Agronomy for Sustainable Development

, Volume 34, Issue 1, pp 155–173 | Cite as

Cadmium minimization in rice. A review

Review Article

Abstract

Cadmium (Cd) contamination of rice is found in areas irrigated by wastewater from mines. Cd contamination of rice fields can also result from the application of Cd-rich phosphate fertilizers. As a consequence, millions of tons of rice are discarded. In Asia, irrigated paddy-based cropping systems provide rice grains as food for about 2 billion people. A daily intake of 20–40 μg Cd from rice is reported in regions where rice is used as a food. Daily rice Cd intake leads to diseases such as bone mineralization. Hence, Cd minimization in rice is needed. This article reviews sustainable agriculture and molecular techniques that prevents Cd uptake in rice. Cadmium minimization can be done either by field remediation or change in plant functions. Organic farming decreases Cd uptake and remediates crop fields. Cd hyperaccumulator plants and Cd immobilizing microbes can be used for field remediation. Cd amount in rice can be controlled by gene families that code for putative transition metal transporters or metal chaperones and quantitative trait loci (QTL). Generation of Cd excluder rice is possible by transgenics.

Keywords

Biogeochemistry Ecophysiology Phytotechniques Cadmium transporters Metal chelators Cadmium responsive genes Cadmium excluder rice 

References

  1. Adamu CI, Nganje TN (2010) Heavy metal contamination of surface soil in relationship to land use patterns: a case study of Benue State, Nigeria. Mater Sci Appl 1:127–134. doi:10.4236/msa.2010.13021 Google Scholar
  2. Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142. doi:10.1016/j.geoderma.2004.01.003 Google Scholar
  3. Agrawal GK, Rakwal R, Yonekura M, Kubo A, Saji H (2002) Rapid induction of defense/stress-related proteins in leaves of rice (Oryza sativa) seedlings exposed to ozone is preceded by newly phosphorylated proteins and changes in a 66-kDA ERK-type MAPK. J Plant Physiol 159:361–369. doi:10.1078/0176-1617-00741 Google Scholar
  4. Antosiewicz DM, Henning J (2004) Overexpression of LTC1 in tobacco enhances the protective action of calcium against cadmium toxicity. Environ Pollut 129:237–245. doi:10.1016/j.envpol.2003.10.025 PubMedGoogle Scholar
  5. Appel C, Ma LQ, Rhue RD, Reve W (2008) Sequential sorption of lead and cadmium in three tropical soils. Environ Pollut 155:132–140. doi:10.1016/j.envpol.2007.10.026 PubMedGoogle Scholar
  6. Arao T, Ae N (2003) Genotypic variations in cadmium levels of rice grain. Soil Sci Plant Nutr 287:223–233. doi:10.1080/00380768.2003.10410035 Google Scholar
  7. Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S (2009) Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environ Sci Technol 43:9361–9367. doi:10.1021/es9022738 PubMedGoogle Scholar
  8. Arvind P, Prasad MNV (2005) Cadmium–zinc interactions in a hydroponic system using Ceratophyllum demersum L.: adaptive ecophysiology, biochemistry and molecular toxicology. Braz J Plant Physiol 17(1):3–20. doi:10.1590/S1677-04202005000100002 Google Scholar
  9. Aslan A, Çiçek A, Yazici K, Karagöz Y, Turan M, Akku F, Yildirim OS (2011) The assessment of lichens as bioindicator of heavy metal pollution from motor vehicles activities. Afr J Agric Res 6(7):1698–1706. doi:10.5897/AJAR10.331 Google Scholar
  10. Baize D (2008) Cadmium in soils and cereal grains after sewage-sludge application on French soils. A review. Agron Sustain Dev 29:175–184. doi:10.1051/agro:2008031 Google Scholar
  11. Baize D, Bellanger L, Tomassone R (2009) Relationships between concentrations of trace metals in wheat grains and soil. Agron Sustain Dev 29:297–312. doi:10.1051/agro:2008057 Google Scholar
  12. Basta NT, McGowen SL (2004) Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ Pollut 127:73–82. doi:10.1016/S0269-7491(03)00250-1 PubMedGoogle Scholar
  13. Battaglia A, Calace N, Nardi E, Petronio BM, Pietroletti M (2003) Paper mill sludge–soil mixture: kinetic and thermodynamic tests of cadmium and lead sorption capability. Microchem J 75:97–102. doi:10.1016/S0026-265X(03)00074-2 Google Scholar
  14. Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250Google Scholar
  15. Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17(1):21–34. doi:10.1590/S1677-04202005000100003 Google Scholar
  16. Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. Forest Ecol Manag 133:13–22. doi:10.1016/S0378-1127(99)00294-7 Google Scholar
  17. Boisson J, Mench M, Sappin-Didier V, Solda P, Vangronsveld J (1998) Short-term in situ immobilization of Cd and Ni by beringite and steel shots application to long-term sludged plots. Agron Sustain Dev 18(5–6):347–359. doi:10.1051/agro:19980502 Google Scholar
  18. Boisson J, Mench M, Vangronsveld J, Ruttens A, Kop-ponen P, De Koe T (1999) Immobilization of trace metals and arsenic by different soil additives: evaluation by means of chemical extractions. Commun Soil Sci Plant 30:365–387. doi:10.1080/00103629909370210 Google Scholar
  19. Bolan NS, Makino T, Kunhikrishnan A, Kim PJ, Ishikawa S, Murakami M, Naidu R, Kirkham MB (2013) Cadmium contamination and its risk management in rice ecosystems. Adv Agron 119:183–273. doi:10.1016/B978-0-12-407247-3.00004-4 Google Scholar
  20. Bolan NS, Adriano DC, Mani P, Duraisamy A, Arulmozhiselvan S (2003) Immobilization and phytoavailability of cadmium in variable charge soils: II. Effect of lime addition. Plant Soil 250:187–198. doi:10.1023/A:1026288021059 Google Scholar
  21. Brams E, Anthony W (1983) Cadmium and lead through an agricultural food chain. Sci Total Environ 28:295–306. doi:10.1016/S0048-9697(83)80027-8 PubMedGoogle Scholar
  22. Callahan DL, Baker AJM, Kolev SD, Wedd AG (2006) Metal ion ligands in hyper accumulating plants. J Biol Inorg Chem 11:2–12. doi:10.1007/s00775-005-0056-7 PubMedGoogle Scholar
