Agronomy for Sustainable Development

, Volume 34, Issue 2, pp 293–307 | Cite as

Global agronomy, a new field of research. A review

  • David Makowski
  • Thomas Nesme
  • François Papy
  • Thierry Doré
Review Article

Abstract

The global impact of agriculture has recently become a major research topic, stressed by the rapid growth of the world population. Agriculture management is indeed influencing the quality of water, air, soil, and biodiversity at the global scale. The main agricultural challenges have already been reviewed, but these reviews did not discuss in detail the adaptations of agricultural techniques to global issues and the research challenges for agronomy. Here, we propose a research planning for global agronomy including the following advices. Agronomists should update their research objects, methods, and tools to address global issues. Yield trends and variations among various regions should be analyzed to understand the sources of these variations. Crop model simulations should be upscaled to estimate potential yields and to assess the effect of climate change and resource scarcity at the global scale. Advanced methods should analyze output uncertainty of complex models used at a global scale. Indeed various global models are actually used, but these models are too complex and the output uncertainty is difficult to analyze. The meta-analysis of published data is a promising approach for addressing global issues, though meta-analysis must be applied carefully with appropriate techniques. Finally, global datasets on the performance and environmental impact of cropping systems should be developed to allow agronomists to identify promising cropping systems.

Keywords

Agronomy Food security Global changes Modeling 

References

  1. Aubry C, Papy F, Capillon A (1998) Modelling decision-making processes for annual crop management. Agr Syst 56:45–65. doi:10.1016/S0308-521X(97)00034-6 Google Scholar
  2. Badgley C, Moghtader J, Quintero E, Zakem E, Chappell MJ, Avilés-Vazquez K, Samulon A, Perfecto I (2007) Organic agriculture and the global food supply. Renew Agric Food Syst 22:86–108. doi:10.1017/S1742170507001640 Google Scholar
  3. Bakker MM, Govers G, Ewert F, Rounsevell M, Jones R (2005) Variability in regional wheat yields as a function of climate, soil and economic variables: assessing the risk of confounding. Agr Ecosyst Environ 110:195–209. doi:10.1016/j.agee.2005.04.016 Google Scholar
  4. Barbottin A, Makowski D, Le Bail M, Jeuffroy M-H, Bouchard C, Barrier C (2008) Comparison of models and indicators for categorizing soft wheat fields according to their grain protein contents. Eur J Agron 29:159–183. doi:10.1016/j.eja.2008.05.004 Google Scholar
  5. Bennett EM, Carpenter SR, Caraco NF (2001) Human impact on erodable phosphorus and eutrophication: a global perspective. Bioscience 51:227–234. doi:10.1641/0006-3568(2001)051%5B0227:HIOEPA%5D2.0.CO;2 Google Scholar
  6. Bergez J-E, Deumier J-M, Lacroix B, Leroy P, Wallach D (2002) Improving irrigation schedules by using a biophysical and a decisional model. Eur J Agron 16:123–135. doi:10.1016/S1161-0301(01)00124-1 Google Scholar
  7. Bertomeu M (2012) Growth and yield of maize and timber trees in smallholder agroforestry systems in Claveria, northern Mindanao, Philippines. Agrofor Syst 84:73–87. doi:10.1007/s10457-011-9444-x Google Scholar
  8. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009) Introduction to Meta-Analysis. Wiley, Hoboken NJGoogle Scholar
  9. Brandt SA, Thomas AG, Olfert OO, Leeson JY, Ulrich D, Weiss R (2010) Design, rationale and methodological considerations for a long term alternative cropping experiment in the Canadian plain region. Eur J Agron 32:73–79. doi:10.1016/j.eja.2009.07.006 Google Scholar
