Agronomy for Sustainable Development

, Volume 33, Issue 1, pp 97–111 | Cite as

Survival of Fusarium graminearum, the causal agent of Fusarium head blight. A review

  • Johann Leplat
  • Hanna Friberg
  • Muhammad Abid
  • Christian SteinbergEmail author
Review article


Wheat is one of the most cultivated crops worldwide. In 2010, 20 % of wheat and durum wheat were cultivated in Europe, 17 % in China and 9 % in Russia and in North America. Wheat yield can be highly decreased by several factors. In particular Fusarium graminearum Schwabe is a worldwide fungal pest impacting wheat production. F. graminearum is the causal agent of Fusarium head blight, root and stem-base rot of cereals. Losses caused by Fusarium head blight in Northern and Central America from 1998 to 2002 reached $2.7 billion. Moreover, F. graminearum produces mycotoxins which affect human and animal health. The threshold of these mycotoxins in foodstuffs is regulated in Europe since 2007. F. graminearum survives for several years saprotrophically in the soil, on dead organic matter, particularly on crop residues. F. graminearum adapts to a wide range of environmental variations, and produces extracellular enzymes allowing feeding on different crop residues. However, F. graminearum competes with other decomposers such as other Fusarium spp. belonging to the same complex of species. Actually, it is not known whether F. graminearum mycotoxins give F. graminearum a competitive advantage during the saprotrophic period. Anthropogenic factors including preceding crops, tillage system and weed management can alter the development of the soil biota, which in turn can change the saprotrophic development of F. graminearum and disease risk. We review the ecological requirements of F. graminearum saprotrophic persistence. The major conclusions are: (1) temperature, water, light and O2 are key conditions for F. graminearum growth and the development of its sexual reproduction structures on crop residues, although the fungus can resist for a long time under extreme conditions. (2) F. graminearum survival is enhanced by high quantities of available crop residues and by rich residues, while sexual reproduction structures occur on poor residues. (3) F. graminearum is a poor competitor over time for residues decomposition. F. graminearum survival can be controlled by the enhancement of the decomposition processes by other organisms. In addition, the development of F. graminearum on crop residues can be limited by antagonistic fungi and soil animals growing at the expense of F. graminearum-infested residues. (4) Agricultural practices are key factors for the control of F. graminearum survival. A suitable crop rotation and an inversive tillage can limit the risk of Fusarium head blight development.


Crop residues Ecological requirements Habitat Mycotoxins Preceding crop Saprotrophic development Soil microbial ecology Tillage Wheat diseases 



This review is part of a PhD work funded by the Vitagora-FUI programme Farine + 2007-11. We thank the Swedish Farmers’ Foundation for Agricultural Research (SLF) and La Fondation Franco-Suédoise for financing H. Friberg. We are grateful to P. Mangin and L. Falchetto (INRA, UE Epoisses-France) for fruitful discussions. We thank A. Buchwalter and C. Woods, proofreaders, for correcting the English language.


  1. Abid M, Leplat J, Fayolle L, Gautheron E, Heraud C, Gautheron N, Edel-Hermann V, Cordier C, Steinberg C (2011) Ecological role of mycotoxins in wheat crop residues: consequences on the multitrophic interactions and the development of Fusarium graminearum. In: Multitrophic interactions in soil. IOBC Bull 71:1–5Google Scholar
  2. Awad WA, Ghareeb K, Bohm J, Zentek J (2010) Decontamination and detoxification strategies for the Fusarium mycotoxin deoxynivalenol in animal feed and the effectiveness of microbial biodegradation. Food Addit Contam Part A Chem 27(4):510–520. doi: 10.1080/19440040903571747 Google Scholar
  3. Bastian F, Bouziri L, Nicolardot B, Ranjard L (2009) Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biol Biochem 41(2):262–275. doi: 10.1016/j.soilbio.2008.10.024 Google Scholar
  4. Bateman GL (1993) Development of disease symptoms and fungal patogens on shoot bases in continuous winter–wheat, and effects of fungicides. Plant Pathol 42(4):595–608. doi: 10.1111/j.1365-3059.1993.tb01540.x Google Scholar
  5. Bateman GL (2005) The contribution of ground-level inoculum of Fusarium culmorum to ear blight of winter wheat. Plant Pathol 54(3):299–307. doi: 10.1111/j.1365-3059.2005.01181.x Google Scholar