  23. Casova K, Cerny J, Szakova J, Balik J, Tlustos P (2009) Cadmium balance in soils under different fertilization managements including sewage sludge application. Plant Soil Environ 55(8):353–361Google Scholar
  24. Cataldo DA, Garland TR, Wildung RE (1983) Cadmium uptake kinetics in intact soybean plants. Plant Physiol 73:844–848. doi:10.1104/pp. 73.3.844 PubMedCentralPubMedGoogle Scholar
  25. Cattani I, Romani M, Boccelli R (2008) Effect of cultivation practices on cadmium concentration in rice grain. Agron Sustain Dev 28:265–271. doi:10.1051/agro:2007033 Google Scholar
  26. Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotech 8:279–284. doi:10.1016/S0958-1669(97)80004-3 PubMedGoogle Scholar
  27. Chaney RL, Reeves PG, Ryan JA, Simmons RW, Welch RM, Angle JS (2004) An improved understanding of soil Cd risk to humans and low cost methods to remediate soil Cd risks. Biometals 17(5):549–553. doi:10.1023/B:BIOM.0000045737.85738.cf PubMedGoogle Scholar
  28. Chen HM, Zheng CR, Tu C, Shen ZG (2000) Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 41:229–234. doi:10.1016/S0045-6535(99)00415-4 PubMedGoogle Scholar
  29. Cheng L, Wang F, Shou H, Huang F, Zheng L, He F, Li J, Fang-Jie Z, Ueno D, Ma JF, Wu P (2007) Mutation in nicotianamine aminotransferase stimulated the Fe(II) acquisition system and led to iron accumulation in rice. Plant Physiol 145:1647–1657. doi:10.1104/pp. 107.107912 PubMedCentralPubMedGoogle Scholar
  30. Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:9377–9390. doi:10.1021/es051134l PubMedGoogle Scholar
  31. Christensen TH (1984) Cadmium soil sorption at low concentrations: effect of time, cadmium load, pH and calcium. Water Air Soil Pollut 21:105–114. doi:10.1007/BF00163616 Google Scholar
  32. Chlopecka A, Adriano DC (1997) Influence of zeolite, apatite and Fe-oxide on Cd and Pb uptake by crops. Sci Total Environ 207:195–206. doi:10.1016/S0048-9697(97)00268-4 PubMedGoogle Scholar
  33. Chlopecka A (1996) Forms of Cd, Cu, Pb, and Zn in soil and their uptake by cereal crops when applied jointly as carbonates. Water Air Soil Pollut 87:297–309. doi:10.1007/BF00696843 Google Scholar
  34. Chou TS, Chao YY, Huang WD, Hong CY, Kao CH (2011) Effect of magnesium deficiency on antioxidant status and cadmium toxicity in rice seedlings. J Plant Physiol 168:1021–1030. doi:10.1016/j.jplph.2010.12.004 PubMedGoogle Scholar
  35. Christofi N, Ivshina IB (2002) Microbial surfactants and their use in field studies of soil remediation. Appl Microbiol 93:915–929. doi:10.1046/j.1365-2672.2002.01774.x Google Scholar
  36. Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:302–315. doi:10.1016/S1360-1385(02)02295-1 Google Scholar
  37. Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330. doi:10.1016/j.pbi.2006.03.015 PubMedGoogle Scholar
  38. Çotuk Y, Belivermiş M, Kihc O (2010) Environmental biology and pathophysiology of cadmium. IUFS J Biol 69(1):1–5Google Scholar
  39. Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B 363:557–572. doi:10.1098/rstb.2007.2170 PubMedCentralPubMedGoogle Scholar
  40. Coudert Y, Périn C, Courtois B, Khong NG, Ganet P (2010) Genetic control of root development in rice, the model cereal. Trends Plant Sci 15(4):219–226. doi:10.1016/j.tplants.2010.01.008 PubMedGoogle Scholar
  41. Curie C, Briat JF (2003) Iron transport and signaling in plants. Annu Rev Plant Biol 54:183–206. doi:10.1146/annurev.arplant.54.031902.135018 PubMedGoogle Scholar
  42. Deja J (2002) Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali-activated slag binders. Cem Concr Res 32:1971–1979. doi:10.1016/S0008-8846(02)00904-3 Google Scholar
  43. del Castilho P, Chandron WJ, Salomons W (1993) Influence of cattle manure slurry application on the solubility of cadmium, copper, zinc in a manured acidic loamy sand soil. J Environ Qual 22:279–689Google Scholar
  44. Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium resistant rhizobacteria. Soil Biol Biochem 40:74–84. doi:10.1016/j.soilbio.2007.06.024 Google Scholar
  45. Dermont G, Bergeron M, Mercier G, Richer-Lafleche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 152:1–31. doi:10.1016/j.jhazmat.2007.10.043 PubMedGoogle Scholar
  46. Dong J, Mao WH, Zhang GP, Wu FB, Cai Y (2007) Root excretion and plant tolerance to cadmium toxicity—a review. Plant Soil Environ 53(5):193–200Google Scholar
  47. Eriksson JE (1990) Effects of nitrogen-containing fertilizers on solubility and plant uptake of cadmium. Water Air Soil Pollut 49:355–368. doi:10.1007/BF00507075 Google Scholar
  48. Fässler E, Plaza S, Pairraud PA, Gupta SK, Robinson B, Schulin R (2011) Expression of selected genes involved in cadmium detoxification in tobacco plants grown on a sulphur-amended metal-contaminated field. Environ Exp Bot 70:158–165. doi:10.1016/j.envexpbot.2010.08.012 Google Scholar
  49. Fernández-Nava Y, Ulmanu M, Anger I, Marañón E, Castrillón L (2011) Use of granular bentonite in the removal of mercury (II), cadmium (II) and lead (II) from aqueous solutions. Water Air Soil Pollut 215:239–249. doi:10.1007/s11270-010-0474-1 Google Scholar
  50. Figueroa E (2008) Are more restrictive food cadmium standards justifiable health safety measures or opportunistic barriers to trade? An answer from economics and public health. Sci Total Environ 389:1–9. doi:10.1016/j.scitotenv.2007.08.015
  51. Flick DF, Kraybill HF, Dlmitroff JM (1971) Toxic effects of cadmium: a review. Environ Res 4(2):71–85. doi:10.1016/0013-9351(71)90036-3 PubMedGoogle Scholar
  52. Fuloria A, Saraswat S, Rai JPN (2009) Effect of Pseudomonas fluorescens on metal phytoextraction from contaminated soil by Brassica juncea. Chem Ecol 25:385–396. doi:10.1080/02757540903325096 Google Scholar
  53. Gallardo A (2003) Spatial variability of soil properties in a floodplain forest in Northwest Spain. Ecosystems 6:564–576. doi:10.1007/s10021-003-0198-9 Google Scholar