  10. Brisson N, Gary C, Justes E, Roche R, Mary B, Ripoche D, Zimmer D, Sierra J, Bertuzzi P, Burger P, Bussière F, Cabidoche Y-M, Cellier P, Debaeke P, Gaudillère J-P, Hénault C, Maraux F, Seguin B, Sinoquet H (2003) An overview of the crop model Stics. Eur J Agron 18:309–332. doi:10.1016/S1161-0301(02)00110-7 Google Scholar
  11. Brisson N, Gate P, Gouache D, Charmet G, Oury F-X, Huard F (2010) Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crop Res 119:201–212. doi:10.1016/j.fcr.2010.07.012 Google Scholar
  12. Brisson N, Levrault F (2010) Livre vert du projet CLIMATOR 2007–2010. ADEME, ParisGoogle Scholar
  13. Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443. doi:10.1038/nature05202
  14. Casanova D, Goudriaan J, Bouma J, Epema GF (1999) Yield gap analysis in relation to soil properties in direct-seeded flooded rice. Geoderma 91:191–216. doi:10.1016/S0016-7061(99)00005-1 Google Scholar
  15. Cavanagh A, Gasser MO, Labrecque M (2011) Pig slurry as fertilizer on willow plantation. Biomass Bioenergy 35:4165–4173. doi:10.1016/j.biombioe.2011.06.037 Google Scholar
  16. Collinson MP (2000) A history of farming system research. FAO and CABI publishing, WallingfordGoogle Scholar
  17. Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Global Environ Chang 19:292–305. doi:10.1016/j.gloenvcha.2008.10.009 Google Scholar
  18. Cros MJ, Duru M, Garcia F, Martin-Clouaire R (2004) Simulating management strategies: the rotational grazing example. Agr Syst 80:23–42. doi:10.1016/j.agsy.2003.06.001 Google Scholar
  19. de Noblet-Ducoudré N, Gervois S, Ciais P, Viovy N, Brisson N, Seguin B, Perrier A (2004) Coupling the soil–vegetation–atmosphere–transfer scheme ORCHIDEE to the agronomy model STICS to study the influence of croplands on the European carbon and water budgets. Agronomie 24:1–11. doi:10.1051/agro:2004038 Google Scholar
  20. de Ponti T, Rijk B, Van Ittersum MK (2012) The crop yield gap between organic and conventional agriculture. Agr Syst 108:1–9. doi:10.1016/j.agsy.2011.12.004 Google Scholar
  21. de Wit CT, van Keulen H, Seligman NG, Spharim I (1988) Application of interactive multiple goal programming techniques for analysis and planning of regional agricultural development. Agr Syst 26:211–230. doi:10.1016/0308-521X(88)90012-1 Google Scholar
  22. Delmotte S, Tittonel P, Mouret J-C, Hammond R, Lopez-Ridaura S (2011) On farm assessment of rice yield variability and productivity gaps between organic and conventional cropping systems under Mediterranean climate. Eur J Agron 35:223–236. doi:10.1016/j.eja.2011.06.006 Google Scholar
  23. Doberman A (2012) Getting back to the field. Nature 485:176–177. doi:10.1038/485176a Google Scholar
  24. Dogliotti S, van Ittersum MK, Rossing WAH (2005) A method for exploring sustainable development options at farm scale: a case study for vegetable farms in South Uruguay. Agr Syst 86:29–51. doi:10.1016/j.agsy.2004.08.002 Google Scholar
  25. Doré T, Clermont-Dauphin C, Crozat Y, David C, Jeuffroy M-H, Loyce C, Makowski D, Malezieux E, Meynard J-M, Valantin-Morison M (2008) Methodological progress in on-farm regional diagnosis. A review. Agron Sustain Dev 28:151–161. doi:10.1051/agro:2007031 Google Scholar
  26. Doré T, Makowski D, Malézieux E, Munier-Jolain N, Tchamitchian M, Tittonel P (2011) Facing up to the paradigm of ecological intensification in agronomy: revisting methods, concepts and knowledge. Eur J Agron 34:197–210. doi:10.1016/j.eja.2011.02.006 Google Scholar
  27. Doré T, Sebillotte M, Meynard J-M (1997) A diagnostic method for assessing regional variation in crop yield. Agr Syst 54:169–188. doi:10.1016/S0308-521X(96)00084-4 Google Scholar
