Agronomy for Sustainable Development

, Volume 33, Issue 4, pp 663–670 | Cite as

Food web-based simulation for agroecology

  • Philippe Tixier
  • Pierre-François Duyck
  • François-Xavier Côte
  • Geoffrey Caron-Lormier
  • Eric Malézieux
Review Article

Abstract

Ecosystems are increasingly manipulated for agricultural and conservation goals. Ecosystem functions need to be sustained socially and ecologically. New frameworks must be built to simulate agrosystems based on ecological processes instead of external chemicals. Food web structures of agrosystems highly influence their agronomical performance and stability. Although it has been observed that living communities are ruling the performance of agroecosystems, these living communities are generally ignored by agronomists who focused mainly on abiotic factors. Indeed, agronomists usually focus on the soil–plant–atmosphere continuum. Now, ecological modellers can link food web models with soil–plant models to create innovative frameworks. Here, we advocate that food webs must be included in simulations of production and in studies of emerging properties. We emphasize the role of trophic chains in the regulation of pests. Emerging properties include aboveground and belowground interactions, pest control, and positive feedbacks on soil properties. We propose a conceptual structure for this framework and discuss how the structure of linked food web/cropping system models can account for the specific properties of agroecosystems. The proposed structure includes a process-based approach to link food webs with crop models. Such comprehensive models address the issue of trade-offs between ecosystem services, including regulation of crop pests by the ecosystem community, nutrient cycling, and crop production.

Keywords

Agroecosystems Biological regulation Trophic interactions Agriculture sustainability Ecosystem services 