  6. Bateman GL, Coskun H (1995) Populations of Fusarium spp. in soil growing continuous winter wheat, and effects of long-term application of fertilizers and of straw incorporation. Mycol Res 99:1391–1394. doi: 10.1016/S0953-7562(09),81227-6 Google Scholar
  7. Bateman GL, Murray G, Gutteridge RJ, Coskun H (1998) Effects of method of straw disposal and depth of cultivation on populations of Fusarium spp. in soil and on brown foot rot in continuous winter wheat. Ann Appl Biol 132(1):35–47. doi: 10.1111/j.1744–7348.1998.tb05183.x Google Scholar
  8. Bateman GL, Gutteridge RJ, Gherbawy Y, Thomsett MA, Nicholson P (2007) Infection of stem bases and grains of winter wheat by Fusarium culmorum and F. graminearum and effects of tillage method and maize-stalk residues. Plant Pathol 56(4):604–615. doi: 10.1111/j.1365–3059.2007.01577.x Google Scholar
  9. Belien T, Van Campenhout S, Robben J, Volckaert G (2006) Microbial endoxylanases: Effective weapons to breach the plant cell-wall barrier or, rather, triggers of plant defense systems? Mol Plant Microbe Interact 19(10):1072–1081. doi: 10.1094/mpmi-19-1072 PubMedGoogle Scholar
  10. Berndes G, Hoogwijk M, van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenerg 25(1):1–28. doi: 10.1016/s0961-9534(02)00185-x Google Scholar
  11. Bernhoft A, Clasen PE, Kristoffersen AB, Torp M (2010) Less Fusarium infestation and mycotoxin contamination in organic than in conventional cereals. Food Addit Contam Part A Chem 27(6):842–852. doi: 10.1080/19440041003645761 Google Scholar
  12. Beyer M, Verreet JA (2005) Germination of Gibberella zeae ascospores as affected by age of spores after discharge and environmental factors. Eur J Plant Pathol 111(4):381–389. doi: 10.1007/s10658-004-6470-9 Google Scholar
  13. Beyer M, Roding S, Ludewig A, Verreet JA (2004) Germination and survival of Fusarium graminearum macroconidia as affected by environmental factors. J Phytopathol 152(2):92–97. doi: 10.1111/j.1439-0434.2003.00807.x Google Scholar
  14. Birzele B, Meier A, Hindorf H, Kramer J, Dehne HW (2002) Epidemiology of Fusarium infection and deoxynivalenol content in winter wheat in the Rhineland, Germany. Eur J Plant Pathol 108(7):667–673. doi: 10.1023/a:1020632816441 Google Scholar
  15. Blandino M, Pilati A, Reyneri A, Scudellari D (2010) Effect of maize crop residue density on Fusarium head blight and on deoxynivalenol contamination of common wheat grains. Cereal Res Commun 38(4):550–559. doi: 10.1556/crc.38.2010.4.12 Google Scholar
  16. Bockus WW, Shroyer JP (1998) The impact of reduced tillage on soilborne plant pathogens. Annu Rev Phytopathol 36:485–500. doi: 10.1146/annurev.phyto.36.1.485 PubMedGoogle Scholar
  17. Bottalico A (1998) Fusarium diseases of cereals: species complex and related mycotoxin profiles, in Europe. J Plant Pathol 80(2):85–103. doi: 10.4454/jpp.v80i2.807 Google Scholar
  18. Bottalico A, Perrone G (2002) Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur J Plant Pathol 108(7):611–624. doi: 10.1023/A:1020635214971 Google Scholar
  19. Brown GG (1995) How do earthworms affect microfloral and faunal community diversity. Plant Soil 170(1):209–231. doi: 10.1007/BF02183068 Google Scholar
  20. Bujold I, Paulitz TC, Carisse O (2001) Effect of Microsphaeropsis sp. on the production of perithecia and ascospores of Gibberella zeae. Plant Dis 85(9):977–984. doi: 10.1094/PDIS.2001.85.9.977 Google Scholar
  21. Burgess LW, Griffin DM (1968) The recovery of Gibberella zeae from wheat straws. Aust J Exp Agric Anim Husb 8(32):364–370Google Scholar
  22. Cassini R (1970)Facteurs favorables ou défavorables au développement des fusarioses et septorioses du blé. In: Meeting of Sections Cereals and Physiology, Dijon, 1970. Eucarpia, pp 271–279Google Scholar
  23. Champeil A, Dore T, Fourbet JF (2004) Fusarium head blight: epidemiological origin of the effects of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains. Plant Sci 166(6):1389–1415. doi: 10.1016/j.plantsci.2004.02.004 Google Scholar
  24. Colbach N, Maurin N, Huet P (1996) Influence of cropping system on foot rot of winter wheat in France. Crop Prot 15(3):295–305. doi: 10.1016/0261-2194(95),00150-6 Google Scholar
  25. Coleman DC, Crossley DA Jr (1996) Fundamentals of soil ecology. Academic Press, LondonGoogle Scholar
  26. Cromey MG, Shorter SC, Lauren DR, Sinclair KI (2002) Cultivar and crop management influences on Fusarium head blight and mycotoxins in spring wheat (Triticum aestivum) in New Zealand. N Z J Crop Hortic Sci 30(4):235–247. doi: 10.1080/01140671.2002.9514220 Google Scholar
