Advertisement

Agronomy for Sustainable Development

, Volume 33, Issue 1, pp 113–130 | Cite as

Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review

  • Eric ScopelEmail author
  • Bernard Triomphe
  • François Affholder
  • Fernando Antonio Macena Da Silva
  • Marc Corbeels
  • José Humberto Valadares Xavier
  • Rabah Lahmar
  • Sylvie Recous
  • Martial Bernoux
  • Eric Blanchart
  • Ieda de Carvalho Mendes
  • Stéphane De Tourdonnet
Review Article

Abstract

Nowadays, in a context of climate change, economical uncertainties and social pressure to mitigate agriculture externalities, farmers have to adopt new cropping systems to achieve a sustainable and cost-effective grain production. Conservation agriculture consists of a range of cropping systems based on a combination of three main principles: (1) soil tillage reduction, (2) soil protection by organic residues and (3) diversification in crop rotation. Conservation agriculture has been promoted as a way to reduce production costs, soil erosion and soil fertility degradation under both tropical and temperate conditions. Conservation agriculture-based cropping systems have diffused widely under Brazilian large-scale farms’ conditions and more recently in Europe in the context of medium-size mechanized farms. Their diffusion, however, is still limited under small-scale non-mechanized farms’ conditions of tropical countries. To assess the advantages and limits of such new cropping systems, this article compares experiences with conservation agriculture from the tropical Cerrado region of Brazil and from temperate conditions of Europe. It focusses on agronomic performances, environmental impacts and economical results. Conservation agriculture systems appear to be interesting options to achieve sustainable and intensive crop production under different agroecological environments because they use efficiently available resources and maintain soil fertility. However, this mostly results from the permanent presence of an organic mulch on the soil surface and the incorporation of cover crops in the rotations. Such modifications require a significant reorganization of the production process at farm level, and when facing technical or socioeconomic constraints, most farmers usually opt for applying only partially the three main principles of conservation agriculture. Investigating more fully the consequences of such partial implementation of conservation agriculture principles on its actual efficiency and assessing the most efficient participatory approaches needed to adapt conservation agriculture principles to local conditions and farming systems are top priorities for future research.

Keywords

Soil fertility Soil biology Biodiversity Ecological processes Environmental services Cover crops Grain production Farming systems Brazil Europe 

Notes

Acknowledgments

This work was partly funded by the Agence Nationale de la Recherche under the Systerra Program: ANR-08-STRA-10 (Ecological, technical and social innovation processes in Conservation Agriculture).