References

  1. Affholder F, Tittonell P, Corbeels M, Roux S, Motisi N, Tixier P, Wery J (2012) Ad hoc modeling in agronomy: what have we learned in the last 15 years? Agron J 104(3):735–748. doi: 10.2134/agronj2011.0376 CrossRefGoogle Scholar
  2. Allesina S, Pascual M (2009) Food web models: a plea for groups. Ecol Lett 12(7):652–662. doi: 10.1111/j.1461-0248.2009.01321.x PubMedCrossRefGoogle Scholar
  3. Benstead JP, March JG, Fry B, Ewel KC, Pringle CM (2006) Testing isosource: stable isotope analysis of a tropical fishery with diverse organic matter sources. Ecology 87(2):326–333. doi: 10.1890/05-0721 PubMedCrossRefGoogle Scholar
  4. Bezemer TM, De Deyn GB, Bossinga TM, Van Dam NM, Harvey JA, Van Der Putten WH (2005) Soil community composition drives aboveground plant–herbivore–parasitoid interactions. Ecol Lett 8(6):652–661. doi: 10.1111/j.1461-0248.2005.00762.x CrossRefGoogle Scholar
  5. Blanchart E, Marilleau N, Chotte JL, Drogoul A, Perrier E, Cambier C (2009) SWORM: an agent-based model to simulate the effect of earthworms on soil structure. Eur J Soil Sci 60(1):13–21. doi: 10.1111/j.1365-2389.2008.01091.x CrossRefGoogle Scholar
  6. Brussaard L, Caron P, Campbell B, Lipper L, Mainka S, Rabbinge R, Babin D, Pulleman M (2010) Reconciling biodiversity conservation and food security: scientific challenges for a new agriculture. Curr Opin Environ Sustain. doi: 10.1016/j.cosust.2010.03.007
  7. Brussaard L, Pulleman MM, Ouédraogo E, Mando A, Six J (2007) Soil fauna and soil function in the fabric of the food web. Pedobiologia 50(6):447–462. doi: 10.1016/j.pedobi.2006.10.007 CrossRefGoogle Scholar
  8. Cardinale BJ, Harvey CT, Gross K, Ives AR (2003) Biodiversity and biocontrol: emergent impacts of a multi-enemy assemblage on pest suppression and crop yield in an agroecosystem. Ecol Lett 6(9):857–865. doi: 10.1046/j.1461-0248.2003.00508.x CrossRefGoogle Scholar
  9. Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443(7114):989–992. doi: 10.1038/nature0520 PubMedCrossRefGoogle Scholar
  10. Caron-Lormier G, Bohan DA, Hawes C, Raybould A, Haughton AJ, Humphry RW (2009) How might we model an ecosystem? Ecol Model 220(17):1935–1949. doi: 10.1016/j.ecolmodel.2009.04.021 CrossRefGoogle Scholar
  11. Cock MJW, Biesmeijer JC, Cannon RJC, Gerard PJ, Gillespie D, Jimenez JJ, Lavelle PM, Raina SK (2012) The positive contribution of invertebrates to sustainable agriculture and food security. CAB Reviews: Perspectives in agriculture, veterinary science, nutrition and natural resources 7. doi:  10.1079/pavsnnr20127043
  12. Crowder DW, Northfield TD, Strand MR, Snyder WE (2010) Organic agriculture promotes evenness and natural pest control. Nature 466(7302):109–U123. doi: 10.1038/nature09183 PubMedCrossRefGoogle Scholar
  13. Daufresne T, Loreau M (2001) Ecological stoichiometry, primary producer-decomposer interactions, and ecosystem persistence. Ecology 82(11):3069–3082. doi: 10.1890/0012-9658(2001)082[3069:ESPPDI]2.0.CO;2 Google Scholar
  14. De Deyn GB, Van Ruijven J, Raaijmakers CE, De Ruiter PC, Van Der Putten WH (2007) Above- and belowground insect herbivores differentially affect soil nematode communities in species-rich plant communities. Oikos 116(6):923–930. doi: 10.1111/j.2007.0030-1299.15761x CrossRefGoogle Scholar
  15. De Ruiter PC, Neutel AM, Moore JC (1994) Modelling food webs and nutrient cycling in agro-ecosystems. Trends Ecol Evol 9(10):378–383. doi: 10.1016/0169-5347(94)90059-0 PubMedCrossRefGoogle Scholar
  16. De Ruiter PC, Neutel AM, Moore JC (1995) Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269(5228):1257–1260. doi: 10.1126/science.269.5228.1257 PubMedCrossRefGoogle Scholar
  17. De Ruiter PC, Neutel AM, Moore JC (1998) Biodiversity in soil ecosystems: the role of energy flow and community stability. Appl Soil Ecol 10(3):217–228. doi: 10.1016/S0929-1393(98)00121-8 CrossRefGoogle Scholar