  28. Dupin M, Reynaud P, Jarošík V, Baker R, Brunel S, Eyre D, Pergl J, Makowski D (2011) Effects of training dataset characteristics on the performance of models for predicting the distribution of Diabrotica virgifera virgifera. PloS One 6:1–11. doi:10.1371/journal.pone.0020957 Google Scholar
  29. Eggleston S, Buendia L, Miwa K, Ngara T, Tanabe K (2006) 2006 IPCC Guidelines for National Greenhouse Gas inventories. Volume 4: Agriculture, Forestry and Other land Use. IPCC, Institute for Global Environmental Strategies, Hayama, JapanGoogle Scholar
  30. Elser J, Bennett EM (2011) A broken biogeochemical cycle. Nature 478:29–31. doi:10.1038/478029a PubMedGoogle Scholar
  31. Enfors E, Barron J, Makurira H, Rockstrom J, Tumbo S (2011) Yield and soil system changes from conservation tillage in dryland farming: a case study from North Eastern Tanzania. Agric Water Manag 98:1687–1695. doi:10.1016/j.agwat.2010.02.013 Google Scholar
  32. Farooq M, Flower KC, Jabran K, Wahid A, Siddique KHM (2011) Crop yield and weed management in rainfed conservation agriculture. Soil Tillage Res 117:172–183. doi:10.1016/j.still.2011.10.001 Google Scholar
  33. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O'Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342. doi:10.1038/nature10452 PubMedGoogle Scholar
  34. Fresco LO (1984) Issues in farming systems research. Neth J Agric Sci 32:253–261Google Scholar
  35. Galloway J, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformations of the nitrogen cycle: recent trends, questions and potential solutions. Science 320:889–892. doi:10.1126/science.1136674 PubMedGoogle Scholar
  36. Garside AL, Bell MJ (2011) Growth and yield responses to amendments to the sugarcane monoculture: towards identifying the reasons behind the response to breaks. Crop Pasture Sci 62:776–789. doi:10.1071/CP11055 Google Scholar
  37. Grote U, Craswell E, Vlek P (2005) Nutrient flows in international trade: ecology and policy issues. Environ Sci Pol 8:439–451. doi:10.1016/j.envsci.2005.05.001 Google Scholar
  38. Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293–296. doi:10.1038/nature06592 PubMedGoogle Scholar
  39. Harunur Rashid M, Murshedul Alam M, Rao AN, Ladha JK (2012) Comparative efficacy of pretilachlor and hand weeding in managing weeds and improving the productivity and net income of wet-seeded rice in Bangladesh. Field Crop Res 128:17–26. doi:10.1016/j.fcr.2011.11.024 Google Scholar
  40. Hou P, Gao Q, Xie R, Li S, Meng Q, Kirkby EA, Römheld V, Müller T, Zhang F, Cui Z, Chen X (2012) Grain yields in relation to N requirement: optimizing nitrogen management for spring maize grown in China. Field Crop Res 129:1–6. doi:10.1016/j.fcr.2012.01.006 Google Scholar
  41. Joannon A, Souchère V, Martin P, Papy F (2006) Reducing runoff by managing crop localisation at the catchment level, considering agronomic constraints at farm level. Land Degrad Dev 17:467–478. doi:10.1002/ldr.714 Google Scholar
  42. Jones AJ, Selley RA, Mielke LN (1990) Cropping and tillage options to achieve erosion control goals and maximum profit on irregular slopes. J Soil Water Conserv 45:648–653Google Scholar
  43. Kiba DI, Zongo NA, Lompo F, Jansa J, Compaore E, Sedogo PM, Frossard E (2012) The diversity of fertilization practices affects soil and crop quality in urban vegetable sites of Burkina Faso. Eur J Agron 38:12–21. doi:10.1016/j.eja.2011.11.012 Google Scholar
  44. Knickel K (1990) Agricultural structural change impact on the rural environement. J Rural Stud 6:383–393. doi:10.1016/0743-0167(90)90051-9 Google Scholar