References

  1. Abiven S, Recous S (2007) Mineralisation of crop residues on the soil surface or incorporated in the soil under controlled conditions. Biol Fert Soils 43(6):849–852. doi: 10.1007/s00374-007-0165-2 Google Scholar
  2. Affholder F, Jourdain D, Quang DD, Tuong TP, Morize M, Ricome A (2010) Constraints to farmers’ adoption of direct-seeding mulch-based cropping systems: a farm scale modeling approach applied to the mountainous slopes of Vietnam. Agr Syst 103(1):51–62. doi: 10.1016/j.agsy.2009.09.001 Google Scholar
  3. Agreste (2008) Dans le sillon du non-labour. Agreste Primeur n°207, février 2008, 4p. http://www.agreste.agriculture.gouv.fr/IMG/pdf/primeur207.pdf
  4. Ahl C, Joergensen RG, Kandeler E, Meyer B, Woehler V (1998) Microbial biomass and activity in silt and sand loams after long-term shallow tillage in central Germany. Soil Till Res 49:93–104. doi: 10.1016/S0167-1987(98)00166-4 Google Scholar
  5. Alvarez S (2007) Intérêt de l’introduction des systèmes de culture sous couvert végétal (SCV) : approche par la modélisation économique pour les exploitations issues de la Réforme Agraire dans les Cerrados, Brésil. Master Thesis of SupAgro Montpellier, France, 68pGoogle Scholar
  6. Alves MC, Cabeda MSV (1999) Infiltracao de agua em um Podzolico Vermelho-Escuro sob dois metodos de preparo, usando chuva simulada com duas intensidades. Rev Bras Cienc Solo 23(4):753–761Google Scholar
  7. Andersen A (1999) Plant protection in spring cereal production with reduced tillage. II. Pests and beneficial insects. Crop Prot 18:651–657. doi: 10.1016/S0261-2194(99)00071-X Google Scholar
  8. Anderson S, Güendel S, Pound B, Triomphe B (2001) Cover crops in smallholder agriculture: lessons from Latin America. IT, LondonGoogle Scholar
  9. Arrouays D, Balesdent J, Germon JC, Jayet PA, Soussana JF, Stengel P (2002) Stocker du carbone dans les sols agricoles en France? Contribution à la lute contre l’effet de serre. Expertise scientifique collective réalisée par l’INRA à la demande du MEDDGoogle Scholar
  10. Balabane M, Bureau F, Decaens T, Akpa M, Hedde M, Laval K, Puget P, Pawlak P, Barray SA, Cluzeau D, Labreuche J, Bodet JM, Le Bissonnais Y, Saulas P, Bertrand M, Guichard L, Picard D, Houot S, Arrouays D, Brygoo Y, Chenu C (2005) Restauration de fonctions et propriétés des sols de grandes cultures intensives. Effets de systèmes de culture alternatifs sur les matières organiques et la structure des sols limoneux et approche du rôle fonctionnel de la diversité biologique des sols. Demostra. Answer to MATE call, INRAGoogle Scholar
  11. Balde AB, Scopel E, Affholder F, Corbeels M, Da Silva FAM, Xavier JHV, Wery J (2011) Agronomic performance of no-tillage relay intercropping with maize under smallholder conditions in Central Brazil. Field Crop Res 124:240–251. doi: 10.1016/j.fcr.2011.06.017 Google Scholar
  12. Balesdent J (2002) Estimations chiffrées, par unité de surface, du stockage de carbone dans le sol associé aux changements de pratiques agricoles. In: Arrouays D, Balesdent J, Germon JC, Jayet PA, Soussana JF, Stengel P (eds) Stocker du carbone dans les sols agricoles de France? Contribution à la lutte contre l’effet de serre. Expertise Collective INRA, Paris, pp 115–200Google Scholar
  13. Balesdent J, Chenu C, Balabane M (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Till Res 53:215–230. doi: 10.1016/S0167-1987(99)00107-5 Google Scholar
  14. Balota EL, Colozzi Filho A, Andrade DS, Dick RP (2004) Long-term tillage and crop rotation effects on microbial biomass and C and N mineralization in a Brazilian Oxisol. Soil Till Res 77(2):137–145. doi: 10.1016/j.still.2003.12.003 Google Scholar
  15. Barthès B, Azontonde A, Blanchart E, Girardin C, Villenave C, Oliver R, Feller C (2005) Effect of a legume cover crop on carbon storage and erosion in an Ultisol under maize cultivation in southern Benin. In: Roose E, Lal R, Feller C, Barthès B, Stewart B (eds) Soil erosion and carbon dynamics. Advances in soil science. CRC, Boca Raton, pp 143–155Google Scholar
  16. Baudron F, Mwanza HM, Triomphe B, Bwalya M (2007) Conservation agriculture in Zambia: A case study of southern province. Conservation agriculture in Africa series. African Conservation Tillage Network, CIRAD and FAO, Nairobi, 28 pGoogle Scholar
  17. Bayer C, Mielniczuk J (1999) Dinâmica e função da matéria orgânica. In: Santos GA, Camargo FAO (eds) Fundamentos da matéria orgânica do solo: ecossistemas tropicais e subtropicais. Genesis, Porto Alegre, pp 9–26Google Scholar
  18. Bayer C, Martin-Neto L, Mielniczuk J, Pavinato A (2004) Armazenamento de carbono em frações lábeis da matéria orgânica de um Latossolo Vermelho sob plantio direto. Pesq Agropec Bras 39:677–683. doi: 10.1590/S0100-204X2004000700009 Google Scholar
  19. Benites JR, Ashburner JE (2001). FAO’s role in promoting conservation agriculture. Conservation agriculture, a worldwide challenge. In Garcia-Torres L, Benites JR, Martinez Vilela A (eds) First World Congress on conservation agriculture proceedings, Madrid, Spain, 1–5 October 2001. Volume 1: keynote contributions, pp 133–147Google Scholar
  20. Benites JR, Derpsch R, Mc Garry D (2003). The current status and future growth potential of Conservation Agriculture in the world context. In: “Soil Management for sustainability”. Proceedings of the 16th ISTRO conference, Brisbane, Australia, 13–18 July, pp 118–129Google Scholar
  21. Bernoux M, Cerri CC, Cerri CEP, Siqueira Neto M, Metay A, Perrin AS, Scopel E, Blavet D, Piccolo MC, Pavei M, Milne E (2006) Cropping systems, carbon sequestration and erosion in Brazil, a review. Agron Sustain Dev 26:1–8. doi: 10.1051/agro:2005055 Google Scholar