  18. De Ruiter PC, Wolters V, Moore JC, Winemiller KO (2005) Food web ecology: playing Jenga and beyond. Science 309(5731):68–71. doi: 10.1126/science.1096112 PubMedCrossRefGoogle Scholar
  19. Díaz S, Fargione J, Chapin FS, Tilman D (2006) Biodiversity loss threatens human well-being. PLoS Biology 4(8):1300–1305. doi: 10.1371/journal.pbio.0040277 CrossRefGoogle Scholar
  20. Djigal D, Chabrier C, Duyck PF, Achard R, Quénéhervé P, Tixier P (2012) Cover crops alter the soil nematode food web in banana agroecosystems. Soil Biol Biochem 48(2):142–150. doi: 10.1016/j.soilbio.2012.01.026 CrossRefGoogle Scholar
  21. Duyck PF, Lavigne A, Vinatier F, Achard R, Okolle JN, Tixier P (2011) Addition of a new resource in agroecosystems: do cover crops alter the trophic positions of generalist predators? Basic Appl Ecol 12(1):47–55. doi: 10.1016/j.baae.2010.11.009 CrossRefGoogle Scholar
  22. Fontaine C, Dajoz I, Meriguet J, Loreau M (2006) Functional diversity of plant-pollinator interaction webs enhances the persistence of plant communities. PLoS Biol 4(1):0129–0135. doi: 10.1371/journal.pbio.0040001 CrossRefGoogle Scholar
  23. Goudard A, Loreau M (2008) Nontrophic interactions, biodiversity, and ecosystem functioning: an interaction web model. Am Nat 171(1):91–106. doi: 10.1086/523945 PubMedCrossRefGoogle Scholar
  24. Gutierrez AP, Baumgärtner J (2007) Perspectives in ecological theory and integrated pest Management. In: Kogan M, Jepson P (eds) Perspectives in ecological theory and integrated pest Management. Cambridge University Press, Cambridge, pp 301–360. doi: 10.1017/CBO9780511752353.011 CrossRefGoogle Scholar
  25. Hartemink AE (2005) Nutrient stocks, nutrient cycling, and soil changes in cocoa ecosystems: a review. In: Sparks DL (ed) Advances in agronomy. Elsevier Academic Press, San Diego, pp 227–253. doi: 10.1016/S0065-2113(05)86005-5 Google Scholar
  26. Holyoak M, Loreau M (2006) Reconciling empirical ecology with neutral community models. Ecology 87(6):1370–1377. doi: 10.1890/0012-9658(2006)87[1370:REEWNC]2.0.CO;2 PubMedCrossRefGoogle Scholar
  27. Hooper DU, Chapin Iii FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, SetaÌä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35. doi: 10.1890/04-0922 CrossRefGoogle Scholar
  28. Huang C-Y, Hendrix PF, Fahey TJ, Bohlen PJ, Groffman PM (2010) A simulation model to evaluate the impacts of invasive earthworms on soil carbon dynamics. Ecol Model 221(20):2447–2457. doi: 10.1016/j.ecolmodel.2010.06.023 CrossRefGoogle Scholar
  29. Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT (2003) The DSSAT cropping system model. Eur J Agron 18(3–4):235–265. doi: 10.1016/S1161-0301(02)00107-7 CrossRefGoogle Scholar
  30. Jouquet P, Dauber J, Lagerlöf J, Lavelle P, Lepage M (2006) Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops. Appl Soil Ecol 32(2):153–164. doi: 10.1016/j.apsoil.2005.07.004 CrossRefGoogle Scholar
  31. Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Hargreaves JNG, Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes JP, Silburn M, Wang E, Brown S, Bristow KL, Asseng S, Chapman S, McCown RL, Freebairn DM, Smith CJ (2003) An overview of APSIM, a model designed for farming systems simulation. Eur J Agron 18(3–4):267–288. doi: 10.1016/S1161-0301(02)00108-9 CrossRefGoogle Scholar
  32. Laliberté E, Tylianakis JM (2012) Cascading effects of long-term land-use changes on plant traits and ecosystem functioning. Ecology 93(1):145–155. doi: 10.1890/11-0338.1 PubMedCrossRefGoogle Scholar
  33. Lewis WJ, Van Lenteren JC, Phatak SC, Tumlinson Iii JH (1997) A total system approach to sustainable pest management. Proc Natl Acad Sci USA 94(23):12243–12248. doi: 10.1073/pnas.94.23.12243 PubMedCrossRefGoogle Scholar
  34. Loreau M, Holt RD (2004) Spatial flows and the regulation of ecosystems. Am Nat 163(4):606–615. doi: 10.1086/382600 PubMedCrossRefGoogle Scholar