  54. Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46. doi:10.1016/j.envexpbot.2013.02.008 Google Scholar
  55. Garg RN, Das DK, Sharma AM, Mukherjee J, Singh G (2000) Soil physical properties and paddy yield as influenced by puddling methods. Ann Agr Res 21(2):192–198Google Scholar
  56. Gill SS, Tuteja N (2011) Cadmium stress tolerance in crop plants—probing the role of sulfur. Plant Signal Behav 6(2):215–222. doi:10.4161/psb.6.2.14880 PubMedGoogle Scholar
  57. Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg DA (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:22. doi:10.1186/1745-6673-1-22 PubMedCentralPubMedGoogle Scholar
  58. Gong ZT (1983) Pedogenesis of paddy soil and its significance in soil classification. Soil Sci 135:5–10Google Scholar
  59. Grant CA, Clarke JM, Duguidc S, Chaneyd RL (2008) Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci Total Environ 390:301–331. doi:10.1016/j.scitotenv.2007.10.038 PubMedGoogle Scholar
  60. Gou X, Li J (2012) Activation tagging. Methods Mol Biol 876:117–133. doi:10.1007/978-1-61779-809-2_9 PubMedGoogle Scholar
  61. Hagemeyer J, Kahle H, Breckle SW, Waisel Y (1986) Cadmium in Fagus sylvatica L. trees and seedlings: leaching, uptake and interconnection with transpiration. Water Air Soil Pollut 29(4):347–359. doi:10.1007/BF00283442 Google Scholar
  62. Hall J (2002) Cellular mechanism of heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11. doi:10.1093/jexbot/53.366.1 PubMedGoogle Scholar
  63. Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54(393):2601–2613. doi:10.1093/jxb/erg303 PubMedGoogle Scholar
  64. Hamon RE, Mj ML, Naidu R, Correll R (1998) Long-term changes in cadmium bioavailability in soil. Environ Sci Technol 32(23):3699–3703. doi:10.1021/es980198b Google Scholar
  65. Han CA, Tlusto SP, Száková J, Habart J, Gondek K (2008) Direct and subsequent effect of compost and poultry manure on the bioavailability of cadmium and copper and their uptake by oat biomass. Plant Soil Environ 54(7):271–278Google Scholar
  66. Han FX, Kingery WL, Selim HM (2001) Accumulation, redistribution and bioavailability of heavy metals in waste-amended soils. In: Iskandar IK, Kirkham MB (eds) Trace elements in soils: bioavailability, flux and transfer. Lewis, Washington, DC, pp 145–174Google Scholar
  67. Haouari CC, Nasraoui AH, Bouthour D, Houda MD, Daieb CB, Mnai J, Gouia H (2012) Response of tomato (Solanum lycopersicon) to cadmium toxicity: growth, element uptake, chlorophyll content and photosynthesis rate. Afr J Plant Sci 6(1):1–7. doi:10.5897/AJPS11.107 Google Scholar
  68. Harada E, Choi Y-E, Tsuchisaka A, Obata H, Sano H (2001) Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium. J Plant Physiol 158:655–661. doi:10.1078/0176-1617-00314 Google Scholar
  69. Hasan SA, Fariduddin Q, Ali B, Hayat S, Ahmad A (2009) Cadmium: toxicity and tolerance in plants. Environ Biol 30(2):165–174Google Scholar
  70. Hart JJ, Welch RM, Norvell WA, Sullivan LA, Kochian LV (1998) Characterization of cadmium binding, uptake, translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiol 116:1413–1420. doi:10.1104/pp. 118.1.219 PubMedCentralPubMedGoogle Scholar
  71. Hsieh HM, Liu WK, Huang PC (1995) A novel stress-inducible metallothionein-like gene from rice. Plant Mol Biol 28:381–389. doi:10.1007/BF00020388 PubMedGoogle Scholar
  72. Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants. New Phytol 174:499–506. doi:10.1111/j.1469-8137.2007.02051.x PubMedGoogle Scholar
  73. Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31(3):800–805. doi:10.1021/es9604828 Google Scholar
  74. Hutton M, Chaney RL, Krishnamurti CR, Olade MA, Page AL (1987) Group report: cadmium. In: Hutchinson TC, Meema KM (eds) Lead, mercury, cadmium and arsenic in the environment. Wiley, New York, pp 35–41Google Scholar
  75. Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. PNAS. doi:10.1073/pnas.1211132109 Google Scholar
  76. Ishikawa S, Abe T, Kuramata M, Yamaguchi MOT, Yamamoto T, Yano M (2010) Major quantitative trait locus for increasing cadmium specific concentration in rice grain is located on the short arm of chromosome 7. J Exp Bot 61(3):923–934. doi:10.1093/jxb/erp360 PubMedCentralPubMedGoogle Scholar
  77. Ishikawa S, Suzui N, Ito-Tanabata S, Ishii S, Igura M, Abe T, Kuramata M, Kawachi N, Fujimaki S (2011) Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars (Oryza sativa) using positron-emitting 107 Cd tracer. BMC Plant Biol 11:172. doi:10.1186/1471-2229-11-172 PubMedCentralPubMedGoogle Scholar
  78. Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286. doi:10.1038/srep00286 PubMedCentralPubMedGoogle Scholar
  79. Ishimaru Y, Kakei Y, Shimo H, Bashir K, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2011) A rice phenolic efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele. J Biol Chem 286(28):24649–24655. doi:10.1074/jbc.M111.221168 PubMedCentralPubMedGoogle Scholar
  80. Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:339–364. doi:10.1007/s12229-009-9036-x Google Scholar
  81. Jadia CD, Fulekar MH (2008) Phytoremediation: the application of vermicompost to remove zinc, cadmium, copper, nickel and lead by sunflower plant. Environ Eng Manag J 7(5):547–558Google Scholar
  82. Jayaram K, Prasad MNV (2009) Removal of Pb (II) from aqueous solution by seed powder of Prosopis juliflora DC. J Hazard Mater 169:991–997. doi:10.1016/j.jhazmat.2009.04.048 PubMedGoogle Scholar
  83. Jezeque K, Lebeau T (2008) Soil bioaugmentation by free and immobilized bacteria to reduce potentially phytoavailable cadmium. Bioresour Technol 99:690–698. doi:10.1016/j.biortech.2007.02.002 Google Scholar
  84. Jiao Y, Grant CA, Bailey LD (2004) Effects of phosphorus and zinc fertilizer on cadmium uptake and distribution in flax and durum wheat. J Sci Food Agric 84(8):777–785. doi:10.1002/jsfa.1648 Google Scholar