  22. Bertol I, Cogo NP, Levien R (1997) Erosao hidrica em diferentes preparos do solo logo apos as colheitas de milho e trigo, na presenca e na ausencia dos residuos culturais. Rev Bras Cienc Solo 21(3):409–418Google Scholar
  23. Bertol I, Leite D, Zoldan Junior WA (2004) Decomposicao do residuo de milho e variaveis relacionadas. Rev Bras Cienc Solo 28(2):369–375Google Scholar
  24. Bertrand M, Guichard L, De Tourdonnet S, Saulas P, Picard D (2005) Evaluation of the agronomic, economic and environmental impacts of no-tillage cropping systems. Results of a long-term experiment in France. In: ACT Productions (ed) Proceedings of the third World Congress on Conservation Agriculture, Nairobi (Kenya)Google Scholar
  25. Blanchart E, Albrecht A, Chevallier T, Hartmann C (2004) The respective roles of biota (roots and earthworms) in the restoration of physical properties in vertisol under a Digitaria decumbens pasture (Martinique). Agr Ecosyst Environ 103:343–355. doi: 10.1016/j.agee.2004.01.031 Google Scholar
  26. Blanchart E, Villenave C, Viallatoux A, Barthès B, Girardin C, Azontonde A, Feller C (2006) Long-term effect of a legume cover crop (Mucuna pruriens var. utilis) on the communities of soil macrofauna and nematofauna, under maize cultivation, in southern Benin. Eur J Soil Biol 42:136–144. doi: 10.1016/j.ejsobi.2006.07.018 Google Scholar
  27. Blanchart E, Bernoux M, Sarda X, Siqueira Neto M, Cerri CC, Piccolo M, Douzet JM, Scopel E, Feller C (2007) Effect of direct seeding mulch-based systems on soil carbon storage and macrofauna in central Brazil. Agric Conspec Sci 72:81–87Google Scholar
  28. Bolliger A, Magid J, Amado JCT, Skora Neto F, Ribeiro MFDS, Calegari A, Ralisch R, De Neergaard A (2006) Taking stock of the Brazilian “Zero-Till Revolution”: a review of landmark research and farmers’ practice. Adv Agron 91:47–110. doi: 10.1016/S0065-2113(06)91002-5 Google Scholar
  29. Bonafos A, Le Bissonnais Y, Ouvry JF (2007) Impact des Techniques Culturales Sans Labour sur le ruissellement et l’érosion. Rapport projet ADEME ‘Impacts environnementaux des TCSL’, 73 pGoogle Scholar
  30. Borges CD, Silva RF, Roscoe R, Mercante FM (2007) Dinâmica do carbono da biomassa microbiana do solo em diferentes sistemas de manejo agrícola. In: XXXI Congresso Brasileiro de Ciência do Solo, 2007, Gramado, RS, v. CD-ROMGoogle Scholar
  31. Brandsaeter LO, Netland J, Meadow R (1998) Yields, weeds, pests and soil nitrogen in a white cabbage living mulch system. Biol Agric Hortic 16:291–309Google Scholar
  32. Breland TA (1995) Green manuring with clover and ryegrass catch crops undersown in spring wheat: effects on soil structure. Soil Use Manage 11(4):163–167Google Scholar
  33. Breland TA (1996) Green manuring with clover and ryegrass catch crops undersown in small grains: crop development and yields. Acta Agric Scand Sec B Plant Soil Sci 46(1):30–40Google Scholar
  34. Brevault T, Bikay S, Maldes JM, Naudin K (2007) Impact of a no-till with mulch soil management strategy on soil macrofauna communities in a cotton cropping system. Soil Till Res 97:140–149. doi: 10.1016/j.still.2007.09.006 Google Scholar
  35. Brown GG, Pasini A, Benito NP, De Aquino AM, Correia MEF (2001) Diversity and functional role of soil macrofauna communities in Brazilian no-tillage agroecosystems: a preliminary analysis. In: International symposium on managing biodiversity in agricultural ecosystems, Montreal, Canada, 8–10 November 2001Google Scholar
  36. Bustamante MMC, Corbeels M, Scopel E, Roscoe R (2006) Soil carbon storage and sequestration potential in the Cerrado region of Brazil. In: Lal R, Cerri CC, Bernoux M, Etchevers J (eds) Soil carbon sequestration and global climate change: mitigation potential of soils of Latin America. Harworth, Binghamton, pp 285–304Google Scholar
  37. Calegari A (2000) Coberturas verdes em sistemas intensivos de producao. In: Nitrogenio na sustentabilidade de sistemas intensivos de producao agropecuaria Workshop proceedings, 13–15 June 2000, Dourados, MS, Brazil. Documentos Embrapa Agropecuaria Oeste (26), pp 141–153Google Scholar
  38. Calegari A (2001) Cover crop management. In Garcia Torres L, Benites J, Martínez Vilela A (eds) “Conservation Agriculture, a worldwide challenge”. First World Congress on conservation agriculture proceedings, Madrid, 1–5 October, vol 1, pp 85–92Google Scholar
  39. Calegari A (2006) Plantas de cobertura. In: Casao-Junior R, Siqueira R, Mehta YR, Passini JJ (eds) Sistema plantio direto com qualidade. Instituto Agronomico do Parana (IAPAR), Londrina, pp 55–73Google Scholar
  40. Calegari A, Hargrove WL, Rheinheimer DDS, Ralisch R, Tessier D, De Tourdonnet S, Guimaraes MF (2008) Impact of long-term no-tillage and cropping system management on soil organic carbon in an Oxisol: a model for sustainability. Agron J 100(4):1013–1019. doi: 10.2134/agronj2007.0121er Google Scholar
  41. Cannel RQ (1981) Potentials and problems of simplified cultivation and conservation tillage. Outlook Agr 10(8):379–384Google Scholar
  42. Carof M, De Tourdonnet S, Coquet Y, Hallaire V, Roger-Estrade J (2007a) Hydraulic conductivity and porosity under conventional and no-tillage and the effect of three species of cover crop in northern France. Soil Use Manage 23(3):230–237. doi: 10.1111/j.1475-2743.2007.00085.x Google Scholar
  43. Carof M, De Tourdonnet S, Saulas P, Le Floch D, Roger-Estrade J (2007b) Undersowing wheat with different living mulches in a no-till system (I): yield analysis. Agron Sust Dev 27:347–356. doi: 10.1051/agro:2007016 Google Scholar
  44. Carof M, De Tourdonnet S, Saulas P, Le Floch D, Roger-Estrade J (2007c) Undersowing wheat with different living mulches in a no-till system (II): competition for light and nitrogen. Agron Sust Dev 27:357–365. doi: 10.1051/agro:2007017 Google Scholar