  27. Association Générale des Producteurs de Blé (2012) Récoltes.
  28. Desjardins AE, Proctor RH (2007) Molecular biology of Fusarium mycotoxins. Int J Food Microbiol 119:47–50. doi: 10.1016/j.ijfoodmicro.2007.07.024 PubMedGoogle Scholar
  29. Dill-Macky R, Jones RK (2000) The effect of previous crop residues and tillage on Fusarium head blight of wheat. Plant Dis 84(1):71–76. doi: 10.1094/PDIS.2000.84.1.71 Google Scholar
  30. Doohan FM, Brennan J, Cooke BM (2003) Influence of climatic factors on Fusarium species pathogenic to cereals. Eur J Plant Pathol 109(7):755–768. doi: 10.1023/a:1026090626994 Google Scholar
  31. Dufault NS, De Wolf ED, Lipps PE, Madden LV (2006) Role of temperature and moisture in the production and maturation of Gibberella zeae perithecia. Plant Dis 90(5):637–644. doi: 10.1094/pd-90-0637 Google Scholar
  32. Duffy BK, Defago G (1997) Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 87(12):1250–1257. doi: 10.1094/phyto.1997.87.12.1250 PubMedGoogle Scholar
  33. Edwards SG (2009) Fusarium mycotoxin content of UK organic and conventional wheat. Food Addit Contam Part A Chem 26(4):496–506. doi: 10.1080/02652030802530679 Google Scholar
  34. FAO (2011) Food Outlook Report. November 2011. p. 186. FAO Trade and Markets Division., Rome, Italy
  35. Fernandez MR, Huber D, Basnyat P, Zentner RP (2008) Impact of agronomic practices on populations of Fusarium and other fungi in cereal and noncereal crop residues on the Canadian Prairies. Soil Tillage Res 100(1–2):60–71. doi: 10.1016/j.still.2008.04.008 Google Scholar
  36. Fernandez MR, Zentner RP, Basnyat P, Gehl D, Selles F, Huber D (2009) Glyphosate associations with cereal diseases caused by Fusarium spp. in the Canadian Prairies. Eur J Agron 31(3):133–143. doi: 10.1016/j.eja.2009.07.003 Google Scholar
  37. Finlay RD (2007) The Fungi in soil. In: Elsas JD, Jansson J, Trevors JT (eds) Modern soil microbiology. CRC Press, New York, pp 107–146Google Scholar
  38. Frankland JC (1998) Fungal succession – unravelling the unpredictable. Mycol Res 102:1–15. doi: 10.1017/S0953756297005364 Google Scholar
  39. Friberg H, Lagerlöf J, Ramert B (2005) Influence of soil fauna on fungal plant pathogens in agricultural and horticultural systems. Biocontrol Sci Technol 15(7):641–658. doi: 10.1080/09583150500086979 Google Scholar
  40. Fuchs E, Binder EM, Heidler D, Krska R (2002) Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797. Food Addit Contam 19(4):379–386. doi: 10.1080/02652030110091154 PubMedGoogle Scholar
  41. Georgieva S, Christensen S, Petersen H, Gjelstrup P, Thorup-Kristensen K (2005a) Early decomposer assemblages of soil organisms in litterbags with vetch and rye roots. Soil Biol Biochem 37(6):1145–1155. doi: 10.1016/j.soilbio.2004.11.012 Google Scholar
  42. Georgieva S, Christensen S, Stevnbak K (2005b) Nematode succession and microfauna–microorganism interactions during root residue decomposition. Soil Biol Biochem 37(10):1763–1774. doi: 10.1016/j.soilbio.2005.02.010 Google Scholar
  43. Gilbert J, Tekauz A (2000) Review: recent developments in research on fusarium head blight of wheat in Canada. Can J Plant Pathol Rev Can Phytopathol 22(1):1–8. doi: 10.1080/07060660009501155 Google Scholar
  44. Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525. doi: 10.1111/J.1364-3703.2004.00252 PubMedGoogle Scholar
  45. Gromadzka K, Chelkowski J, Popiel D, Kachlicki P, Kostecki M, Golinski P (2009) Solid substrate bioassay to evaluate the effect of Trichoderma and Clonostachys on the production of zearalenone by Fusarium species. World Mycotoxin J 2(1):45–52. doi: 10.3920/WMJ2008.x046 Google Scholar
  46. Hanson KG, Fernandez MR (2003) Effect of glyphosate herbicides on Pyrenophora tritici-repentis and other cereal pathogens. In: Proceedings of Fourth International Wheat Tan Spot and Spot Blotch Workshop, Bemidji, MN, USA, 21–24 July, 2002, 2003. Agricultural Experiment Station, North Dakota State University, pp 128–131Google Scholar