  85. Johns T, Eyzaguirre PB (2007) Biofortification, biodiversity and diet: a search for complementary applications against poverty and malnutrition. Food Policy 32:1–24. doi:10.1016/j.foodpol.2006.03.014 Google Scholar
  86. Joschim HJ, Makoi R, Ndakidemi PA (2009) The agronomic potential of vesicular–arbuscular mycorrhiza (AM) in cereals–legume mixtures in Africa. Afr J Microbiol Res 3(11):664–675Google Scholar
  87. Jung MC (2008) Heavy metal concentrations in soils and factors affecting metal uptake by plants in the vicinity of a Korean Cu–W mine. Sensors 8:2413–2423PubMedCentralGoogle Scholar
  88. Kato M, Ishikawa S, Inagaki K, Chiba K, Hayashi H, Yanagisawa S, Yoneyama T (2010) Possible chemical forms of cadmium and varietal differences in cadmium concentrations in the phloem sap of rice plants (Oryza sativa L.). Soil Sci Plant Nutr 56:839–847. doi:10.1111/j.1747-0765.2010.00514.x Google Scholar
  89. Karapinar N, Donat R (2009) Adsorption behaviour of Cu2+ and Cd2+ onto natural bentonite. Desalination 249:123–129. doi:10.1016/j.desal.2008.12.046 Google Scholar
  90. Karkhanis M, Jadia CD, Fulekar MH (2005) Rhizofilteration of metals from coal ash leachate. Asian J Water Environ Pollut 3(1):91–94Google Scholar
  91. Keller C, Marchetti M, Rossi L, Lugon-Moulin N (2005) Reduction of cadmium availability to tobacco (Nicotiana tabacum) plants using soil amendments in low cadmium-contaminated agricultural soils: a pot experiment. Plant Soil 276:69–84. doi:10.1007/s11104-005-3101-y Google Scholar
  92. Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207. doi:10.1016/S0045-6535(99)00412-9 PubMedGoogle Scholar
  93. Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218. doi:10.1111/j.1365-313X.2007.03044.x PubMedGoogle Scholar
  94. Kirkham MB (2006) Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, amendments. Geoderma 137:19–32. doi:10.1016/j.geoderma.2006.08.024 Google Scholar
  95. Knox AS, Seaman JC, Mench MJ, Vangronsveld J (2001) Remediation of metal- and radionuclides-contaminated soils by in situ stabilization techniques. In: Iskandar IK (ed) Environmental restoration of metals contaminated soils. CRC, Boca Raton, pp 21–60Google Scholar
  96. Kobayashi J (1978) Pollution by cadmium and the itai-itai disease in Japan. In: Oeheme FW (ed) Toxicity of heavy metals in the environment. Marcel Dekker, New York, pp 199–260Google Scholar
  97. Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157(1–2):1–14. doi:10.1016/j.geoderma.2010.03.009 Google Scholar
  98. Kramer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534. doi:10.3923/jest.2011.118.138 PubMedGoogle Scholar
  99. Kuramata M, Masuya S, Takahashi Y, Kitagawa E, Inoue C, Ishikawa S, Youssefian S, Kusano T (2009) Novel cysteine-rich peptides from Digitaria ciliaris and Oryza sativa enhance tolerance to cadmium by limiting its cellular accumulation. Plant Cell Physiol 50(1):106–117. doi:10.1093/pcp/pcn175 PubMedGoogle Scholar
  100. Lagerwerff JV, Specht AW (1970) Contamination of roadside soil and vegetation with cadmium nickel, lead and zinc. Environ Sci Technol 4:583–586. doi:10.1021/es60042a001 Google Scholar
  101. Lalhruaitluanga H, Jayaram K, Prasad MNV, Kumar KK (2010) Lead(II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo)—a comparative study. J Hazard Mater 175(1–3):311–318. doi:10.1016/j.jhazmat.2009.10.005 PubMedGoogle Scholar
  102. Lee MH, Choi SY, Moon H (1993) Complexation of cadmium (II) with soil fulvic acid. Bull Korean Chem Soc 14(4):453–457. doi:10.1139/v79-206 Google Scholar
  103. Lee S, An G (2009) Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ 32:408–416. doi:10.1111/j.1365-3040.2009.01935.x PubMedGoogle Scholar
  104. Lee S, Kim YY, Lee Y, An G (2007) Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol 145(3):831–842. doi:10.1104/pp. 107.102236 PubMedCentralPubMedGoogle Scholar
  105. Levi-Minzi R, Petruzzelli G (1984) The influence of phosphate fertilizers on Cd solubility in soil. Water Air Soil Pollut 23:423–429. doi:10.1007/BF00284737 Google Scholar
  106. Lin SH, Juang RS (2002) Heavy metal removal from water by sorption using surfactant-modified montmorillonite. J Hazard Mater 92 (3):315–326. doi:10.1016/S0304-3894(02)00026-2 Google Scholar
  107. Lish D (2002) Mutator transposons. Trends Plant Sci 7(11):498–504. doi:10.1016/S1360-1385(02)02347-6 Google Scholar
  108. Liu W, Zhou Q, An J, Sun Y, Liu R (2010) Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. J Hazard Mater 173:737–743. doi:10.1016/j.jhazmat.2009.08.147 PubMedGoogle Scholar
  109. Livera JD, Beak D, Kirby J, Hettiarachchi G, McLaughlin M (2011) Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions. Sci Total Environ 409(8):1489–1497. doi:org/10.1016/j.scitotenv.2010.12.028 PubMedGoogle Scholar
  110. Llamas A, Ullrich CI, Sanz A (2000) Cd2+ effects on transmembrane electrical potential difference, respiration and membrane permeability of rice (Oryza sativa L) roots. Plant Soil 219:21–28. doi:10.1023/A:1004753521646 Google Scholar
  111. López-Chuken UJ, Young SD, Sánchez-González MN (2010) The use of chloro-complexation to enhance cadmium uptake by Zea mays and Brassica juncea: testing a "free ion activity model" and implications for phytoremediation. Int J Phytoremediation 12(7):680–696. doi:10.1080/15226510903353161 PubMedGoogle Scholar
  112. Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8(3):285–289. doi:10.1016/S0958-1669(97)80005-5 PubMedGoogle Scholar
  113. Lugon-Moulin N, Ryan L, Donini P, Rossi L (2006) Cadmium content of phosphate fertilizers used for tobacco production. Agron Sustain Dev 26:151–155. doi:10.1051/agro:2006010 Google Scholar
  114. Lui H, Zhang J, Christie P, Zhang F (2008) Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedling grown in soil. Sci Total Environ 394:361–368. doi:10.1016/j.scitotenv.2008.02.004 Google Scholar