  35. Malézieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, De Tourdonnet S, Valantin-Morison M (2009) Mixing plant species in cropping systems: concepts, tools and models. A review. Agron Sustain Dev 29(1):43–62. doi: 10.1051/agro:2007057 CrossRefGoogle Scholar
  36. Mollot G, Tixier P, Lescourret F, Quilici S, Duyck P-F (2012) New primary resource increases predation on a pest in a banana agroecosystem. Agric Forest Entomol, no-no. doi: 10.1111/j.1461-9563.2012.00571.x
  37. Moore JC, McCann K, De Ruiter PC (2005) Modeling trophic pathways, nutrient cycling, and dynamic stability in soils. Pedobiologia 49(6):499–510. doi: 10.1016/j.pedobi.2005.05.008 CrossRefGoogle Scholar
  38. Neutel AM, Heesterbeek JAP, Van De Koppel J, Hoenderboom G, Vos A, Kaldeway C, Berendse F, De Ruiter PC (2007) Reconciling complexity with stability in naturally assembling food webs. Nature 449(7162):599–602. doi: 10.1038/nature06154 PubMedCrossRefGoogle Scholar
  39. Nóia M, Borges I, Soares AO (2008) Intraguild predation between the aphidophagous ladybird beetles Harmonia axyridis and Coccinella undecimpunctata (Coleoptera: Coccinellidae): the role of intra and extraguild prey densities. Biol Control 46(2):140–146. doi: 10.1016/j.biocontrol.2008.03.004 CrossRefGoogle Scholar
  40. Pauly D, Christensen V, Walters C (2000) Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES J Mar Sci 57(3):697–706. doi: 10.1006/jmsc.2000.0726 CrossRefGoogle Scholar
  41. Pelosi C, Bertrand M, Makowski D, Roger-Estrade J (2008) WORMDYN: a model of Lumbricus terrestris population dynamics in agricultural fields. Ecol Model 218(3–4):219–234. doi: 10.1016/j.ecolmodel.2008.07.002 CrossRefGoogle Scholar
  42. Pompanon F, Deagle B, Symondson W, Brown D, Jarman S, Taberlet P (2011) Who is eating what: diet assessment using next generation sequencing. Mol Ecol. doi: 10.1111/j.1365-294X.2011.05403.x
  43. Ponsard S, Arditi R (2000) What can stable isotopes (δ15N and δ13C) tell about the food web of soil macro-invertebrates? Ecology 81(3):852–864. doi: 10.1890/0012-9658(2000)081[0852:WCSINA]2.0.CO;2 Google Scholar
  44. Postma-Blaauw MB, Bloem J, Faber JH, van Groenigen JW, de Goede RGM, Brussaard L (2006) Earthworm species composition affects the soil bacterial community and net nitrogen mineralization. Pedobiologia 50(3):243–256. doi: 10.1016/j.pedobi.2006.02.001 CrossRefGoogle Scholar
  45. Powell JR (2007) Linking soil organisms within food webs to ecosystem functioning and environmental change. Adv Agron 96:307–350. doi: 10.1016/S0065-2113(07)96007-1 CrossRefGoogle Scholar
  46. Rabbinge R, van Laar HH (1989) Simulation and systems management in crop protection. Wageningen, The Netherlands. ISBN 90-220-0899-1Google Scholar
  47. Ripoche A, Achard R, Laurens A, Tixier P (2012) Modeling spatial partitioning of light and nitrogen resources in banana cover-cropping systems. Eur J Agron 41:81–91. doi: 10.1016/j.eja.2012.04.001 CrossRefGoogle Scholar
  48. Roy HE, Baverstock J, Ware RL, Clark SJ, Majerus MEN, Baverstock KE, Pell JK (2008) Intraguild predation of the aphid pathogenic fungus Pandora neoaphidis by the invasive coccinellid Harmonia axyridis. Ecol Entomol 33(2):175–182. doi: 10.1111/j.1365-2311.2007.00954.x CrossRefGoogle Scholar
  49. Scherber C, Eisenhauer N, Weisser WW, Schmid B, Voigt W, Fischer M, Schulze ED, Roscher C, Weigelt A, Allan E, Beler H, Bonkowski M, Buchmann N, Buscot F, Clement LW, Ebeling A, Engels C, Halle S, Kertscher I, Klein AM, Koller R, König S, Kowalski E, Kummer V, Kuu A, Lange M, Lauterbach D, Middelhoff C, Migunova VD, Milcu A, Müller R, Partsch S, Petermann JS, Renker C, Rottstock T, Sabais A, Scheu S, Schumacher J, Temperton VM, Tscharntke T (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468(7323):553–556. doi: 10.1038/nature09492 PubMedCrossRefGoogle Scholar