  47. Hatsch D, Phalip V, Petkovski E, Jeltsch JM (2006) Fusarium graminearum on plant cell wall: No fewer than 30 xylanase genes transcribed. Biochem Biophys Res Commun 345(3):959–966. doi: 10.1016/bbrc.2006.04.171 PubMedGoogle Scholar
  48. Henriksen TM, Breland TA (2002) Carbon mineralization, fungal and bacterial growth, and enzyme activities as affected by contact between crop residues and soil. Biol Fertil Soils 35(1):41–48. doi: 10.1007/s00374-001-0438-0 Google Scholar
  49. Huber DM, Watson RD (1974) Nitrogen form and plant disease. Annu Rev Phytopathol 12:139–165. doi: 10.1146/ Google Scholar
  50. Inch SA, Gilbert J (2003a) Survival of Gibberella zeae in Fusarium-damaged wheat kernels. Plant Dis 87(3):282–287. doi: 10.1094/PDIS.2003.87.3.282 Google Scholar
  51. Inch S, Gilbert J (2003b) The incidence of Fusarium species recovered from inflorescences of wild grasses in southern Manitoba. Can J Plant Pathol Rev Can Phytopathol 25(4):379–383. doi: 10.1080/07060660309507093 Google Scholar
  52. Ioos R, Belhadj A, Menez M (2004) Occurrence and distribution of Microdochium nivale and Fusarium species isolated from barley, durum and soft wheat grains in France from 2000 to 2002. Mycopathologia 158(3):351–362. doi: 10.1007/s11046-004-2228-3 PubMedGoogle Scholar
  53. Jenczmionka NJ, Schafer W (2005) The Gpmk1 MAP kinase of Fusarium graminearum regulates the induction of specific secreted enzymes. Curr Genet 47(1):29–36. doi: 10.1007/s00294-004-0547-z PubMedGoogle Scholar
  54. Johnson JMF, Barbour NW, Weyers SL (2007) Chemical composition of crop biomass impacts its decomposition. Soil Sci Soc Am J 71(1):155–162. doi: 10.2136/sssaj2005.0419 Google Scholar
  55. Joint FAO/WHO Expert Committee on Food Additives (2001) Safety evaluation of certain mycotoxins in food. FAO Food and Nutrition Paper (74)Google Scholar
  56. Khonga EB, Sutton JC (1988) Inoculum production and survival of Gibberella zeae in maize and wheat residues. Plant Pathol 10:232–239. doi: 10.1080/07060668809501730 Google Scholar
  57. Kikot GE, Hours RA, Alconada TM (2009) Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: a review. J Basic Microbiol 49(3):231–241. doi: 10.1002/jobm.200800231 PubMedGoogle Scholar
  58. Kikot GE, Hours RA, Alconada TM (2010) Extracellular enzymes of Fusarium graminearum isolates. Braz Arch Biol Technol 53(4):779–783. doi: 10.1590/s1516-89132010000400005 Google Scholar
  59. Kirkegaard JA, Wong PTW, Desmarchelier JM (1996) In vitro suppression of fungal root pathogens of cereals by Brassica tissues. Plant Pathol 45(3):593–603. doi: 10.1046/j.1365-3059.1996.d01-143.x Google Scholar
  60. Kjöller AH, Struwe S (2002) Fungal communities, succession, enzymes, and decomposition. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology, and applications. Marcel Dekker, New York, pp 267–284Google Scholar
  61. Klem K, Vanova M, Hajslova J, Lancova K, Sehnalova M (2007) A neural network model for prediction of deoxynivalenol content in wheat grain based on weather data and preceding crop. Plant Soil Environ 53(10):421–429Google Scholar
  62. Kohl J, de Haas BH, Kastelein P, Burgers S, Waalwijk C (2007) Population dynamics of Fusarium spp. and Microdochium nivale in crops and crop residues of winter wheat. Phytopathology 97(8):971–978. doi: 10.1094/phyto-97-8-0971 PubMedGoogle Scholar
  63. Kumar A, Cameron JB, Flynn PC (2003) Biomass power cost and optimum plant size in western Canada. Biomass Bioenerg 24(6):445–464. doi: 10.1016/s0961-9534(02)00149-6 Google Scholar
  64. Landschoot S, Audenaert K, Waegeman W, Pycke B, Bekaert B, De Baets B, Haesaert G (2011) Connection between primary Fusarium inoculum on gramineous weeds, crop residues and soil samples and the final population on wheat ears in Flanders, Belgium. Crop Prot 30(10):1297–1305. doi: 10.1016/j.cropro.2011.05.018 Google Scholar