  45. Krinner G, Viovy N, de Noblet-Ducoudrée N, Ogee J, Polcher J, Friedlingstein P, Ciais P, Sitch SP, C (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem Cy 19:GB1015. doi:10.1029/2003GB002199
  46. Krueger K, Goggi AS, Mullen RE, Mallarino AP (2012) Phosphorus and potassium fertilization do not affect soybean storability. Agron J 104:405–414. doi:10.2134/agronj2011.0156 Google Scholar
  47. Laborte A, de Bie K, Smaling EMA, Moya PF, Boling AA, van Ittersum MK (2012) Rice yields and yield gaps in Southeast Asia: past trends and future outlook. Eur J Agron 36:9–20. doi:10.1016/j.eja.2011.08.005 Google Scholar
  48. Le Bail M, Makowski D (2004) A model-based approach for optimizing segregation of soft wheat in country elevators. Eur J Agron 21:171–180. doi:10.1016/j.eja.2003.07.002 Google Scholar
  49. Le Ber F, Benoît M, Schott C (2006) Studying crop sequencies with CarrotAge, a HMM-based data mining software. Ecol Model 191:170–185. doi:10.1016/j.ecolmodel.2005.08.031 Google Scholar
  50. Le Gal PY, Lyne PWL, Meyer E, Soler LG (2008) Impact of sugarcane supply scheduling on mill sugar production: a South African case study. Agr Syst 96:64–74. doi:10.1016/j.agsy.2007.05.006 Google Scholar
  51. Leenhardt D, Angevin F, Biarnès A, Colbach N, Mignolet C (2010) Describing and locating cropping systems on a regional scale. A review. Agron Sustain Dev 30:131–138. doi:10.1051/agro/2009002 Google Scholar
  52. Leenhardt D, Wallach D, Le Moigne P, Guérif M, Bruand A, Casterad MA (2006) Using crop models for multiple fileds. In: Wallach D, Makowski D, Jones J (eds) Working with dynamic crop models. Elsevier, Amsterdam, pp 209–248Google Scholar
  53. Licker R, Johnson M, Barford C, Foley JA, Kucharik CJ, Monfreda C, Ramankutty N (2010) Mind the gap: how do agricultural management explain the ‘yield gap’ of cropland around the world? Glob Ecol Biogeogr 19:769–782. doi:10.1111/j.1466-8238.2010.00563.x Google Scholar
  54. Liu J, You L, Amini M, Obersteiner M, Herrero M, Zehnder A, Yang H (2010) A high-resolution assessment on global nitrogen flows in cropland. Proc Natl Acad Sci U S A 107:8035–8040. doi:10.1073/pnas.0913658107 PubMedCentralPubMedGoogle Scholar
  55. Liu Y, Villalba G, Ayres RU, Schroder H (2008) Global phosphorus flows and environmental impacts from a consumption perspective. J Ind Ecol 12:229–247. doi:10.1111/j.1530-9290.2008.00025.x Google Scholar
  56. Lobell D, Burke M (2009) Climate change and food security: adapting agriculture to a warmer world. Springer, DordrechtGoogle Scholar
  57. Lobell D, Burke M (2010) On the use of statistical models to predict crop yield responses to climate change. Agr Forest Meteorol 150:1443–1452. doi:10.1016/j.agrformet.2010.07.008 Google Scholar
  58. Lobell D, Cassman K, Field C (2009) Crop yield gaps: their importance, magnitudes, and causes. Ann Rev Env Resour 34:179–204. doi:10.1146/annurev.environ.041008.093740 Google Scholar
  59. MacDonald G, Bennett EM, Potter PA, Ramankutty N (2011) Agronomic phosphorus imbalances across the world's croplands. Proc Natl Acad Sci U S A 108:3086–3091. doi:10.1073/pnas.1010808108 PubMedCentralPubMedGoogle Scholar
  60. Makowski D, Doré T, Monod H (2007) A new approach to analyze relationships between yield components using boundary lines. Agron Sustain Dev 27:119–128. doi:10.1051/agro:2006029 Google Scholar
  61. Makowski D, Hendrix EMT, van Ittersum MK, Rossing WAH (2000) A framework to study nearly optimal solutions of linear programming models developed for agricultural land use exploration. Ecol Model 131:65–77. doi:10.1016/S0304-3800(00)00249-0 Google Scholar
  62. Makowski D, Hendrix EMT, van Ittersum MK, Rossing WAH (2001) Generation and presentation of nearly optimal solutions for mixed-integer linear programming, applied to a case in farming system design. Eur J Oper Res 132:425–438. doi:10.1016/S0377-2217(00)00134-X Google Scholar