  45. Carvalho MAC, Soratto RP, Athayde MLF, Arf O, Sa ME (2004) Produtividade do milho em sucessao a adubos verdes no sistema de plantio direto e convencional. Pesqui Agropecu Bra 39(1):47–53Google Scholar
  46. Castro OM, De Maria IC (1993) Plantio direto e manejo do solo. In: Wutke EB, Bulisani EA, Mascarenhas HAA (coord) Curso sobre adubação verde, vol 1. Instituto Agronômico, Campinas, pp 87–107Google Scholar
  47. Castro OM, Lombardi Neto F, Vieira SR, Dechen SCF (1986) Sistemas convencionais e reduzidos de preparo do solo e as perdas por erosão. Rev Bras Cienc Solo 10:167–171Google Scholar
  48. Chevassus-au-Louis B, Griffon M (2008) La nouvelle modernité : une agriculture productive à haute valeur écologique. Demeter, pp 7–48Google Scholar
  49. Christoffoleti PJ, Galli AJB, Carvalho SJP, Moreira MS, Nicolai M, Foloni LL, Martins BAB, Ribeiro DN (2008) Glyphosate sustainability in South American cropping systems. Pest Manag Sci 64:422–427. doi: 10.1002/ps.1560 PubMedGoogle Scholar
  50. Clapperton MJ (2003) Increasing soil biodiversity through conservation agriculture: managing the soil as a habitat. In: “Producing in harmony with nature”. II World congress on Sustainable Agriculture proceedings, Iguaçu, Brazil, 10–15 AugustGoogle Scholar
  51. Corazza EJ, Silva JE, Resck DVS, Gomes AC (1999) Comportamento de diferentes sistemas de manejo como fonte ou depósito de carbono em relação a vegetação de Cerrado. Rev Bras Cienc Solo 23:425–432Google Scholar
  52. Corbeels M, Scopel E, Cardoso A, Bernoux M, Douzet JM, Siqueira Neto M (2006) Soil carbon storage potential of direct seeding mulch-based cropping systems in the Cerrados of Brazil. Global Change Biol 12:1–15. doi: 10.1111/j.1365-2486.2006.01233.x Google Scholar
  53. Da Silva FAM (2004) Parametrização e modelagem do balanço hídrico em sistema de plantio direto no cerrado brasileiro. Ph.D. dissertation of Campinas State University, Campinas, 218 pGoogle Scholar
  54. Da Silva FAM, Silveira Pinto M, Scopel E, Corbeels M, Affholder F (2006) Dinâmica da água nas palhadas de milho, mileto e soja utilizadas em plantio direto. Pesqui Agropecu Bras 41(5):717–724Google Scholar
  55. Da Silva FAM, Scopel E, Xavier JHV, Triomphe B (2009) Processos de inovação em plantio direto no cultivo de milho grão sequeiro para agricultura familiar. In: De Oliveira MN, Xavier JHV, De Almeida SCR, Scopel E (eds) Projeto Unaí: Pesquisa e desenvolvimento em assentamentos de reforma agrária. Embrapa Informação Tecnológica, Brasília, pp 183–217Google Scholar
  56. De Aquino AM, Ferreira da Silva R, Mercante FM, Correia MEF, Guimaraes MF, Lavelle P (2008) Invertebrate soil macrofauna under different ground cover plants in the no-till system in the Cerrado. Eur J Soil Biol 44:191–197. doi: 10.1016/j.ejsobi.2007.05.001 Google Scholar
  57. de Oliveira MN, Xavier JHV, Da Silva FAM, Scopel E, Zoby JLF (2009) Efeitos da introdução do sistema de plantio direto de milho por agricultores familiares do município de Unaí-MG (Cerrado Brasileiro). Pesqui Agropecu Trop 39(1):51–60Google Scholar
  58. De Tourdonnet S, Barz P, Bolliger A, Düring RA, Frielinghaus M, Kõlli R, Kubat J, Laktionova T, Magid J, Medvedev V, Michels A, Netland J, Novakova J, Picard D, Simon T, Thinggaard K, Vandeputte E, Werrity J, Willms M (2006) Prospects for sustainable agriculture in the European platform of KASSA. Report of European project KASSA, 327 pGoogle Scholar
  59. De Tourdonnet S, Chenu C, Straczek A, Cortet J, Felix I, Gontier L, Heddadj D, Labreuche J, Laval K, Longueval C, Richard G, Tessier D (2007) Impacts des techniques culturales sans labour sur la qualité des sols et la biodiversité. In Impacts environnementaux des TCSL. ADEME project reportGoogle Scholar
  60. Debaeke P (1987) Effet des systèmes de culture sur la flore adventice dicotylédone annuelle. Intérêt de la modélisation pour l'étude de l'évolution à long terme du stock de graines de l'horizon travaillé. Ph.D. thesis in Agronomic Sciences, INA P-G, Paris, 342 pGoogle Scholar
  61. Debaeke P, Orlando D (1994) Simplification du travail du sol et évolution de la flore adventice: Conséquences pour le désherbage à l'échelle de la rotation. In: Thevenet G, Lesaffre B, Monnier G (eds) Simplification du travail du sol. INRA, Paris, pp 35–62Google Scholar
  62. Dedecek RA, Resck DVS, de Freitas Júnior E (1986) Perdas de solo, água e nutrientes por erosao em latossolo vermelho-escuro dos Cerrados em diferentes cultivos sob chuva natural. Rev Bra Cienc Solo 10(3):265–272Google Scholar
  63. Derpsch (2001) Conservation tillage, no-tillage and related technologies. In Garcia-Torres L, Benites JR, Martinez Vilela A (eds) Conservation agriculture, a worldwide challenge. First World Congress on conservation agriculture proceedings, Madrid, Spain, 1–5 October 2001. Volume 1: keynote contributionsGoogle Scholar
  64. Derpsch R (2005) The extent of conservation agriculture adoption worldwide: implications and impact. In: Third International Congress of Conservation Agriculture proceedings, Nairobi, KenyaGoogle Scholar
  65. Derpsch R et al (2008) No-tillage and conservation agriculture: a progress report. In: Goddard T (ed) No-till farming systems, special publication n. 3. World Association of Soil and Water Conservation, Bangkok, pp 7–39Google Scholar
  66. Derpsch R, Friedrich T, Kassam A, Hongwen L (2010) Current status of adoption of no-till farming in the world and some of its main benefits. Int J Agric Biol Eng 3(1):1–25. doi: 10.3965/j.issn.1934-6344.2010.01.0-0 Google Scholar