  50. Schröter D, Brussaard L, De Deyn G, Poveda K, Brown VK, Berg MP, Wardle DA, Moore J, Wall DH (2004) Trophic interactions in a changing world: modelling aboveground-belowground interactions. Basic Appl Ecol 5(6):515–528. doi: 10.1016/j.baae.2004.09.006 CrossRefGoogle Scholar
  51. Soler R, Bezemer TM, Van Der Putten WH, Vet LEM, Harvey JA (2005) Root herbivore effects on above-ground herbivore, parasitoid and hyperparasitoid performance via changes in plant quality. J Anim Ecol 74(6):1121–1130. doi: 10.1111/j.1365-2656.2005.01006.x CrossRefGoogle Scholar
  52. Sun C, Loreau M (2009) Dynamics of a three-species food chain model with adaptive traits. Chaos, Solitons Fractals 41(5):2812–2819. doi: 10.1016/j.chaos.2008.10.015 CrossRefGoogle Scholar
  53. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677. doi: 10.1038/nature01014 PubMedCrossRefGoogle Scholar
  54. Tixier P, Risede JM, Dorel M, Malézieux E (2006) Modelling population dynamics of banana plant-parasitic nematodes: a contribution to the design of sustainable cropping systems. Ecol Model 198(3–4):321–331. doi: 10.1016/j.ecolmodel.2006.05.003 CrossRefGoogle Scholar
  55. Tylianakis JM, Rand TA, Kahmen A, Klein AM, Buchmann N, Perner J, Tscharntke T (2008) Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. PLoS Biol 6(5):0947–0956. doi: 10.1371/journal.pbio.0060122 CrossRefGoogle Scholar
  56. Van Der Putten WH, Bardgett RD, De Ruiter PC, Hol WHG, Meyer KM, Bezemer TM, Bradford MA, Christensen S, Eppinga MB, Fukami T, Hemerik L, Molofsky J, SchÃdler M, Scherber C, Strauss SY, Vos M, Wardle DA (2009) Empirical and theoretical challenges in aboveground-belowground ecology. Oecologia 161(1):1–14. doi: 10.1007/s00442-009-1351-8 PubMedCrossRefGoogle Scholar
  57. Wardle DA, Bardgett RD, Klironomos JN, Setala H, Van Der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304(5677):1629–1633. doi: 10.1126/science.1094875 PubMedCrossRefGoogle Scholar
  58. Whitfield J (2007) Fungal roles in soil ecology: underground networking. Nature 449(7159):136–138. doi: 10.1038/449136a PubMedCrossRefGoogle Scholar
  59. Willocquet L, Aubertot JN, Lebard S, Robert C, Lannou C, Savary S (2008) Simulating multiple pest damage in varying winter wheat production situations. Field Crops Res 107(1):12–28. doi: 10.1016/j.fcr.2007.12.013 CrossRefGoogle Scholar
  60. Wise DH, Moldenhauer DM, Halaj J (2006) Using stable isotopes to reveal shifts in prey consumption by generalist predators. Ecol Appl 16(3):865–876. doi: 10.1890/1051-0761(2006)016[0865:USITRS]2.0.CO;2 PubMedCrossRefGoogle Scholar
  61. Worm B, Duffy JE (2003) Biodiversity, productivity and stability in real food webs. Trends Ecol Evol 18(12):628–632. doi: 10.1016/j.tree.2003.09.003 CrossRefGoogle Scholar
  62. Wright JP, Naeem S, Hector A, Lehman C, Reich PB, Schmid B, Tilman D (2006) Conventional functional classification schemes underestimate the relationship with ecosystem functioning. Ecol Lett 9(2):111–120. doi: 10.1111/j.1461-0248.2005.00850.x PubMedCrossRefGoogle Scholar
  63. Zhang K, Yang D, Greenwood DJ, Rahn CR, Thorup-Kristensen K (2009) Development and critical evaluation of a generic 2-D agro-hydrological model (SMCR_N) for the responses of crop yield and nitrogen composition to nitrogen fertilizer. Agric Ecosyst Environ 132(1–2):160–172. doi: 10.1016/j.agee.2009.03.011 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2013

Authors and Affiliations

  • Philippe Tixier
    • 1
    • 2
  • Pierre-François Duyck
    • 1
    • 6
  • François-Xavier Côte
    • 3
  • Geoffrey Caron-Lormier
    • 4
  • Eric Malézieux
    • 5
  1. 1.CIRAD, UPR 26Le LamentinFrance
  2. 2.Departamento de Agricultura y AgroforesteriaCATIETurrialbaCosta Rica
  3. 3.CIRAD, Département PersystMontpellierFrance
  4. 4.Computational and Systems BiologyRothamsted ResearchHarpenden, HertsUK
  5. 5.CIRAD, UPR HortSys 103Montpellier cedex 5France
  6. 6.CIRAD, UMR PVBMT, CIRAD / Université de La Réunion, Pôle de Protection des PlantesSaint-PierreFrance

Personalised recommendations