  65. Lavelle P, Spain AV (2001) Soil ecology. Kluwer Academic Publishers, DordrechtGoogle Scholar
  66. Lemmens M, Haim K, Lew H, Ruckenbauer P (2004) The effect of nitrogen fertilization on Fusarium head blight development and deoxynivalenol contamination in wheat. J Phytopathol 152(1):1–8. doi: 10.1046/j.1439-0434.2003.00791.x Google Scholar
  67. Luongo L, Galli M, Corazza L, Meekes E, De Haas L, Van der Plas CL, Kohl J (2005) Potential of fungal antagonists for biocontrol of Fusarium spp. in wheat and maize through competition in crop debris. Biocontrol. Sci Technol 15(3):229–242. doi: 10.1080/09583150400016852 Google Scholar
  68. Lutz MP, Feichtinger G, Defago G, Duffy B (2003) Mycotoxigenic Fusarium and deoxynivalenol production repress chitinase gene expression in the biocontrol agent Trichoderma atroviride P1. Appl Environ Microbiol 69(6):3077–3084. doi: 10.1128/aem.69.6.3077-3084.2003 PubMedGoogle Scholar
  69. Magan N, Lynch JM (1986) Water potentiel, growth and cellulolysis of fungi involved in decomposition of cereal residues. J Gen Microbiol 132:1181–1187. doi: 10.1099/00221287-132-5-1181 Google Scholar
  70. Maiorano A, Blandino M, Reyneri A, Vanara F (2008) Effects of maize residues on the Fusarium spp. infection and deoxynivalenol (DON) contamination of wheat grain. Crop Prot 27(2):182–188. doi: 10.1016/j.cropro.2007.05.004 Google Scholar
  71. Malhi SSMSS, Nyborg M, Goddard T, Puurveen D (2011) Long-term tillage, straw and N rate effects on quantity and quality of organic C and N in a Gray Luvisol soil. Nutr Cycl Agroecosyst 90(1):1–20. doi: 10.1007/s10705-010-9399-8 Google Scholar
  72. Mantle PG, Shaw S, Doling DA (1977) Role of weed grasses in etiology of ergot disease in wheat. Ann Appl Biol 86(3):339–351. doi: 10.1111/j.1744-7348.1977.tb01848.x Google Scholar
  73. McMullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: A re-emerging disease of devastating impact. Plant Dis 81(12):1340–1348. doi: 10.1094/PDIS.1997.81.12.1340 Google Scholar
  74. Meister U (2009) Fusarium toxins in cereals of integrated and organic cultivation from the Federal State of Brandenburg (Germany) harvested in the years 2000–2007. Mycotoxin Res 25(3):133–139. doi: 10.1007/s12550-009-0017-z Google Scholar
  75. Miedaner T, Schilling AG, Geiger HH (2004) Competition effects among isolates of Fusarium culmorum differing in aggressiveness and mycotoxin production on heads of winter rye. Eur J Plant Pathol 110(1):63–70. doi: 10.1023/B:EJPP.0000010136.38523.a9 Google Scholar
  76. Miedaner T, Klocke B, Flath K, Geiger HH, Weber WE (2011) Diversity, spatial variation, and temporal dynamics of virulences in the German leaf rust (Puccinia recondita f. sp secalis) population in winter rye. Eur J Plant Pathol 132(1):23–35. doi: 10.1007/s10658-011-9845-8 Google Scholar
  77. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, WashingtonGoogle Scholar
  78. Moody SA, Piearce TG, Dighton J (1996) Fate of some fungal spores associated with wheat straw decomposition on passage through the guts of Lumbricus terrestris and Aporrectodea longa. Soil Biol Biochem 28(4–5):533–537. doi: 10.1016/0038-0717(95)00172-7 Google Scholar
  79. Morel R (1996) Cultivated soils; Les sols cultivés – Technique et documentation, 2nd edn. Lavoisier, ParisGoogle Scholar
  80. Muller MEH, Brenning A, Verch G, Koszinski S, Sommer M (2010) Multifactorial spatial analysis of mycotoxin contamination of winter wheat at the field and landscape scale. Agric Ecosyst Environ 139(1–2):245–254. doi: 10.1016/j.agee.2010.08.010 Google Scholar
  81. Naef A, Defago G (2006) Population structure of plant-pathogenic Fusarium species in overwintered stalk residues from Bt-transformed and non-transformed maize crops. Eur J Plant Pathol 116(2):129–143. doi: 10.1007/s10658-006-9048-x Google Scholar
