Agronomy for Sustainable Development

, Volume 33, Issue 1, pp 177–203 | Cite as

Cereal landraces genetic resources in worldwide GeneBanks. A review

  • Miguel A. A. Pinheiro de Carvalho
  • Penelope J. Bebeli
  • Eliseu Bettencourt
  • Graça Costa
  • Sonia Dias
  • Teresa M. M. Dos Santos
  • Jan J. SlaskiEmail author
Review Article


Since the dawn of agriculture, cereal landraces have been the staples for food production worldwide, but their use dramatically declined in the 2nd half of the last century, replaced by modern cultivars. In most parts of the world, landraces are one of the most threatened components of agrobiodiversity, facing the risk of genetic erosion and extinction. Since landraces have a tremendous potential in the development of new cultivars adapted to changing environmental conditions, GeneBanks holding their genetic resources potentially play an important role in supporting sustainable agriculture. This work reviews the current knowledge on cereal landraces maintained in GeneBanks and highlights the strengths and weaknesses of existing information about their taxonomy, origin, structure, threats, sampling methodologies and conservation and GeneBanks’ documentation and management. An overview of major collections of cereal landraces is presented, using the information available in global metadatabase systems. This review on winter cereal landrace conservation focuses on: (1) traditional role of GeneBanks is evolving beyond their original purpose to conserve plant materials for breeding programmes. Today’s GeneBank users are interested in landraces’ history, agro-ecology and traditional knowledge associated with their use, in addition to germplasm traits. (2) GeneBanks therefore need to actively share their germplasm collections’ information using different channels, to promote unlimited and effective use of these materials for the further development of sustainable agriculture. (3) Access to information on the 7.4 million accessions conserved in GeneBanks worldwide, of which cereal accessions account for nearly 45 %, particularly information on cereal landraces (24 % of wheat, 23 % of barley, 14 % of oats and 29 % of rye accessions), is often not easily available to potential users, mainly due to the lack of consistent or compatible documentation systems, their structure and registration. (4) Enhancing the sustainable use of landraces maintained in germplasm collections through the effective application of recent advances in landrace knowledge (origin, structure and traits) and documentation using the internet tools and data providing networks, including the use of molecular and biotechnological tools for the material screening and detection of agronomic traits. (5) Cereal landraces cannot be exclusively conserved as seed samples maintained under ex situ conditions in GeneBanks. The enormous contribution of farmers in maintaining the crop and landraces diversity is recognised. Sharing of benefits and raising awareness of the value of cereal landraces are the most effective ways to promote their conservation and to ensure their continued availability and sustainable use. (6) Evaluation of costs and economic benefits attributed to sustainable use of cereal landraces conserved in the GeneBanks requires comprehensive studies conducted on a case-by-case basis, that take into consideration species/crop resources, conservation conditions and quality and GeneBank location and functions.


GeneBanks Cereal landraces Wheat Rye Barley Oats Origin Conservation Documentation systems Germplasm 



An Integrated European In Situ Management Work Plan: Implementing Genetic Reserves and On Farm Concepts


Agricultural Research Services


World Vegetable Centre


Australian Winter Cereals Collection


EMBRAPA Recursos Genéticos e Biotecnologia


Centre for Genetic Resources (The Netherlands)


The International Maize and Wheat Improvement Centre


The Consultative Group on International Agricultural Research


Convention on Biological Diversity


Crop wild relatives


Data Sharing Agreement


European Avena Database


European Commission


European Cooperative Programme for Plant Genetic Resources


European Plant Genetic Resources Search Catalogue


European Secale Database


European Wheat Database


Food and Agriculture Organization of the United Nations


Indian GeneBank Information Management System


German Federal GeneBank


Germplasm Resources Information Network


Global Plan of Action


Global Biodiversity Information Facility


International Barley Core Collection


Institute of Crop Germplasm Resources, Chinese Academy of Agricultural Sciences


International Centre for Agricultural Research in the Dry Areas


Institute Code


International Crop Information System


International Board for Plant Genetic Resources


International Plant Genetic Resources Institute (now Bioversity International)