  63. Makowski D, Tichit M, Guichard L, van Keulen H, Beaudoin N (2009) Measuring the accuracy of agro-environmental indicators. J Environ Manage 90:S139–S146. doi:10.1016/j.jenvman.2008.11.023 PubMedGoogle Scholar
  64. Malezieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, De Tourdonnet S, Valantin-Morison M (2008) Mixing plant species in cropping systems: concepts, tools and models. A review. Agron Sustain Dev 29:43–62. doi:10.1051/agro:2007057 Google Scholar
  65. Messiga AJ, Ziadi N, Bélanger G, Morel C (2012) Process-based mass-balance modelling of soil phosphorus availability in a grassland fertilized with N and P. Nutr Cycl Agroecosyst 92:273–287. doi:10.1007/s10705-012-9489-x Google Scholar
  66. Meyer R, Yu J (2000) BUGS for a Bayesian analysis of stochastic volatility models. Econ J 3:198–215. doi:10.1111/1368-423X.00046 Google Scholar
  67. Michos MC, Mamolos AP, Menexes GC, Tsatsarelis CA, Tsirakoglou VM, Kalburtji KL (2012) Energy inputs, outputs and greenhouse gas emissions in organic, integrated and conventional peach orchards. Ecol Indic 13:22–28. doi:10.1016/j.ecolind.2011.05.002 Google Scholar
  68. Mignolet C, Schott C, Benoit M (2004) Spatial dynamics of agricultural practices on a basin territory: a retrospective study to implement models simulating nitrate flow. The case of the Seine basin. Agronomie 24:219–236. doi:10.1051/agro:2004015 Google Scholar
  69. Mishima S, Endo A, Kohyama K (2010) Recent trends in phosphate balance nationally and by region in Japan. Nutr Cycl Agroecosyst 86:69–77. doi:10.1007/s10705-009-9274-7 Google Scholar
  70. Mollier A, de Willigen P, Heinen M, Morel C, Schneider A, Pellerin S (2008) A two dimensional simulation model of phosphorus uptake including crop growth and P-response. Ecol Model 210:453–464. doi:10.1007/0-306-47624-X_293 Google Scholar
  71. Monfreda C, Ramankutty N, Foley JA (2008) Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem Cy 22:GB1022. doi:10.1029/2007GB002947
  72. Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield-gaps through nutrient and water management. Nature 490:254–257. doi:10.1038/nature11420 PubMedGoogle Scholar
  73. Nakano H, Morita S, Kitagawa H, Wada H, Takahashi M (2012) Grain yield response to planting density in forage rice with a large number of spikelets. Crop Sci 52:345–350. doi:10.2135/cropsci2011.02.0071 Google Scholar
  74. Naylor R, Steinfeld H, Falcon W, Galloway J, Smil V, Bradford E, Adler J, Mooney H (2005) Losing the links between livestock and land. Science 310:1621–1622. doi:10.1126/science.1117856 PubMedGoogle Scholar
  75. Nesme T, Toublant M, Mollier A, Morel C, Pellerin S (2012) Assessing phosphorus management among organic farming systems: a farm input, output and budget analysis in Southwestern France. Nutr Cycl Agroecosyst 92:225–236. doi:10.1007/s10705-012-9486-0 Google Scholar
  76. Neumann K, Verburg PH, Stehfest E, Müller C (2010) The yield gap of global grain production: a spatial analysis. Agr Syst 103:316–326. doi:10.1016/j.agsy.2010.02.004 Google Scholar
  77. Norton L, Johnson P, Joys A, Stuart R, Chamberlain D, Feber R, Firbank L, Manley W, Wolfe M, Hart B, Mathews F, Macdonald D, Fuller RJ (2009) Consequences of organic and non-organic farming practices for field, farm and landscape complexity. Agr Ecosyst Environ 129:221–227. doi:10.1016/j.agee.2008.09.002 Google Scholar
  78. Otieno M, Woodcock BA, Wilby A, Vogiatzakis IN, Mauchline AL, Gikungu MW, Potts SG (2011) Local management and landscape drivers of pollination and biological control services in a Kenyan agro-ecosystem. Biol Conserv 144:2424–2431. doi:10.1016/j.biocon.2011.06.013 Google Scholar