  82. Naef A, Senatore M, Defago G (2006) A microsatellite based method for quantification of fungi in decomposing plant material elucidates the role of Fusarium graminearum DON production in the saprophytic competition with Trichoderma atroviride in maize tissue microcosms. FEMS Microbiol Ecol 55(2):211–220. doi: 10.1111/j.1574-6941.2005.00023.x PubMedGoogle Scholar
  83. Nganje IB, Bangsund DA, Leistritz FL, Wilson WW, Tiapo NM (2002) Estimating the economic impact of crop disease: the case of Fusarium head blight in U.S. wheat and barley. In: 2002 National Fusariul Head Blight Forum. Michigan State University, East Lansing, pp 275–281Google Scholar
  84. Nicolardot B, Recous S, Mary B (2001) Simulation of C and N mineralisation during crop residue decomposition: a simple dynamic model based on the C:N ratio of the residues. Plant Soil 228(1):83–103. doi: 10.1023/a:1004813801728 Google Scholar
  85. Nicolardot B, Bouziri L, Bastian F, Ranjard L (2007) A microcosm experiment to evaluate the influence of location and quality of plant residues on residue decomposition and genetic structure of soil microbial communities. Soil Biol Biochem 39(7):1631–1644. doi: 10.1016/j.soilbio.2007.01.012 Google Scholar
  86. Nielsen JKS, Vikstroem AC, Turner P, Knudsen LE (2011a) Deoxynivalenol transport across the human placental barrier. Food Chem Toxicol 49:2046–2052. doi: 10.1016/j.fct.2011.05.016 PubMedGoogle Scholar
  87. Nielsen LK, Jensen JD, Nielsen GC, Jensen JE, Spliid NH, Thomsen IK, Justesen AF, Collinge DB, Jorgensen LN (2011b) Fusarium head blight of cereals in Denmark: species complex and related mycotoxins. Phytopathology 101(8):960–969. doi: 10.1094/phyto-07-10-0188 PubMedGoogle Scholar
  88. Oldenburg E, Kramer S, Schrader S, Weinert J (2008) Impact of the earthworm Lumbricus terrestris on the degradation of Fusarium-infected and deoxynivalenol-contaminated wheat straw. Soil Biol Biochem 40(12):3049–3053. doi: 10.1016/j.soilbio.2008.09.004 Google Scholar
  89. Osborne LE, Stein JM (2007) Epidemiology of Fusarium head blight on small-grain cereals. Int J Food Microbiol 119(1–2):103–108. doi: 10.1016/j.ijfoodmicro.2007.07.032 Google Scholar
  90. Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small-grain cereals — a review. Plant Pathol 44(2):207–238. doi: 10.1111/j.1365-3059.1995.tb02773.x Google Scholar
  91. Pereyra SA, Dill-Macky R (2005) Colonization and inoculum production of Gibberella zeae in components of wheat residue. Cereal Res Commun 33(4):755–762. doi: 10.1556/CRC.33.2005.2-3.145 Google Scholar
  92. Pereyra SA, Dill-Macky R (2008) Colonization of the residues of diverse plant species by Gibberella zeae and their contribution to Fusarium head blight inoculum. Plant Dis 92(5):800–807. doi: 10.1094/pdis-92-5-0800 Google Scholar
  93. Pereyra SA, Dill-Macky R, Sims AL (2004) Survival and inoculum production of Gibberella zeae in wheat residue. Plant Dis 88(7):724–730. doi: 10.1094/PDIS.2004.88.7.724 Google Scholar
  94. Pestka JJ (2010) Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch Toxicol 84(9):663–679. doi: 10.1007/s00204-010-0579-8 PubMedGoogle Scholar
  95. Phalip V, Delalande F, Carapito C, Goubet F, Hatsch D, Leize-Wagner E, Dupree P, Van Dorsselaer A, Jeltsch JM (2005) Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall. Curr Genet 48(6):366–379. doi: 10.1007/s00294-005-0040-3 PubMedGoogle Scholar
  96. Pianka E (1970) On r- and K-selection. Am Nat 104:592–597Google Scholar
  97. Ponge JF (2005) Fungal communities: relation to resource succession. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organisation and role in the ecosystem. Taylor & Francis, New York, pp 169–180Google Scholar