  115. Lux A, Martink M, Vaculık M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62(1):21–37. doi:10.1093/jxb/erq281 PubMedGoogle Scholar
  116. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691. doi:10.1038/nature04590 PubMedGoogle Scholar
  117. Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579–579. doi:10.1038/35054664 PubMedGoogle Scholar
  118. Ma W, Tobin JM (2003) Development of multimetal binding model and application to binary metal biosorption onto peat biomass. Water Res 37:3967–3977. doi:10.1016/S0043-1354(03)00290-2 PubMedGoogle Scholar
  119. Macaskie LE, Dean ACR, Cheetham AK, Jakeman RJB, Skarnulis AJ (1987) Cadmium accumulation by a Citvobacter sp.: the chemical nature of the accumulated metal precipitate and its location on the bacterial cells. J Gen Microbiol 133:539–544. doi:10.1099/00221287-133-3-539 Google Scholar
  120. Madejón E, de Mora AP, Felipe E, Burgos P, Cabrera F (2006) Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation. Environ Pollut 139(1):40–52. doi:10.1016/j.envpol.2005.04.034 PubMedGoogle Scholar
  121. Magneschi L, Perata P (2009) Rice germination and seedling growth in the absence of oxygen. Ann Bot 103:181–196. doi:10.1093/aob/mcn121 PubMedCentralPubMedGoogle Scholar
  122. Mahler RJ, Bingham FT, Page AL (1978) Cadmium-enriched sewage sludge application to acid and calcareous soils—effect on yield and cadmium uptake by lettuce and chard. J Environ Qual 7:274–281Google Scholar
  123. Masuda H, Ishimaru Y, Aung MS, Kobayashi T, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Nishizawa NK (2012) Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci Rep 2:543. doi:10.1038/srep00543 PubMedCentralPubMedGoogle Scholar
  124. Mathialagan T, Viraraghavan T (2002) Adsorption of cadmium from aqueous solutions by perlite. J Hazard Mat 94:291–303. doi:10.1016/S0304-3894(02)00084-5 Google Scholar
  125. Matsi TH, Hatzigiannakis EG, Arampatzis GK, Panoras AG (2007) Available Cd content of salt-affected and normal soils of Halastra–Kalohori area. Global Nest J 9(3):195–200Google Scholar
  126. Matsuda T, Kuramata M, Takahashi Y, Kitagawa E, Youssefian S, Kusano T (2009) A novel plant cysteine-rich peptide family conferring cadmium tolerance to yeast and plants. Plant Signal Behav 5:419–421. doi:10.1093/pcp/pcn175 Google Scholar
  127. McLaughlin MJ, Maier NA, Freeman K, Tiller KG, Williams CMJ, Smart MK (1995) Effect of potassic and phosphatic fertilizer type, fertilizer Cd concentration and zinc rate on cadmium uptake by potatoes. Fert Res 40:63–70. doi:10.1007/BF00749863 Google Scholar
  128. McDonald AJ, Riha SJ, Duxbury JM, Steenhuis TS, Lauren JG (2006) Soil physical responses to novel rice cultural practices in the rice–wheat system: comparative evidence from a swelling soil in Nepal. Soil Till Res 86:163–175. doi:10.1016/j.still.2005.02.005 Google Scholar
  129. Mediouni C, Benzarti O, Tray B, Ghorbel MH, Jemal F (2006) Cadmium and copper toxicity for tomato seedlings. Agron Sustain Dev 26:227–232. doi:10.1051/agro:2006008 Google Scholar
  130. Mendoza-Cózatl D, Loza-Tavera H, Hernández-Navarro A, Moreno-Sánchez R (2003) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29(4):653–671. doi:10.1016/j.femsre.2004.09.004 Google Scholar
  131. Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13. doi:10.1093/aob/mcn063 PubMedCentralPubMedGoogle Scholar
  132. Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H (2011) OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189(1):190–199. doi:10.1111/j.1469-8137.2010.03459.x PubMedGoogle Scholar
  133. Moons A (2003) Ospdr9, which encodes a PDR-type ABC transporter, is induced by heavy metals, hypoxic stress and redox perturbations in rice roots. FEBS Lett 553:370–376. doi:10.1016/S0014-5793(03)01060-3 PubMedGoogle Scholar
  134. Moreno JL, Hernández T, Garcia C (1999) Effects of a cadmium-contaminated sewage sludge compost on dynamics of organic matter and microbial activity in an arid soil. Biol Fert Soils 28(3):230–237. doi:10.1007/s003740050487 Google Scholar
  135. Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. PNAS 101(16):6309–6314. doi:10.1073pnas.0401572101 PubMedCentralPubMedGoogle Scholar
  136. Nakanishi H, Ogawa H, Ishimaru Y, Mori S, Nishizawa NK (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52:464–469. doi:10.1111/j.1747-0765.2006.00055.x Google Scholar
  137. Nazar R, Iqbal N, Masood A, Khan MIR, Syeed S, Khan NA (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation. AJPS 3:1476–1489. doi:10.4236/ajps.2012.310178 Google Scholar
  138. Nocito FF, Lancilli C, Dendena B, Lucchini G, Sacchi GA (2011) Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation. Plant Cell Environ 34:994–1008. doi:10.1111/j.1365-3040.2011.02299.x PubMedGoogle Scholar
  139. Nriagu JO, Pacyna JM (1998) Quantitative assessment of world-wide contamination of air, water and soils by trace metals. Nature 333:134–139. doi:10.1038/333134a0 Google Scholar
  140. Oda K, Otani M, Uraguchi S, Akihiro T, Fujiwara T (2011) Rice ABCG43 is Cd inducible and confers Cd tolerance on yeast. Biosci Biotechnol Biochem 75(6):1211–1213. doi:10.1271/bbb.110193 PubMedGoogle Scholar
  141. Ok YS, Kim SC, Kim DK, Skousen JG, Lee JS, Cheong YW, Kim SJ, Yang JE (2011) Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea. Environ Geochem Health 33:23–30. doi:10.1007/s10653-010-9364-0 PubMedGoogle Scholar
  142. Oyewole OA (2012) Microbial communities and their activities in paddy fields: a review. J Vet Adv 2(2):74–80Google Scholar
  143. Palmgren MG, Clemens S, Williams LE, Kramer U, Borg S, Schjørring JK, Sanders D (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13(9):1360–1385. doi:10.1016/j.tplants.2008.06.005 Google Scholar
  144. Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol 136(3):3814–3823. doi:10.1104/pp. 104 PubMedCentralPubMedGoogle Scholar