  79. Paillard S, Treyer S, Dorin B (2010) Agrimonde : scénarios et défis pour nourrir le monde en 2050. Editions Quae, ParisGoogle Scholar
  80. Papy F (2001) Interdépendance des systèmes de culture dans l'exploitation agricole. In: Malézieux E, Trébuil G, Jaeger M (eds) Modélisation des agro-écosystèmes et aide à la décision. Cirad-Inra edn. INRA-CIRAD, Montpellier, pp 51–74Google Scholar
  81. Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (2007) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  82. Philibert A, Loyce C, Makowski D (2012) Assessment of the quality of the meta-analysis in agronomy. Agric, Ecosyst Environ 148:72–82. doi:10.1016/j.agee.2011.12.003 Google Scholar
  83. Philibert A, Loyce C, Makowski D (2013) Quantifying uncertainties in N2O emission due to N fertilizer application in cultivated areas. PlosOne 7. doi:10.1371/journal.pone.0050950
  84. Piepho HP, Richter C, Spilke J, Hartung K, Kunick A, Thöle H (2011) Statistical aspects of on-farm experimentation. Crop Pasture Sci 62:721–735. doi:10.1071/CP11175 Google Scholar
  85. Prost L, Makowski D, Jeuffroy M-H (2008) Comparison of stepwise selection and Bayesian model averaging for yield gap analysis. Ecol Model 219:66–76. doi:10.1016/j.ecolmodel.2008.07.026 Google Scholar
  86. Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem Cy 22:GB1003. doi:10.1029/2007GB002952
  87. Reganold JP, Glover JD, Andrews PK, Hinman HR (2001) Sustainability of three apple production systems. Nature 410:926–929. doi:10.1038/35073574 PubMedGoogle Scholar
  88. Ricci B, Franck P, Toubon JF, Bouvier J-C, Sauphanor B, Lavigne C (2009) The influence of landscape on insect pest dynamics: a case study in southeastern France. Landscape Ecol 24:337–349. doi:10.1007/s10980-008-9308-6 Google Scholar
  89. Roschewitz I, Hücker M, Tscharntke T, Thies C (2005) The influence of landscape context and farming practices on parasitism of cereal aphids. Agr Ecosyst Environ 108:218–227. doi:10.1016/j.agee.2005.02.005 Google Scholar
  90. Rosenberg MS, Garrett KA, Su Z, Bowden RL (2004) Meta-analysis in plant pathology: synthesizing research results. Phytopathology 94:1013–1017. doi:10.1094/PHYTO.2004.94.9.1013 PubMedGoogle Scholar
  91. Rossing WAH, Meynard J-M, van Ittersum MK (1997) Model-based explorations to support development of sustainable farming systems: case studies from France and the Netherlands. Eur J Agron 7:271–283. doi:10.1016/S1161-0301(97)00042-7 Google Scholar
  92. Sacks WJ, Deryng D, Foley JA, Ramankutty N (2010) Crop planting date: an analysis of global patterns. Glob Ecol Biogeogr 19:607–620. doi:10.1111/j.1466-8238.2010.00551.x Google Scholar
  93. Sattari SZ, Bouwman AF, Giller KE, Van Ittersum MK (2012) Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc Natl Acad Sci U S A 109:6348–6353. doi:10.1073/pnas.1113675109 PubMedCentralPubMedGoogle Scholar
  94. Sauvant D, Schmidely P, Daudin JJ, St-Pierre NR (2008) Meta-analyses of experimental data in animal nutrition. Animal 2:1203–1214. doi:10.1017/S1751731108002280 PubMedGoogle Scholar
  95. Senthilkumar K, Nesme T, Mollier A, Pellerin S (2012a) Conceptual design and quantification of phosphorus flows and balances at the country scale: the case of France. Glob Biogeochem Cycles 26, GB2008. doi:10.1029/2011GB004102 Google Scholar
  96. Senthilkumar K, Nesme T, Mollier A, Pellerin S (2012b) Regional-scale phosphorus flows and budgets within France: the importance of agricultural production systems. Nutr Cycl Agroecosyst 92:225–236. doi:10.1007/s10705-011-9478-5 Google Scholar