  67. Díaz-Raviña M, Bueno J, González-Prieto SJ, Carballas T (2005) Cultivation effects on biochemical properties, C storage and 15 N natural abundance in the 0–5 cm layer of an acidic soil from temperate humid zone. Soil Till Res 84(2):216–221. doi: 10.1016/j.still.2004.10.001 Google Scholar
  68. Dilly O, Blume HP, Munch JC (2003) Soil microbial activities in Luvisols and Anthrosols during 9 years of region-typical tillage and fertilisation practices in northern Germany. Biogeochemistry 65:319–339. doi: 10.1023/A:1026271006634 Google Scholar
  69. Douglas JT, Jarvis MG, Howse KR, Goss MJ (1986) Structure of a silty soil in relation to management. J Soil Sci 37:137–151Google Scholar
  70. Dugué P, Vall E, Lecomte P, Klein HD, Rollin D (2004) Evolution des relations entre l’agriculture et l’élevage dans les savanes d’Afrique de l’ouest et du centre: un nouveau cadre d’analyse pour améliorer les modes d’intervention et favoriser les processus d’innovation. Oléagineux, Corps gras, Lipides 11(4–5):268–276Google Scholar
  71. Ekboir JM (2003) Research and technology policies in innovation systems: zero tillage in Brazil. Res Policy 32(4):573–586. doi: 10.1016/S0048-7333(02)00058-6 Google Scholar
  72. Emmerling C (2001) Response of earthworm communities to different types of soil tillage. Appl Soil Ecol 17:91–96. doi: 10.1016/S0929-1393(00)00132-3 Google Scholar
  73. Erenstein O (2002) Crop residue mulching in tropical and semi-tropical countries: an evaluation of residue availability and other technological implications. Soil Till Res 67(2):115–133. doi: 10.1016/S0167-1987(02)00062-4 Google Scholar
  74. Erenstein O (2003) Smallholder conservation farming in the tropics and sub-tropics: a guide to the development and dissemination of mulching with crop residues and cover crops. Agric Ecosyst Environ 100:17–37. doi: 10.1016/S0167-8809(03)00150-6 Google Scholar
  75. Ernani PR, Bayer C, Maestri L (2002) Corn yield as affected by liming and tillage system on an acid Brazilian oxisol. Agron J 94(2):305–309Google Scholar
  76. FAO (2002) Conservation agriculture, case studies in Latin America and Africa. FAO Soils Bulletin 78. Food and Agriculture Organization of the United Nations, Rome, 69 pGoogle Scholar
  77. FEBRAPDP (Federação Brasileira de Plantio Direto na Palha) (2010) http://www.febrapdp.org.br
  78. Feller C, Beare NH (1997) Physical control of soil organic matter dynamics in the tropics. Geoderma 79:69–116. doi: 10.1016/S0016-7061(97)00039-6 Google Scholar
  79. Fontaneli RS, Ambrosi I, Dos Santos HP, Ignaczak JC, Zoldan SM (2000) Análise econômica de sistemas de produção de grãos com pastagens de inverno, em sistema plantio direto. Pesqui Agropecu Bras 35(11):2129–2137Google Scholar
  80. Freixo AA, de Machado PLOA, Dos Santos HP, Silva CA, Fadigas FdS (2002) Soil organic carbon and fractions of a Rhodic Ferralsol under the influence of tillage and crop rotation systems in southern Brazil. Soil Till Res 64(3–4):221–230. doi: 10.1016/S0167-1987(01)00262-8 Google Scholar
  81. Friebe B, Henke W (1991) Soil fauna and their straw decomposition capacity on reduced tillage. Z Kult Landentwickl 32:121–126Google Scholar
  82. Ghiloufi M, Picard D, Saulas P, de Tourdonnet S (2010) Y a-t-il un intérêt agronomique à associer une culture commerciale et une plante de couverture ? Cas d’une association blé (Triticum aestivum L.) fétuque rouge (Festuca rubra L.). Cah Agric 19:420–431. doi: 10.1684/agr.2010.0438 Google Scholar
  83. Giller KE (2001) Nitrogen fixation in tropical cropping systems, 2nd edn. CABI, WallingfordGoogle Scholar
  84. Giller KE, Witter E, Corbeels M, Tittonell P (2009) Conservation agriculture and smallholder farming in Africa: the heretics’ view. Field Crop Res 114(1):23–34. doi: 10.1016/j.fcr.2009.06.017 Google Scholar
  85. Giller KE, Corbeels M, Nyamangara J, Triomphe B, Affholder F, Scopel E, Tittonell P (2011) A research agenda to explore the role of conservation agriculture in African smallholder farming systems. Field Crop Res 124:468–472. doi: 10.1016/j.fcr.2011.04.010 Google Scholar
  86. Gupta R, Seth A (2007) A review of resource conserving technologies for sustainable management of the rice–wheat cropping systems of the Indo-Gangetic plains (IGP). Crop Prot 26(3):436–447. doi: 10.1016/j.cropro.2006.04.030 Google Scholar
  87. Hartwig NL, Ammon HU (2002) Cover crops and living mulches. Weed Science 50:688–699. doi: 10.1614/0043-1745(2002)050[0688:AIACCA]2.0.CO;2 Google Scholar
  88. Heddadj D, Gascuel-Odoux C, Cotinet P, Hamon Y (2005) Mode de travail du sol, ruissellement et propriétés hydrodynamiques sur un dispositif expérimental de l’Ouest de la France. Etude et Gestion des Sols 12:53–66Google Scholar
  89. Hernani LC, Salton JC, Fabricio AC, Dedecek R, Alves Junior M (1997) Perdas por erosão e rendimentos de soja e de trigo em diferentes sistemas de preparo de um latossolo roxo de Dourados (MS). Rev Bras Cienc Solo 21(4):667–676Google Scholar
  90. Holland JM (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agr Ecosyst Environ 103(1):1–25. doi: 10.1016/j.agee.2003.12.018 Google Scholar
  91. Hulsmann A, Wolters V (1998) The effects of different tillage practices on soil mites, with particular reference to Oribatida. Appl Soil Ecol 9:327–332. doi: 10.1016/S0929-1393(98)00084-5 Google Scholar
  92. Kluthcouski J, Aidar H, Cobucci T (2007) Opções e vantagens da Integracao Lavoura-Pecuaria e a producao de forragens na entressafra. Informe Agropecuario 28(240):16–29Google Scholar
  93. Kohl R, Harrach T (1991) Zeitliche und räumliche Variabilität der Nitratkonzentration in der Bodenlösung in einem langjährigen Bodenbearbeitungsversuch. Z Kult Landentwickl 32(2):80–87Google Scholar