  145. Pereira MG, Arruda MAZ (2003) Vermicompost as a natural adsorbent material: characterization and potentialities for cadmium adsorption. J Braz Chem Soc 14(1):39–47. doi:10.1590/S0103-50532003000100007 Google Scholar
  146. Pierzynski GM, Schwab AP (1993) Bioavailability of zinc, cadmium and lead in a metal-contaminated alluvial soil. J Environ Qual 22:247–254Google Scholar
  147. Pilon-Smits EAH (2005) Phytoremediation. Annu Rev Plant Biol 56: 15–39. doi:10.1146/annurev.arplant.56.032604.144214
  148. Pitzschke A, Hirt H (2006) Mitogen-activated protein kinases and reactive oxygen species signaling in plants. Plant Physiol 141(2):351–356. doi:10.1104/pp. 106.079160 PubMedCentralPubMedGoogle Scholar
  149. Poulsen L, Dudas MJ (1998) Attenuation of cadmium, fluoride and uranium in phosphogypsum process water by calcareous soil. Can J Soil Sci 78:351–357. doi:10.4141/S97-004 Google Scholar
  150. Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35(4):525–545. doi:10.1016/0098-8472(95)00024-0 Google Scholar
  151. Prasad MNV (2004) Phytoremediation of metals in the environment for sustainable development. Proc Indian Natl Sci Acad 70(1):71–98Google Scholar
  152. Prasad MNV, Freitas H (1999) Feasible biotechnological and bioremediation: strategies for serpentine soils and mine spoils. EJB 2(1):36–50. doi:10.2225/vol2-issue1-fulltext-5 Google Scholar
  153. Prasad MNV, Freitas H (2002) Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. EJB 6(3):285–321. doi:10.2225/vol6-issue3-fulltext-6 Google Scholar
  154. Prasad MNV (2008) Biofortification: nutritional security and relevance to human health. In: Prasad MNV (ed) Trace elements as contaminants and nutrients: consequences in ecosystems and human health. Wiley, New York, pp 161–182Google Scholar
  155. Prasad MNV, Freitas H, Fraenzle S, Wuenschmann S, Markert B (2010) Knowledge explosion in phytotechnologies for environmental solutions. Environ Pollut 158(1):18–23. doi:10.1016/j.envpol.2009.07.038 PubMedGoogle Scholar
  156. Prasad MNV, Nirupa N (2007) Phytoferritins—implications for human health and nutrition. Asian Australas J Plant Sci Biotechnol 1(1):1–9Google Scholar
  157. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149. doi:10.1016/j.tibtech.2009.12.002 PubMedGoogle Scholar
  158. Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574. doi:10.1016/j.biotechadv.2012.04.011 PubMedGoogle Scholar
  159. Ramesh SA, Shin R, Eide DJ, Schachtman DP (2003) Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol 133:126–134. doi:10.1104/pp. 103 PubMedCentralPubMedGoogle Scholar
  160. Rani A, Souche YS, Goel R (2009) Comparative assessment of in situ bioremediation potential of cadmium resistant acidophilic Pseudomonas putida 62BN and alkalophilic Pseudomonas monteilli 97AN strains on soybean. Int Biodeter Biodegr 63:62–66. doi:10.1016/j.ibiod.2008.07.002 Google Scholar
  161. Rao TP, Yano K, Iijima M, Yamauchi A (2002) Regulation of rhizosphere acidification by photosynthetic activity in cowpea (Vigna unguiculata L. Walp.) seedlings. Ann Bot 89(2):213–220. doi:10.1093/aob/mcf030 PubMedGoogle Scholar
  162. Rate AW, Lee KM, French PA (2004) Application of biosolids in mineral sands mine rehabilitation: use of stockpiled topsoil decreases trace element uptake by plants. Bioresour Technol 91:223–231. doi:10.1016/S0960-8524(03)00206-2 PubMedGoogle Scholar
  163. Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31:19–48. doi:10.1007/BF02738153 PubMedGoogle Scholar
  164. Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161(11):1189–1202. doi:10.1016/j.jplph.2004.01.013 Google Scholar
  165. Reniger P (1977) Concentration of cadmium in aquatic plants and algal mass in flooded rice culture. Environ Pollut 14:297–302. doi:10.1016/0013-9327(77)90141-0 Google Scholar
  166. Robinson B, Russell C, Hedley M, Clothier B (2001) Cadmium adsorption by rhizobacteria: implications for New Zealand pastureland. Agric Ecosyst Environ 87:315–321. doi:10.1016/S0167-8809(01)00146-3 Google Scholar
  167. Romheld V (1991) The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. Plant Soil 130:127–134. doi:10.1007/BF00011867 Google Scholar
  168. Root RA, Miller RJ, Koeppe DE (1973) Uptake of cadmium—its toxicity, effect on the iron ratio in hydroponically grown corn. JEQ 4(4):473–476. doi:10.2134/jeq1975.00472425000400040011x Google Scholar
  169. Sandalio LM, Dalruzo HC, Gomez M, Romero-Puetras MC, Del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52(364):2115–2126. doi:10.1093/jexbot/52.364.2115 PubMedGoogle Scholar
  170. Saraswat S, Rai JPN (2011) Complexation and detoxification of Zn and Cd in metal accumulating plants. Rev Environ Sci Biotechnol 10(4):327–339. doi:10.1007/s11157-011-9250-y Google Scholar
  171. Sarin C, Sarin S (2010) Removal of cadmium and zinc from soil using immobilized cell of biosurfactant producing bacteria. Environment Asia 3(2):49–53Google Scholar
  172. Sarwar N, Saifullah MSS, Zia MH, Naeem A, Bibi S, Farid G (2010) Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric 90:925–937. doi:10.1002/jsfa.3916 PubMedGoogle Scholar
  173. Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24(5):2155–2167. doi:10.1105/tpc.112.096925 PubMedCentralPubMedGoogle Scholar
  174. Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins Reilly PEB, Williams DJ, Moore MR (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65–83. doi:org/10.1016/S0378-4274(02)00381-8 PubMedGoogle Scholar
  175. Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H (2012) Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol 53(1):213–224. doi:10.1093/pcp/pcr166 PubMedGoogle Scholar
  176. Sauve S, Hendershot W, Allen HE (2000) Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, organic matter. Environ Sci Technol 34:1125–1131. doi:10.1021/es9907764 Google Scholar