  97. Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature 485:229–232. doi:10.1038/nature11069 PubMedGoogle Scholar
  98. Souchère V, Millair L, Echeverria J, Bousquet F, Le Page C, Etienne M (2010) Co-constructing with stakeholders a role-playing game to initiate a collective management of erosive runoff risks at watershed scale. Environ Model Software 25:1359–1370. doi:10.1016/j.envsoft.2009.03.002 Google Scholar
  99. Spiertz H (2012) Avenues to meet food security. The role of agronomy on solving complexity in food production and resource use. Eur J Agron 43:1–8. doi:10.1016/j.eja.2012.04.004 Google Scholar
  100. Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr Cycl Agroecosyst 74:207–228. doi:10.1007/s10705-006-9000-7 Google Scholar
  101. Stockle CO, Donatelli M, Nelson R (2003) CropSyst, a cropping systems simulation model. Eur J Agron 18:289–307. doi:10.1016/S1161-0301(02)00109-0 Google Scholar
  102. Sutton MA, Oenema O, Erisman JW, Leip A, van Grinsven H, Winiwarter W (2011) Too much of a good thing. Nature 161:159–161. doi:10.1038/472159a Google Scholar
  103. Thies C, Haenke S, Scherber C, Bengtsson J, Bommarco R, Clement LW, Ceryngier P, Dennis C, Emmerson M, Gagic V, Hawro V, Liira J, Weisser WW, Winqvist C, Tscharntke T (2011) The relationship between agricultural intensification and biological control: experimental tests across Europe. Ecol Appl 21:2187–2196. doi:10.1890/10-0929.1 PubMedGoogle Scholar
  104. Thies C, Tscharntke T (1999) Landscape structure and biological control in agroecosystems. Science 285:893–895. doi:10.1126/science.285.5429.893 PubMedGoogle Scholar
  105. Tilman D, Gassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677. doi:10.1038/nature01014 PubMedGoogle Scholar
  106. Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59. doi:10.1016/j.biocon.2012.01.068 Google Scholar
  107. Tueche JR, Hauser S (2011) Maize (Zea mays L.) yield and soil physical properties as affected by the previous plantain cropping systems, tillage and nitrogen application. Soil Tillage Res 115:88–93. doi:10.1016/j.still.2011.07.004 Google Scholar
  108. van Ittersum MK, Donatelli M (2003) Modeling cropping systems: highlights of the symposium and preface to the special issues. Eur J Agron 18:187–197. doi:10.1016%2fS1161-0301(02)00104-1 Google Scholar
  109. van Ittersum MK, Rabbinge R, van Latesteijn HC (1998) Exploratory land use studies and their role in strategic policy making. Agr Syst 58:309–330. doi:10.1016/S0308-521X(98)00033-X Google Scholar
  110. Van Vuuren DP, Bouwman AF, Beusen AHW (2010) Phosphorus demand for the 1970–2100 period: a scenario analysis of resource depletion. Global Environ Chang 20:428–439. doi:10.1016/j.gloenvcha.2010.04.004 Google Scholar
  111. Vereijken P (1997) A methodical way of prototyping integrated and ecological arable farming systems (I/EAFS) in interaction with pilot farms. Eur J Agron 7:235–250. doi:10.1016/S0378-519X(97)80029-3 Google Scholar
  112. Yang YX, Li PR, Zhang SL, Sun BH, Chen XP (2011) Long-term-fertilization effects on soil organic carbon, physical properties, and wheat yield of a loess soil. J Plant Nutr Soil Sci 174:775–784. doi:10.1002/jpln.201000134 Google Scholar

Copyright information

© INRA and Springer-Verlag France 2013

Authors and Affiliations

  • David Makowski
    • 1
    • 2
    • 7
  • Thomas Nesme
    • 3
    • 4
  • François Papy
    • 5
    • 6
  • Thierry Doré
    • 2
    • 1
  1. 1.INRAThiverval-GrignonFrance
  2. 2.AgroParisTechThiverval-GrignonFrance
  3. 3.Univ. BordeauxGradignanFrance
  4. 4.INRAVillenave d′OrnonFrance
  5. 5.INRAThiverval-GrignonFrance
  6. 6.AgroParisTechThiverval-GrignonFrance
  7. 7.INRAThiverval-GrignonFrance

Personalised recommendations