazzi C, Schulz M, Marocco A (2008) Alternative weed control using the allelopathic effect of natural benzoxazinoids from rye mulch. Agron Sustain Dev 28:397–401. doi: 10.1051/agro:2008004 Google Scholar
  114. Teasdale JR, Coffman CB, Mangum RW (2007) Potential long-term benefits of no-tillage and organic cropping systems for grain production and soil improvement. Agron J 99:1297–1305. doi: 10.2134/agronj2006.0362 Google Scholar
  115. Thies C, Tscharntke T (1999) Landscape structure and biological control in agroecosystems. Science 285:893–895. doi: 10.1126/science.285.5429.893 PubMedGoogle Scholar
  116. Thies C, Steffan-Dewenter I, Tscharntke T (2003) Effects of landscape context on herbivory and parasitism at different spatialscales. Oikos 101:18–25. doi: 10.1034/j.1600-0706.2003.12567.x Google Scholar
  117. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677. doi: 10.1038/nature01014 PubMedGoogle Scholar
  118. Tilman D, Reich PB, Knops J (2006) Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629–632. doi: 10.1038/nature04742 PubMedGoogle Scholar
  119. Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Tyliankis JM, van Nouhuys S, Vidal S (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43:294–309. doi: 10.1016/j.biocontrol.2007.08.006 Google Scholar
  120. Turner NC (2004) Agronomic options for improving rainfall-use efficiency of crops in dryland farming systems. J Exp Bot 55:2413–2425. doi: 10.1093/jxb/erh154 PubMedGoogle Scholar
  121. United Nations (2009) World population prospects: the 2008 revision. Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat. Accessed March 2011
  122. Uphoff N (2002) Agroecological innovations. Increasing food production with participatory development. Earthsan, LondonGoogle Scholar
  123. Uvah III, Coaker TH (1984) Effect of mixed cropping on some insect pests of carrots and onions. Entomol Exp Appl 36:159–167Google Scholar
  124. Van Noordwijk M, Lawson GJ, Soumare A, Groot JJR, Hairiah K (1996) Root distribution of tree and crops: competition and/or complementarity. In: Ong CK, Huxley P (eds) Tree–crop interactions: a physiological approach. CAB Int, Wallingford, pp 319–365Google Scholar
  125. Vandermeer J (1989) The ecology of intercropping. Cambridge University Press, New YorkGoogle Scholar
  126. Vandermeer J, van Noordwijk M, Anderson J, Ong C, Perfecto I (1998) Global change and multi-species agroecosystems: concepts and issues. Agric Ecosyst Environ 67:1–22. doi: 10.1016/S0167-8809(97)00150-3 Google Scholar
  127. Vandermeer J, Lawrence D, Symstad A, Hobbie S (2002) Effect of biodiversity on ecosystem functioning in managed ecosystems. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 221–235Google Scholar
  128. Verbruggen E, van der Heijden MGA, Rillig MC, Kiers ET (2013) Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success. New Phytol 197:1104–1109. doi: 10.1111/j.1469-8137.2012.04348.x PubMedGoogle Scholar
  129. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586. doi: 10.1023/A:1026037216893 Google Scholar
  130. Vian JF, Peigne J, Chaussod R, Roger-Estrade J (2009) Effects of four tillage systems on soil structure and soil microbial biomass in organic farming. Soil Use Manag 25:1–10. doi: 10.1111/j.1475-2743.2008.00176.x Google Scholar
  131. Watson CA, Atkinson D, Gosling P, Jackson LR, Rayns FW (2002) Managing soil fertility in organic farming systems. Soil Use Manag 18:239–247. doi: 10.1079/SUM2002131 Google Scholar
  132. Weston LA (1996) Utilization of allelopathy for weed management in agroecosystems. Agron J 88:860–866Google Scholar
  133. Wezel A, Rath T (2002) Resource conservation strategies in agro-ecosystems of semi-arid West Africa. J Arid Env 51:383–400. doi: 10.1006/jare.2001.0968 Google Scholar
  134. Wezel A, Bellon S, Doré T, Francis C, Vallod D, David C (2009) Agroecology as a science, a movement or a practice. A review. Agron Sustain Dev 29:503–515. doi: 10.1051/agro/2009004 Google Scholar
  135. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Expe Bot 52:487–511Google Scholar
  136. Willey RW (1990) Resource use in intercropping systems. Agric Wat Manag 17:215–231. doi: 10.1016/0378-3774(90)90069-B Google Scholar
  137. With JE, King AW (1999) Extinction thresholds for species in fractal landscapes. Conserv Biol 13:314–326. doi: 10.1046/j.1523-1739.1999.013002314.x Google Scholar
  138. Wojtkowski PA (2006) Introduction to agroecology. Principles and practices. Haworth Press, BinghamptonGoogle Scholar
  139. Wu J, Huang D, Teng W, Sardo V (2010) Grass hedges to reduce overland flow and soil erosion. Agron Sustain Dev 30:481–485. doi: 10.1051/agro/2009037 Google Scholar
  140. Zebarth BJ, Drury CF, Tremblay N, Cambouris AN (2009) Opportunities for improved fertilizer nitrogen management in production of arable crops in eastern Canada: a review. Can J Soil Sci 89:113–132Google Scholar

Copyright information

© INRA and Springer-Verlag France 2013

Authors and Affiliations

  • Alexander Wezel
    • 1
    Email author
  • Marion Casagrande
    • 1
  • Florian Celette
    • 1
  • Jean-François Vian
    • 1
  • Aurélie Ferrer
    • 1
  • Joséphine Peigné
    • 1
  1. 1.Department of Agroecology and EnvironmentISARA Lyon (member of the University of Lyon)Lyon cedex 07France

Personalised recommendations