Agronomy for Sustainable Development

, Volume 33, Issue 3, pp 519–530 | Cite as

Cultivar diversity has great potential to increase yield of feed barley

  • Sari J. Himanen
  • Elise Ketoja
  • Kaija Hakala
  • Reimund P. Rötter
  • Tapio Salo
  • Helena Kahiluoto
Research Article


This study shows an average yield increase of 415–1,338 kg ha−1 per unit increase of the Shannon diversity index for feed barley cultivar use. There is a global quest to increase food production sustainably. Therefore, judicious farmer choices such as selection of crop cultivars are increasingly important. Cultivar diversity is limited and, as a consequence, corresponding crop yields are highly impacted by local weather variations and global climate change. Actually, there is little knowledge on the relationships between yields of regional crops and cultivar diversity, that is evenness and richness in cultivar use. Here, we hypothesized that higher cultivar diversity is related to higher regional yield. We also assumed that the diversity-yield relationship depends on weather during the growing season. Our data were based on farm yield surveys of feed and malting barley, Hordeum vulgare L.; spring wheat, Triticum aestivum L.; and spring turnip rape, Brassica rapa L. ssp. oleifera, from 1998 to 2009, representing about 4,500–5,500 farms annually. We modeled the relationships between regional yields and Shannon diversity indices in high-yielding (south-west) and low-yielding (central-east) regions of Finland using linear mixed models. Our results show that an increase of Shannon diversity index increases yield of feed barley. Feed barley had also the greatest cultivar diversity. In contrast, an average yield decrease of 1,052 kg ha−1 per unit increase in Shannon index was found for spring rape in 2006 and 2008. Our findings show that cultivar diversification has potential to raise mean regional yield of feed barley. Increasing cultivar diversity thus offers a novel, sustainability-favoring means to promote higher yields.


Crop cultivar Diversity Environmental responses Regional yields Yield security 



This study was funded by the Finnish Ministry of Agriculture and Forestry, ISTO programme (Enhancing Adaptive Capacity of Finnish Agrifood Systems (ADACAPA) project) and MTT Agrifood Research Finland. We thank Jonathan Robinson for language revision.