  94. Korsaeth K, Eltun R (2000) Nitrogen mass balances in conventional, integrated and ecological cropping systems and the relationship between balance calculations and nitrogen runoff in an 8-year field experiment in Norway. Agric Ecosyst Environ 79:199–214. doi: 10.1016/S0167-8809(00)00129-8 Google Scholar
  95. Kreye H (2004) Effects of conservation tillage on harmful organisms and yield of oilseed rape. Bulletin OILB/SROP 27:25–29Google Scholar
  96. Kwaad FJPM, Zijp MVD, Dijk PMV (1998) Soil conservation and maize cropping systems on sloping loess soils in the Netherlands. Soil Till Res 46:13–21. doi: 10.1016/S0167-1987(97)00074-3 Google Scholar
  97. Lahmar R (2010) Adoption of conservation agriculture in Europe. Lessons of the Kassa project. Land Use Policy 27:4–10. doi: 10.1016/j.landusepol.2008.02.001 Google Scholar
  98. Lahmar R, De Tourdonnet S, Barz P, Düring RA, Frielinghaus M, Kolli R, Kubat J, Medvedev V, Netland J, Picard D (2006) Prospect for conservation agriculture in Northern and Eastern European countries, lessons of Kassa. In Fotyma M, Kamińska B (eds) Proceedings of IXth European Society for Agronomy Congress, 2006/09/04-07, Warszawa, Poland. Bibliotheca Fragmenta Agronomica 11, pp 77–88Google Scholar
  99. Lal R (1997) Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2 enrichment. Soil Till Res 43(1/2):81–107. doi: 10.1016/S0167-1987(97)00036-6 Google Scholar
  100. Landers J et al (2008) Environmental impacts and social dimensions of zero-till CA in Tropical Brazil. In: Goddard T (ed) No-till farming systems, special publication n. 3. World Association of Soil and Water Conservation, Bangkok, pp 103–135Google Scholar
  101. Levien R, Cogo NP (2001) Erosão na cultura do milho em sucessão á aveia preta e pousio descoberto, em preparo convencional e plantio direto, com tracão animal e tratorizada. Rev Bras Cienc Solo 25(3):683–692Google Scholar
  102. Li L, Sun JH, Zhang FS, Li XL, Yang SC, Rengel Z (2001) Wheat/maize or wheat/soybean strip intercropping I. Yield advantage and interspecific interactions on nutrients. Field Crop Res 71:123–137. doi: 10.1016/S0378-4290(01)00156-3 Google Scholar
  103. Maltas A, Corbeels M, Scopel E, Oliver R, Douzet JM, da Silva FAM, Wery J (2007) Long-term effects of continuous direct seeding mulch-based cropping systems on soil nitrogen supply in the Cerrado region of Brazil. Plant Soil 298(1/2):161–173. doi: 10.1007/s11104-007-9350-1 Google Scholar
  104. Maltas A, Corbeels M, Scopel E, Da Silva FAM, Wery J (2009) Cover crop effects on nitrogen supply and maize productivity in no-tillage systems of the Brazilian Cerrados. Agron J 101(5):1036–1046. doi: 10.2134/agronj2009.0055 Google Scholar
  105. Mannetje L (2007) Climate change and grasslands through the ages: an overview. Grass Forage Sci 62:113–117. doi: 10.1111/j.1365-2494.2007.00574.x Google Scholar
  106. Maurer-Troxler C, Chervet A, Ramseier L, Sturny WG, Oberholzer HR (2006) Soil biology after ten years of no- and conventional tillage. Rev Suisse Agric 38:89–94Google Scholar
  107. Médiène S, Valantin-Morison M, Sarthou JP, De Tourdonnet S, Gosme M, Bertrand M, Roger-Estrade J, Aubertot JN, Rusch A, Motisi N, Pelosi C, Doré T (2011) Agroecosystem management and biotic interactions: a review. Agron Sustain Dev 31(3):491–514. doi: 10.1007/s13593-011-0009-1 Google Scholar
  108. Mello EL, Bertol I, Zaparolli ALV, Carrafa MR (2003) Perdas de solo e agua em diferentes sistemas de manejo de um Nitossolo Haplico submetido a chuva simulada. Rev Bras Cienc Solo 27(5):901–909Google Scholar
  109. Mendes IC, Reis Junior FB (2004) Uso de parâmetros microbiológicos como indicadores para avaliar a qualidade do solo e a sustentabilidade dos agroecossistemas. Doc Embrapa Cerrados 112:1–34Google Scholar
  110. Mendes IC, Souza LV, Resck DVS, Gomes AC (2003) Propriedades biológicas em agregados de um LE sob plantio convencional e direto no Cerrado. Rev Bras Cienc Solo 27:435–443Google Scholar
  111. Mendes IC, Scopel E, Reis Junior FB, Marchetti AD (2005) Indicadores Biológicos em solos de propriedades rurais sob plantio direto e convencional na região de Rio Verde—GO In: XXX Congresso Brasileiro de Ciência do Solo, RecifeGoogle Scholar
  112. Metay A, Oliver R, Douzet JM, Bernoux M, Feller C, Feigl B, Rodrigues A, Moreira JA, Scopel E (2003) Short-term evolution of C-CO2 emissions for a Brazilian Oxisol: effect of tillage and rainfall. In: “Producing in harmony with nature”, II World congress on Sustainable Agriculture proceedings, Iguaçu, Brazil, 10–15 of AugustGoogle Scholar
  113. Metay A, Moreira JAA, Bernoux M, Boyer T, Douzet JM, Feigl B, Feller C, Maraux F, Oliver R, Scopel E (2007a) Storage and forms of organic carbon in a no-tillage under cover crops system on clayey Oxisol in dryland rice production (Cerrados, Brazil). Soil Till Res 94:122–132. doi: 10.1016/j.still.2006.07.009 Google Scholar
  114. Metay A, Oliver R, Scopel E, Douzet JM, Alves Moreira JA, Maraux F, Feigl BJ, Feller C (2007b) N2O and CH4 emissions from soils under conventional and no-till management practices in Goiania (Cerrados, Brazil). Geoderma 141:78–88. doi: 10.1016/j.geoderma.2007.05.010 Google Scholar
  115. Metay A, Mary B, Arrouays D, Labreuche J, Martin M, Nicolardot B, Germon JC (2009) Effets des techniques culturales sans labour sur le stockage de carbone dans le sol en contexte climatique tempéré. Can J Soil Sci 89:623–634. doi: 10.4141/CJSS07108 Google Scholar
  116. Mielniczuk J, Bayer C, Vezzani FM, Lovato T, Fernandes FF, Debarba L (2003) Manejo de solo e culturas e sua relação com os estoques de carbono e nitrogênio do solo. Tópicos em Ciência do Solo: Sociedade Brasileira de Ciência do Solo Viçosa, MG. Vol. 3, pp 209–247Google Scholar