  98. Postic J, Cosic J, Vrandecic K, Jurkovic D, Saleh AA, Leslie JF (2012) Diversity of Fusarium species isolated from weeds and plant debris in Croatia. J Phytopathol 160(2):76–81. doi: 10.1111/j.1439-0434.2011.01863.x Google Scholar
  99. Ramirez ML, Chulze S, Magan N (2006) Temperature and water activity effects on growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium graminearum on irradiated wheat grain. Int J Food Microbiol 106(3):291–296. doi: 10.1016/j.ijfoodmicro.2005.09.004 PubMedGoogle Scholar
  100. Sampietro DA, Marin P, Iglesias J, Presello DA, Vattuone MA, Catalan CAN, Gonzalez Jaen MT (2010) A molecular based strategy for rapid diagnosis of toxigenic Fusarium species associated to cereal grains from Argentina. Fungal Biol 114:74–81. doi: 10.1016/j.mycres.2009.10.008 PubMedGoogle Scholar
  101. Sarwar M, Kirkegaard JA, Wong PTW, Desmarchelier JM (1998) Biofumigation potential of brassicas – III. In vitro toxicity of isothiocyanates to soil-borne fungal pathogens. Plant Soil 201(1):103–112. doi: 10.1023/a:1004381129991 Google Scholar
  102. Scarlat N, Blujdea V, Dallemand JF (2011) Assessment of the availability of agricultural and forest residues for bioenergy production in Romania. Biomass Bioenerg 35(5):1995–2005. doi: 10.1016/j.biombioe.2011.01.057 Google Scholar
  103. Schaafsma AW, Tamburic-Ilincic L, Hooker DC (2005) Effect of previous crop, tillage, field size, adjacent crop, and sampling direction on airborne propagules of Gibberella zeae/Fusarium graminearum, Fusarium head blight severity, and deoxynivalenol accumulation in winter wheat. Can J Plant Pathol Rev Can Phytopathol 27(2):217–224. doi: 10.1080/07060660509507219 Google Scholar
  104. Schrader S, Kramer S, Oldenburg E, Weinert J (2009) Uptake of deoxynivalenol by earthworms from Fusarium-infected wheat straw. Mycotoxin Res 25(1):53–58. doi: 10.1007/s12550-009-0007-1 Google Scholar
  105. Shaner G (2003) Epidemiology of Fusarium head blight of small grain cereals in North America. In: Leonard KJ, Bushnell WR (eds) Fusarium head blight of wheat and barley. American Phytopathological Society Press, St. Paul, MN, pp 84–119Google Scholar
  106. Simpson DR, Thomsett MA, Nicholson P (2004) Competitive interactions between Microdochium nivale var. majus, M. nivale var. nivale and Fusarium culmorum in planta and in vitro. Environ Microbiol 6(1):79–87. doi: 10.1046/j.1462-2920.2003.00540.x PubMedGoogle Scholar
  107. Singh DP, Backhouse D, Kristiansen P (2009) Interactions of temperature and water potential in displacement of Fusarium pseudograminearum from cereal residues by fungal antagonists. Biol Control 48(2):188–195. doi: 10.1016/j.biocontrol.2008.10.015 Google Scholar
  108. Sinsabaugh RL (2005) Fungal enzymes at the community scale. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organisation and role in the ecosystem. Taylor & Francis, New York, pp 349–360Google Scholar
  109. Smiley RW, Collins HP, Rasmussen PE (1996) Diseases of wheat in long-term agronomic experiments at Pendleton, Oregon. Plant Dis 80(7):813–820. doi: 10.1094/PD-80-0813 Google Scholar
  110. Smiley RW, Gourlie JA, Easley SA, Patterson LM (2005) Pathogenicity of fungi associated with the wheat crown rot complex in Oregon and Washington. Plant Dis 89(9):949–957. doi: 10.1094/pd-89-0949 Google Scholar
  111. Steinkellner S, Langer I (2004) Impact of tillage on the incidence of Fusarium spp. in soil. Plant Soil 267(1–2):13–22. doi: 10.1007/s11104-005-2574-z Google Scholar
  112. Stromberg ME (2005) Fungal communities of agroecosystems. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organisation and role in the ecosystem. Taylor & Francis, New York, pp 813–822Google Scholar
  113. Sutton JC (1982) Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Can J Plant Pathol Rev Can Phytopathol 4:195–209. doi: 10.1080/07060668209501326 Google Scholar