  1. Adger WN, Agrawala S, Mirza MMQ, Conde C, O’Brien K, Pulhin J, Pulwarty R, Smit B, Takahashi K (2007) Assessment of adaptation practices, options, constraints and capacity. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 717–743Google Scholar
  2. Andersen E, Elbersen B, Godeschalk F, Verhoog D (2007) Farm management indicators and farm typologies as a basis for assessments in a changing policy environment. J Environ Manag 82:353–362. doi: 10.1016/j.jenvman.2006.04.021 CrossRefGoogle Scholar
  3. Asrat S, Yesuf M, Carlsson F, Wale E (2010) Farmers’ preferences for crop variety traits: lessons for on-farm conservation and technology adoption. Ecol Econ 69:2394–2401. doi: 10.1016/j.ecolecon.2010.07.006 CrossRefGoogle Scholar
  4. Beniston M, Stephenson DB, Christensen OB et al (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Chang 81:71–95. doi: 10.1007/s10584-006-9226-z CrossRefGoogle Scholar
  5. Bennett EM, Peterson GD, Gordon LJ (2009) Understanding relationships among multiple ecosystem services. Ecol Lett 12:1394–1404. doi: 10.1111/j.1461-0248.2009.01387.x PubMedCrossRefGoogle Scholar
  6. Brussaard L, de Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ 121:233–244. doi: 10.1016/j.agee.2006.12.013 CrossRefGoogle Scholar
  7. Elmqvist T, Folke C, Nyström M, Peterson G, Bengtsson J, Walker B, Norberg J (2003) Response diversity, ecosystem change, and resilience. Front Ecol Environ 1:488–494. doi: 10.2307/3868116 CrossRefGoogle Scholar
  8. Essah SYC, Stoskopf NC (2002) Mixture performance of phenotypically contrasting barley cultivars. Can J Plant Sci 82:1–6CrossRefGoogle Scholar
  9. Glinwood R, Ahmed E, Qvarfordt E, Ninkovic V, Pettersson J (2009) Airborne interactions between undamaged plants of different cultivars affect insect herbivores and natural enemies. Arthropod-Plant Interact 3:215–224. doi: 10.1007/s11829-009-9072-9 CrossRefGoogle Scholar
  10. Hakala K, Jauhiainen L, Himanen SJ, Rötter R, Salo T, Kahiluoto H (2012) Sensitivity of barley varieties to weather in Finland. J Agric Sci 150:145–160. doi: 10.1017/S0021859611000694 PubMedCrossRefGoogle Scholar
  11. Helland SJ, Holland JB (2001) Blend response and stability and cultivar blending ability in oat. Crop Sci 41:1689–1696CrossRefGoogle Scholar
  12. Howden SM, Soussana J-F, Tubiello FN, Chhetri N, Dunlop M, Meinke H (2007) Adapting agriculture to climate change. Proc Natl Acad Sci U S A 104:19691–19696. doi: 10.1073/pnas.0701890104 PubMedCrossRefGoogle Scholar
  13. Jackson LE, Pascual U, Hodgkin T (2007) Utilizing and conserving agrobiodiversity in agricultural landscapes. Agric Ecosyst Environ 121:196–210. doi: 10.1016/j.agee.2006.12.017 CrossRefGoogle Scholar
  14. Jarvis DI, Brown AHD, Hung Cuong P et al (2008) A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proc Natl Acad Sci U S A 105:5326–5331. doi: 10.1073/pnas.0800607105 PubMedCrossRefGoogle Scholar
  15. Kenward MG, Roger JH (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53:983–997. doi: 10.2307/2533558 PubMedCrossRefGoogle Scholar
  16. Kiaer LP, Skovgaard IM, Ostergård H (2009) Grain yield increase in cereal variety mixtures: a meta-analysis of field trials. Field Crops Res 114:361–373. doi: 10.1016/j.fcr.2009.09.006 CrossRefGoogle Scholar
  17. Letourneau DK, Armbrecht I, Rivera BS et al (2011) Does plant diversity benefit agroecosystems? A synthetic review. Ecol Appl 21:9–21. doi: 10.1890/09-2026.1 PubMedCrossRefGoogle Scholar
  18. Lin BB (2011) Resilience in agriculture through crop diversification: adaptive management for environmental change. Bioscience 61:183–193. doi: 10.l525/bio.2011.61.3 CrossRefGoogle Scholar
  19. Milliken GA, Johnson DE (2002) Analysis of messy data, volume 3: analysis of covariance. Chapman & Hall, LondonGoogle Scholar
  20. Mundt CC (2002) Use of multiline cultivars and cultivar mixtures for disease management. Annu Rev Phytopathol 40:381–410. doi: 10.1146/annurev.phyto.40.011402.113723 PubMedCrossRefGoogle Scholar
  21. Peltonen-Sainio P, Jauhiainen L, Hannukkala A (2007) Declining rapeseed yields in Finland: how, why and what next? J Agric Sci 145:587–598. doi: 10.1017/S0021859607007381 CrossRefGoogle Scholar
  22. Peltonen-Sainio P, Jauhiainen L, Hakala K, Ojanen H (2009) Climate change and prolongation of growing season: changes in regional potential for field crop production in Finland. Agric Food Sci 18:171–190CrossRefGoogle Scholar
  23. Rajala A, Hakala K, Mäkelä P, Peltonen-Sainio P (2011) Drought effect on grain number and grain weight at spike and spikelet level in six-row spring barley. J Agron Crop Sci 197:103–112. doi: 10.1111/j.1439-037X.2010.00449.x CrossRefGoogle Scholar
  24. Reidsma P, Ewert F (2008) Regional farm diversity can reduce vulnerability of food production to climate change. Ecol Soc 13:38Google Scholar
  25. SAS Institute Inc. (2009) SAS/STAT ® 9.2User’s Guide, 2nd edn. SAS Institute Inc, CaryGoogle Scholar
  26. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423, 623–656Google Scholar
  27. Smith RG, Gross KL, Robertson GP (2008) Effects of crop diversity on agroecosystem function: crop yield response. Ecosystems 11:355–366. doi: 10.1007/s10021-008-9124-5 CrossRefGoogle Scholar
  28. Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845. doi: 10.1126/science.1060391 PubMedCrossRefGoogle Scholar
  29. Tilman D, Reich PB, Knops JMH (2006) Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629–632. doi: 10.1038/nature04742 PubMedCrossRefGoogle Scholar
  30. Tukey JW (1977) Exploratory data analysis. Addison-Wesley, ReadingGoogle Scholar
  31. Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci U S A 96:1463–1468. doi: 10.1073/pnas.96.4.1463 PubMedCrossRefGoogle Scholar
  32. Zhu Y, Chen H, Fan J et al (2000) Genetic diversity and disease control in rice. Nature 406:718–722. doi: 10.1038/35021046 Google Scholar

Copyright information

© INRA and Springer-Verlag France 2012

Authors and Affiliations

  • Sari J. Himanen
    • 1
  • Elise Ketoja
    • 2
  • Kaija Hakala
    • 3
  • Reimund P. Rötter
    • 1
  • Tapio Salo
    • 3
  • Helena Kahiluoto
    • 1
  1. 1.MTT Agrifood Research Finland, Plant Production ResearchMikkeliFinland
  2. 2.MTT Agrifood Research Finland, Biotechnology and Food ResearchJokioinenFinland
  3. 3.MTT Agrifood Research Finland, Plant Production ResearchJokioinenFinland

Personalised recommendations