  117. Mischler P, Hocdé H, Triomphe B, Omon B (2008) Conception de systèmes de culture et de production avec des agriculteurs: Partager les connaissances et les compétences pour innover. In: Reau R, Doré T (eds) Systèmes de culture innovants et durables: Quelles méthodes pour les mettre au point et les évaluer ? Educagri éd, Dijon, pp 71–89Google Scholar
  118. Molteberg B, Henriksen TM, Tangsveen J (2004) Use of catch crops in cereal production in Norway. Grønn kunnskap, Norwegian Crop Research Inst., as, Norway, vol 8. N°12-2004Google Scholar
  119. Nicolardot B, Bouziri L, Bastian F, Ranjard L (2007) A microcosm experiment to evaluate the influence of location and quality of plant residues on residue decomposition and genetic structure of soil microbial communities. Soil Biol Biochem 39(7):1631–1644. doi: 10.1016/j.soilbio.2007.01.012 Google Scholar
  120. Oorts K, Nicolardot B, Merckx R, Richard G, Boizard H (2006) C and N mineralization of undisrupted and disrupted soil from different structural zones of conventional tillage and no-tillage systems in northern France. Soil Biol Biochem 38:2576–2586. doi: 10.1016/j.soilbio.2006.03.013 Google Scholar
  121. Perrin AS (2003) Effets de différents modes de gestion des terres agricoles sur la matière organique et la biomasse microbienne en zone tropicale humide au Brésil. Master dissertation, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 68 pGoogle Scholar
  122. Picard D, Ghiloufi M, Saulas P, de Tourdonnet S (2010) Does undersowing winter wheat with a cover crop increase competition for resources and is it compatible with high yield? Field Crops Res 115(1):9–18. doi: 10.1016/j.fcr.2009.09.017, Erratum Field Crops Res., 116:206Google Scholar
  123. Piovanelli C, Gamba C, Brandi G, Simoncini S, Batistoni E (2006) Tillage choices affect biochemical properties in the soil profile. Soil Till Res 90:84–92. doi: 10.1016/j.still.2005.08.013 Google Scholar
  124. Primavesi O, Primavesi AC, Armelin MJA (2002) Qualidade mineral e degradabilidade potencial de adubos verdes conduzidos sobre latossolos, na região tropical de Sao Carlos, SP, Brasil. Rev Agric Piracicaba 77(1):89–102Google Scholar
  125. Puget P, Chenu C, Balesdent J (1995) Total and young organic matter distributions in aggregates of silty cultivated soils. Eur J Soil Sci 46:449–459. doi: 10.1111/j.1365-2389.1995.tb01341.x Google Scholar
  126. Quinton JN, Catt JA (2004) The effects of minimal tillage and contour cultivation on surface runoff, soil loss and crop yield in the long-term Woburn Erosion Reference Experiment on sandy soil at Woburn, England. Soil Use Manage 20:343–349. doi: 10.1079/SUM2004267 Google Scholar
  127. Rabary B, Sall S, Letourny P, Husson O, Ralambofetra E, Moussa N, Chotte JL (2008) Effects of living mulches or residue amendments on soil microbial properties in direct seeding cropping systems of Madagascar. Appl Soil Ecol 39:236–243. doi: 10.1016/j.apsoil.2007.12.012 Google Scholar
  128. Ralisch R, Okumura RS, Miranda TM, Barbosa GMdC, Guimaraes MdF, Scopel E, Balbino LC (2008) Resistencia a penetração de um Latossolo Vermelho Amarelo do Cerrado sob diferentes sistemas de manejo. Rev Bras Engenharia Agric Ambient 12(4):381–384Google Scholar
  129. Rasmussen KJ (1999) Impact of ploughless soil tillage on yield and soil quality: a Scandinavian review. Soil Till Res 53:3–14. doi: 10.1016/S0167-1987(99)00072-0 Google Scholar
  130. Real BLJ, Heddadj D (2005) L'impact du travail du sol sur les transferts de produit phytosanitaires. Perspectives agricoles, pp 24–28Google Scholar
  131. Resck DVS, Vasconcellos CA, Vilela L, Macedo MCM (2000) Impact of conversion of Brazilian Cerrados to cropland and pastureland on soil carbon pool and dynamics. In: Lal R, Kimble JM, Stewart BA (eds) Global climate change and tropical ecosystems. Advances in soil science. CRC, Boca Raton, pp 169–196Google Scholar
  132. Reyes Gomez V (2002) Quantification et modélisation des flux hydriques, thermiques et azotés dans les systèmes de culture en semis direct avec couverture végétale dans la région des Cerrados brésiliens. Ph.D. dissertation from Science and Technics University of Languedoc (USTL), Montpellier, France, 204 pGoogle Scholar
  133. Reyes Gomez V, Findeling A, Marlet S, Oliver R, Maraux F, Alves Moreira JA, Douzet JM, Scopel E, Recous S (2002) Influence of no-tillage and cover plants on water and nitrogen dynamics in the Cerrados (Brazil). In: XVII World Congress of Soil Science, Bangkok, Thailand, September, 2002Google Scholar
  134. Ribeiro MFS (2003) No-tillage equipment for small farms in Brazil. In: Garcia-Torres L, Benites J, Martinez-Vilela A, Holgado-Cabrera A (eds) Conservation agriculture: environment, farmers experiences, innovations, socio-economy, policy. Kluwer Academic, Dordrecht, pp 263–271Google Scholar
  135. Ribeiro MFS, Denardin JE, Bianchini A, Ferreira R, Flores CA, Kliemann HJ, Kochhann RA, Mendes IC, Miranda GM, Montoya L, Nazareno N, Paz C, Peiretti R, Pillon CN, Scopel E, Skora Neto F (2007) Comprehensive inventory and assessment of existing knowledge on sustainable agriculture in the Latin American platform of KASSA. Final report for the KASSA project, Cirad, 61pGoogle Scholar
  136. Riley HCF, Bleken MA, Abrahamsen S, Bergjord AK, Bakken AK (2005) Effects of alternative tillage systems on soil quality and yield of spring cereals on silty clay loam and sandy loam soils in the cool, wet climate of central Norway. Soil Till Res 80:79–93. doi: 10.1016/j.still.2004.03.005 Google Scholar
  137. Roscoe R, Buurman R (2003) Tillage effects on soil organic matter in density fractions of a Cerrado Oxisol. Soil Till Res 104:185–202. doi: 10.1016/S0167-1987(02)00160-5 Google Scholar