  177. Sauvé S, Manna S, Turmel MC, Roy AG, Courchesne F (2003) Solid-solution partitioning of Cd, Cu, Ni, Pb, Zn in the organic horizons of a forest soil. Environ Sci Technol 37:5191–5196. doi:10.1021/es030059g PubMedGoogle Scholar
  178. Schmidt U (2003) Enhancing phytoremediation: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J Environ Qual 32:1939–1954. doi:10.2134/jeq2003.1939 Google Scholar
  179. Schoeters G, Hond ED, Zuurbier M, Naginiene R, Hazel PVD, Stilianakis N, Ronchetti R, Koppe JG (2006) Cadmium and children: exposure and health effects. Acta Paediatr Suppl 453:50–54. doi:10.1080/08035320600886232 Google Scholar
  180. Sebastian A, Prasad MNV (2013) Cadmium accumulation retard activity of functional components of photo assimilation and growth of rice cultivars amended with vermicompost. Int J Phytoremediation 15:965–978. doi:10.1080/15226514.2012.751352 PubMedGoogle Scholar
  181. Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144. doi:10.1016/S0168-9452(01)00517-9 Google Scholar
  182. Shah K, Nongkynrih JM (2007) Metal hyperaccumulation and bioremediation. Biol Plant 51:618–634. doi:10.1007/s10535-007-0134-5 Google Scholar
  183. Shah K (2011) Cadmium metal detoxification and hyperaccumulators. In: Sherameti I, Varma A (eds) Detoxification of heavy metals, Soil Biology 30. Springer, Berlin, pp 181–230Google Scholar
  184. Shim D, Jae-Ung H, Lee J, Lee S, Choi Y, An G, Martinoia E, Lee Y (2009) Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell 21(12):4031–4043. doi:10.1105/tpc.109.066902 PubMedCentralPubMedGoogle Scholar
  185. Shimo H, Ishimaru Y, An G, Yamakawa T, Nakanishi H, Nishizawa NK (2011) Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice. J Exp Bot 62(15):5727–5234. doi:10.1093/jxb/err300 PubMedCentralPubMedGoogle Scholar
  186. Shirvani M, Shariatmadari H, Kalbasi M (2007) Kinetics of cadmium desorption from fibrous silicate clay minerals: influence of organic ligands and aging. Appl Clay Sci 37:175–184. doi:10.1016/j.clay.2006.12.010 Google Scholar
  187. Silver S (1996) Bacterial resistances to toxic metal ions—a review. Gene 179:9–19. doi:10.1016/S0378-1119(96)00323-X PubMedGoogle Scholar
  188. Singh BR, Myhr K (1998) Cadmium uptake by barley as affected by Cd sources and pH levels. Geoderma 84:185–194. doi:10.1016/S0016-7061(97)00128-6 Google Scholar
  189. Sloan JJ, Basta NT (1995) Remediation of acid soils by using alkaline biosolids. JEQ 24:1097–1103Google Scholar
  190. Smolders E, McLaughlin MJ (1996) Chloride increases cadmium uptake in Swiss chard in a resin-buffered nutrient solution. Soil Sci Soc Am J 60:1443–1447Google Scholar
  191. So HB, Ringrose-Voase AJ (2000) Management of clay soils for rainfed lowland rice-based cropping systems: an overview. Soil Till Res 56:3–14. doi:10.1016/S0167-1987(00)00119-7 Google Scholar
  192. Street JJ, Sabey BR, Lindsay WL (1978) Influence of pH, phosphorus, cadmium, sewage sludge, incubation time on the solubility and plant uptake of cadmium. JEQ 7(2):286–290Google Scholar
  193. Su-Hsia L, Reuy-Shin J (2002) Heavy metal removal from water by sorption using surfactant-modified montmorillonite. J Hazard Mater 92:315–326. doi:10.1016/S0304-3894(02)00026-2 Google Scholar
  194. Sundaramoorthy P, Chidambaram A, Ganesh KS, Unnikannan P, Baskaran L (2010) Chromium stress in paddy: (i) nutrient status of paddy under chromium stress; (ii) phytoremediation of chromium by aquatic and terrestrial weeds. C R Biol 333:597–607. doi:10.1016/j.crvi.2010.03.002 PubMedGoogle Scholar
  195. Takahashi R, Bashir K, Ishimaru Y, Nishizawa NK, Nakanishi H (2012a) The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signal Behav 7(12):1605–1607. doi:10.4161/psb.22454 PubMedCentralPubMedGoogle Scholar
  196. Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H (2012b) The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ 35(11):1948–1957. doi:10.1111/j.1365-3040.2012.02527.x PubMedGoogle Scholar
  197. Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62(14):4843–4850. doi:10.1093/jxb/err136 PubMedCentralPubMedGoogle Scholar
  198. Tanaka A, Shikazono N, Hase Y (2010) Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. Radiat Res 51:223–233. doi:10.1269/jrr.09143 Google Scholar
  199. Tang S, Xi L, Zheng J, Li H (2003) Response to elevated CO2 of Indian mustard and sunflower growing on copper contaminated soil. Bull Environ Contam Toxicol 71:988–997Google Scholar
  200. Tezuka K, Miyadate H, Katou K, Kodama I, Matsumoto S, Kawamoto T, Masaki S, Satoh H, Yamaguchi M, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H (2010) A single recessive gene controls cadmium translocation in the cadmium hyperaccumulating rice cultivar Cho-Ko-Koku. Theor Appl Genet 120:1175–1182. doi:10.1007/s00122-009-1244-6 PubMedGoogle Scholar
  201. Tóth T, Zsiros O, Kis M, Garab G, Kovács L (2012) Cadmium exerts its toxic effects on photosynthesis via a cascade mechanism in the cyanobacterium, Synechocystis PCC 6803. Plant Cell Environ 35(12):2075–2086. doi:10.1111/j.1365-3040.2012.02537.x PubMedGoogle Scholar
  202. Ueno D, Koyama E, Kono IOT, Yano M, Ma JF (2009) Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice. Plant Cell Physiol 50(12):2223–2233. doi:10.1093/pcp/pcp160 PubMedGoogle Scholar
  203. Ueno D, Yamaji N, Kono I, Huang CFT, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA 107:16500–16505. doi:10.1073/pnas.1005396107 PubMedCentralPubMedGoogle Scholar
  204. Ueno D, Koyama E, Yamaji N, Ma JF (2011) Physiological, genetic, molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan. J Exp Bot 22:2265–2272. doi:10.1093/jxb/erq383 Google Scholar
  205. Upadhyaya H, Panda SK, Bhattacharjee MK, Dutta S (2010) Role of arbuscular mycorrhiza in heavy metal tolerance in plants: prospects for phytoremediation. J Phytol 2(7):16–27. doi:10.1093/jxb/erq383 Google Scholar