  114. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell Scientific Publications, OxfordGoogle Scholar
  115. Teich AH (1989) Epidemiology of wheat (Triticum aestivum L.) scab caused by Fusarium spp. In: Chelkovski J (ed) Fusarium: mycotoxins, taxonomy and pathogenicity. Elsevier Science, Amsterdam, pp 269–282Google Scholar
  116. Teich AH, Hamilton JR (1985) Effect of cultural practices, soil phosphorus, potassium, and pH on the incidence of Fusarium head blight and deoxynivalenol levels in wheat. Appl Environ Microbiol 49(6):1429–1431PubMedGoogle Scholar
  117. Thirup L, Johnsen K, Torsvik V, Spliid NH, Jacobsen CS (2001) Effects of fenpropimorph on bacteria and fungi during decomposition of barley roots. Soil Biol Biochem 33(11):1517–1524. doi: 10.1016/s0038-0717(01)00067-0 Google Scholar
  118. Thompson DP, Metevia L, Vessel T (1993) Influence of pH alone and in combination with phenolic antioxydants on growth and germination of mycotoxigenic species of Fusarium and Penicillium. J Food Prot 56(2):134–138Google Scholar
  119. Toyota K, Young IM, Ritz K (1996) Effects of soil matric potential and bulk density on the growth of Fusarium oxysporum f. sp. raphani. Soil Biol Biochem 28(9):1139–1145. doi: 10.1016/0038-0717(96)00134-4 Google Scholar
  120. Trail F (2009) For blighted waves of grain: Fusarium graminearum in the postgenomics era. Plant Physiol 149(1):103–110. doi: 10.1104/pp.108.129684 PubMedGoogle Scholar
  121. Trail F, Xu JR, San Miguel P, Halgren RG, Kistler HC (2003) Analysis of expressed sequence tags from Gibberella zeae (anamorph Fusarium graminearum). Fungal Genet Biol 38(2):187–197. doi: 10.1016/s1087-1845(02)00529-7 PubMedGoogle Scholar
  122. Tschanz AT, Horst RK, Nelson PE (1976) Effect of environment on sexual reproduction of Gibberrella zeae. Mycologia 68(2):327–340. doi: 10.2307/3759003 Google Scholar
  123. Van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91(6):1477–1492. doi: 10.1007/s00253-011-3473-2 PubMedGoogle Scholar
  124. Velluti A, Marin S, Bettucci L, Ramos AJ, Sanchis V (2000) The effect of fungal competition on colonization of maize grain by Fusarium moniliforme, F. proliferatum and F. graminearum and on fumonisin B-1 and zearalenone formation. Int J Food Microbiol 59(1–2):59–66. doi: 10.1016/S0168-1605(00)00289-0 PubMedGoogle Scholar
  125. Vilain M (1989) Plant production volume 2. La production vegetale. Volume 2 – La maîtrise technique de la production. Lavoisier, ParisGoogle Scholar
  126. Wanjiru WM, Kang ZS, Buchenauer H (2002) Importance of cell wall degrading enzymes produced by Fusarium graminearum during infection of wheat heads. Eur J Plant Pathol 108(8):803–810. doi: 10.1023/A:1020847216155 Google Scholar
  127. Yi CL, Kaul HP, Kubler E, Aufhammer W (2002) Populations of Fusarium graminearum on crop residues as affected by incorporation depth, nitrogen and fungicide application. Z Pflanzenk Pflanzens J Plant Dis Prot 109(3):252–263Google Scholar
  128. Yuen GY, Schoneweis SD (2007) Strategies for managing Fusarium head blight and deoxynivalenol accumulation in wheat. Int J Food Microbiol 119(1–2):126–130. doi: 10.1016/j.ijfoodmicro.2007.07.033 PubMedGoogle Scholar

Copyright information

© INRA and Springer-Verlag, France 2012

Authors and Affiliations

  • Johann Leplat
    • 1
    • 2
    • 3
  • Hanna Friberg
    • 4
  • Muhammad Abid
    • 1
    • 2
    • 3
  • Christian Steinberg
    • 1
    • 2
    • 3
    Email author
  1. 1.INRA, UMR1347 Agroécologie, Interactions Plante–Microorganismes (IPM)DijonFrance
  2. 2.Université de Bourgogne, UMR1347 Agroécologie, Interactions Plante–Microorganismes (IPM)DijonFrance
  3. 3.Agrosup, UMR1347 Agroécologie, Interactions Plante–Microorganismes (IPM)DijonFrance
  4. 4.Swedish University of Agricultural Sciences (SLU)Department of Forest Mycology and PathologyUppsalaSweden

Personalised recommendations