  138. Roscoe R, Boddey RM, Salton JC (2006) Sistemas de manejo e matéria orgânica do solo. In: Roscoe R, Mercante FM, Salton JC (eds) Dinâmica da matéria orgânica do solo em sistemas conservacionistas: Modelagem matemática e métodos auxiliares. Embrapa Agropecuária Oeste, Dourados, pp 17–42Google Scholar
  139. Schick J, Bertol I, Batistela O, Balbinot Junior AA (2000) Erosao hidrica em cambissolo humico aluminico submetido a diferentes sistemas de preparo e cultivo do solo: I. Perdas de solo e agua. Rev Bras Cienc Solo 24(2):427–436Google Scholar
  140. Scopel E, Macena F, Corbeels M, Affholder F, Maraux F (2004a) Modelling crop residue mulching effects on water use and production of maize under semi-arid and humid tropical conditions. Agronomie 24:1–13. doi: 10.1051/agro:2004029 Google Scholar
  141. Scopel E, Triomphe B, Ribeiro M.F.dos S, Séguy L, Denardin JE, Kochhann RA (2004b) Direct seeding mulch-based cropping systems (DMC) in Latin America. In: “New directions for a diverse planet”. Proceedings of the 4th International Crop Science Congress, 26 Sept–1 Oct 2004, Brisbane, AustraliaGoogle Scholar
  142. Séguy L, Bouzinac S, Trentini A, Cortez NA (1996) Brazilian agriculture in new immigration zones. Agric dév(English issue) 12:2–61Google Scholar
  143. Séguy L, Bouzinac S, Scopel E, Ribeiro MFS (2003) New concepts for sustainable management of cultivated soils through direct seeding mulch based cropping systems: the CIRAD experience, partnership and networks. In: “Producing in harmony with nature”. II World congress on Sustainable Agriculture proceedings, Iguaçu, Brazil, 10–15 AugustGoogle Scholar
  144. Serpantié G (2009) L'agriculture de conservation à la croisée des chemins en Afrique et à Madagascar. Vertigo 9(3):12Google Scholar
  145. Shili-Touzi I, De Tourdonnet S, Launay M, Doré T (2010) Does intercropping winter wheat with red fescue as a cover crop improve agronomic and environmental performance? A modeling approach. Field Crop Res 116:218–229. doi: 10.1016/j.fcr.2009.11.007 Google Scholar
  146. Siqueira Neto M, Scopel E, Douzet JM, Feller C, Cardoso AN, Corbeels M, Piccolo MdC, Cerri CC, Bernoux M (2010) Soil carbon stocks under no-tillage mulch based cropping systems in the Brazilian Cerrado: an on farm synchronic assessment. Soil Till Res 110:187–195. doi: 10.1016/j.still.2010.07.010 Google Scholar
  147. Sisti CPJ, Santos HP, Kohhann R, Alves BJR, Urquiaga S, Boddey RM (2004) Changes in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil Till Res 76:39–58. doi: 10.1016/j.still.2003.08.007 Google Scholar
  148. Six J, Feller C, Denef K, Ogle SM, Sa JCM, Albrecht A (2002) Soil organic matter, biota and aggregation in temperate and tropical soils—effects of no-tillage. Agron Sustain Dev 22(7–8):755–775Google Scholar
  149. Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till Res 79:7–31. doi: 10.1016/j.still.2004.03.008 Google Scholar
  150. Smith KA, Conen F (2004) Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manage 20:255–263. doi: 10.1079/SUM2004238 Google Scholar
  151. Soane BD, Ball BC (1998) Review of management and conduct of long-term tillage studies with special reference to a 25-yr experiment on barley in Scotland. Soil Till Res 45:17–37. doi: 10.1016/S0167-1987(97)00070-6 Google Scholar
  152. Spagnollo E, Bayer C, Wildner LP, Ernani PR, Albuquerque JA, Proenca MM (2002) Leguminosas estivais intercalares como fonte de nitrogenio para o milho, no sul do Brasil. Rev Bras Cienc Solo 26(2):417–423Google Scholar
  153. Stone LF, Moreira JAA (2000) Efeitos de sistemas de preparo do solo no uso da água e na produtividade do feijoeiro. Pesqui Agropecu Bra 35(4):835–841Google Scholar
  154. Symondson WOC, Glen DM, Wiltshire CW, Langdon CJ, Liddell JE (1996) Effects of cultivation techniques and methods of straw disposal on predation by Pterostichus melanarius (Coleoptera: Carabidae) upon slugs (Gastropoda: Pulmonata) in an arable field. J Appl Ecol 33:741–753. doi: 10.2307/2404945 Google Scholar
  155. Tebrügge F (2001) Techniques de Conservation des Sols—Protection des sols, des eaux et du climat et influence sur les systèmes de culture. In: I World Congress on Conservation Agriculture, Madrid, 16 pGoogle Scholar
  156. Tebrügge F, Düring RA (1999) Reducing tillage intensity: a review of results from a long term study in Germany. Soil Till Res 53:15–28. doi: 10.1016/S0167-1987(99)00073-2 Google Scholar
  157. Ulrich S, Hofmann B, Tischer S, Christen O (2006) Influence of tillage on soil quality in a long-term trial in Germany. Adv Geoecol 38:110–116Google Scholar
  158. Zotarelli L, Alves BJR, Torres E, Urquiaga S, Boddey RM (2004) Substitution of N fertiliser supply for maize with lupin as a winter crop in rotations under zero and conventional tillage in southern Brazil. In: Hatch DJ, Chadwick DR, Jarvis SC, Roker JA (eds) Controlling nitrogen flows and losses, 12th Nitrogen workshop proceedings, September 2003, pp 559–561. University of Exeter, UK, pp 21–24Google Scholar

Copyright information

© INRA and Springer-Verlag, France 2012

Authors and Affiliations

  • Eric Scopel
    • 1
    Email author
  • Bernard Triomphe
    • 2
  • François Affholder
    • 1
  • Fernando Antonio Macena Da Silva
    • 3
  • Marc Corbeels
    • 1
  • José Humberto Valadares Xavier
    • 3
  • Rabah Lahmar
    • 1
  • Sylvie Recous
    • 4
  • Martial Bernoux
    • 5
  • Eric Blanchart
    • 5
  • Ieda de Carvalho Mendes
    • 3
  • Stéphane De Tourdonnet
    • 6
  1. 1.CIRAD UPR SCAMontpellierFrance
  2. 2.CIRAD, UMR InnovationMontpellierFrance
  3. 3.Embrapa CerradosPlanaltinaBrazil
  4. 4.INRA, UMR614 FAREReimsFrance
  5. 5.IRD, UMR Eco&SolsMontpellier Cedex 1France
  6. 6.SupAgro Montpellier-IRC, UMR InnovationMontpellier Cedex 5France

Personalised recommendations