  206. Uraguchi S, Fujiwara T (2012) Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice 5(5):1–8. doi:10.1186/1939-8433-5-5 Google Scholar
  207. Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T (2011) Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci USA 108(52):20959–20964. doi:10.1073/pnas.1116531109 PubMedCentralPubMedGoogle Scholar
  208. Vaculík M, Landberg T, Greger M, Luxová M, Stoláriková M, Lux A (2012) Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Ann Bot 110:433–443. doi:10.1093/aob/mcs039 PubMedCentralPubMedGoogle Scholar
  209. Vandenhove H, van Hees M, van Winkel S (2001) Feasibility of phytoextraction to clean up low-level uranium-contaminated soil. Int J Phytoremediation 3:301–320. doi:10.1080/15226510108500061 Google Scholar
  210. Vassilev A, Lidon F (2011) Cd-induced membrane damages and changes in soluble protein and free amino acid contents in young barley plants. Emir J Food Agric 23(2):130–136Google Scholar
  211. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181(4):759–776. doi:10.1111/j.1469-8137.2008.02748.x PubMedGoogle Scholar
  212. Vig K, Megharaj M, Sethunathan N, Naidu R (2003) Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Adv Environ Res 8:121–135. doi:10.1016/S1093-0191(02)00135-1 Google Scholar
  213. Wahid A, Ghani A, Javed F (2008) Effect of cadmium on photosynthesis, nutrition and growth of mungbean. Agron Sustain Dev 28(2):273–280. doi:10.1051/agro:2008010 Google Scholar
  214. Wang AS, Angle JS, Chaney RL, Delorme TA, Reeves RD (2006) Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant Soil 281:325–337. doi:10.1007/s11104-005-4642-9 Google Scholar
  215. Wang MY, Chen AK, Wong MH, Qiu RL, Cheng H, Ye ZH (2011) Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss. Environ Pollut 159:1730–1736. doi:10.1016/j.envpol.2011.02.025 PubMedGoogle Scholar
  216. Wang W, Chen H, Wang A (2007a) Adsorption characteristics of Cd (II) from aqueous solution onto activated polygorskite. Sep Purif Tech 55:157–164. doi:10.1016/j.seppur.2006.11.015 Google Scholar
  217. Wang D, Jiang X, Rao W, He J (2009) Kinetics of soil cadmium desorption under simulated acid rain. Ecol Complex 6:432–437. doi:10.1016/j.ecocom.2009.03.010 Google Scholar
  218. Wang FY, Wang H, Ma JW (2010) Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent—bamboo charcoal. J Hazard Mater 177:300–306. doi:10.1016/j.jhazmat.2009.12.032 PubMedGoogle Scholar
  219. Wang YQ, Zhu SY, Wang Y, Zhang MY (2007b) Tissue and inducible expression of a rice glutathione transporter gene promoter in transgenic Arabidopsis. Bot Stud 48:35–41Google Scholar
  220. Wani PA, Khan MS, Zaidi A (2007) Cadmium, chromium and copper in green gram plants. Agron Sustain Dev 27(2):145–153. doi:10.1051/agro: 2007036 Google Scholar
  221. WHO (1992) Cadmium. World Health Organization Environmental Health Criteria, No. 134; Geneva, SwitzerlandGoogle Scholar
  222. Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126. doi:10.1016/S0005-2736(00)00133-4 PubMedGoogle Scholar
  223. Wright DP, Scholes JD, Read DJ (1998) Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. Plant Cell Environ 21(2):209–216. doi:10.1046/j.1365-3040.1998.00280.x Google Scholar
  224. Wuana RA, Okieimen FE (2011) Heavy Metals in contaminated soils: a review of sources chemistry, risks and best available strategies for remediation, ISRN Ecology, vol. 2011, Article ID 402647, 20 pages, 2011. doi:10.5402/2011/402647.
  225. Xue D, Chen M, Zhang G (2009) Mapping of QTLs associated with cadmium tolerance and accumulation during seedling stage in rice (Oryza sativa L.). Euphytica 165:587–596Google Scholar
  226. Yan Y, Choi D, Kim D, Lee B (2010) Genotypic variation of cadmium accumulation and distribution in rice. JCSB 13(2):69–73. doi:10.1007/s12892-010-0036-5 Google Scholar
  227. Yang QW, Lan CY, Wang HB, Zhuang P, Shu WS (2006) Cadmium in soil–rice system and health risk associated with the use of untreated mining wastewater for irrigation in Lechang, China. Agric Water Manag 84:147–152. doi:10.1016/j.agwat.2006.01.005 Google Scholar
  228. Yeh CM, Hsiao LJH, Hsiao HJ (2004) Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice. Plant Cell Physiol 45(9):1306–1312. doi:10.1093/pcp/pch135 PubMedGoogle Scholar
  229. Yu LH, Umeda M, Liu JY, Zhao NM, Uchimiya H (1998) A novel MT gene of rice plants is strongly expressed in the node portion of the stem. Gene 206(1):29–35. doi:10.1016/S0378-1119(97)00577-5 PubMedGoogle Scholar
  230. Yu H, Wang JL, Wei F, Yuan JG, Yang ZY (2006) Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Sci Total Environ 370:302–309. doi:10.1016/j.scitotenv.2006.06.013 PubMedGoogle Scholar
  231. Yuan L, Yang S, Liu B, Zhang M, Wu K (2012) Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant Cell Rep 31(1):67–79. doi:10.1007/s00299-011-1140-9 PubMedGoogle Scholar
  232. Zhan J, Wei S, Niu R, Li Y, Wang S, Zhu J (2012) Identification of rice cultivar with exclusive characteristic to Cd using a field-polluted soil and its foreground application. Environ Sci Pollut Res. doi:10.1007/s11356-012-1185-5 Google Scholar
  233. Zhang J, Sun W, Li Z, Liang Y, Song A (2009) Cadmium fate and tolerance in rice cultivars. Agron Sustain Dev 29:483–490. doi:10.1051/agro/2009008 Google Scholar
  234. Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249:37–43. doi:10.1023/A:1022530217289 Google Scholar
  235. Zhao FJ, Shewry PR (2011) Recent developments in modifying crops and agronomic practice to improve human health. Food Policy 36:94–S101. doi:10.1016/j.foodpol.2010.11.011 Google Scholar

Copyright information

© INRA and Springer-Verlag France 2013

Authors and Affiliations

  • Abin Sebastian
    • 1
  • Majeti Narasimha Vara Prasad
    • 1
  1. 1.Department of Plant SciencesUniversity of HyderabadHyderabadIndia

Personalised recommendations