Leibniz Institute of Plant Genetics and Crop Plant Research (Germany)


Plant Breeding and Acclimatization Institute (Poland)


International Treaty on Plant Genetic Resources for Food and Agriculture


Memorandum of Understanding


National Bureau of Plant Genetic Resources (India)


European National Inventories


National Institute of Agrobiological Sciences


Nordic Genetic Resources Centre


National Small Grains Germplasm Research Facility (USA)


Plant Gene Resources of Canada


Plant genetic resources


Plant genetic resources for food and agriculture


South-East European Development Network on Plant Genetic Resources


Government of The Netherlands and the System-wide Genetic Resources Programme


System-wide Information Network for Genetic Resources


US Department of Agriculture


US National Plant Germplasm System


N.I. Vavilov Research Institute of Plant Industry


World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture.



This work was support by the European Community, through the INTERREG IIIB and MAC programmes, research projects Germobanco Agrícola da Macaronesia and AGRICOMAC. This paper was edited by Olga Spellman (Bioversity International)


  1. Agrawal RC, Behera D, Saxena S (2007) genebank Information Management System (GBIMS). Comput Electron Agric 59:90–96CrossRefGoogle Scholar
  2. Aguiriano E, Ruiz M, Fité R, Carrillo JM (2006) Analysis of genetic variability in a sample of the durum wheat (Triticum durum Desf.) Spanish collection based on gliadin markers. Genet Resour Crop Evol 53:1543–1552CrossRefGoogle Scholar
  3. Allard RW (1970) Population structure and sampling methods. In: Frankel OH, Bennett E (eds) Genetic resources in plants—their exploration and conservation. Blackwell, Oxford, pp 97–107Google Scholar
  4. Altieri MA (2003) The sociocultural and food security impacts of genetic pollution via transgenic crops of traditional varieties in Latin American centers of peasant agriculture. Bull Sci Technol Soc 23:350–359CrossRefGoogle Scholar
  5. Assefa A, Labuschange MT (2004) Phenotypic diversity in barley (Hordeum vulgare L.) landraces from north Shewa in Ethiopia. Biodivers Conserv 13:1441–1451CrossRefGoogle Scholar
  6. Barbier EB, Brown G, Dalmozzone S et al (1995) The economic value of biodiversity. In: Heywood VH (ed) Global biodiversity assessment. United Nations Environment Program. Cambridge University Press, Cambridge, pp 820–914Google Scholar
  7. Baum B (1968) Delimitation of the genus Avena (Gramineae). Can J Bot 46:121–132CrossRefGoogle Scholar
  8. Bechere E, Belay G, Mitiku D, Merker A (1996) Phenotypic diversity of tetraploid wheat landraces from northern and north-central regions of Ethiopia. Hereditas 124:165–172CrossRefGoogle Scholar
  9. Bellon MR (1996) The dynamic of crop infraspecific diversity: a conceptual frame work at the farmer level. Econ Bot 50:26–37CrossRefGoogle Scholar
  10. Bennett E (1970) Tactics in plant exploration. In: Frankel OH, Bennett E (eds) Genetic resources in plants—their exploration and conservation. Blackwell, Oxford, pp 157–179Google Scholar
  11. Berg T (2009) Landraces and folk varieties: a conceptual reappraisal of terminology. Euphytica 166:423–430CrossRefGoogle Scholar
  12. Bettencourt E (2011) Chapter 8: Sources of information on existing germplasm collections. Crop GeneBank Knowledge Base. Available from
  13. Bettencourt E, Konopka J (1990) Directory of crop germplasm collections. 3. Cereals: Avena, Hordeum, millets, Oryza, Secale, Sorghum, Triticum, Zea and pseudocereals. International Board for Plant Genetic Resources, RomeGoogle Scholar
  14. Bettencourt E, Ford-Lloyd BV, Dias S (2008) Genetic erosion and genetic pollution of crop wild relatives: the PGR Forum perspective and achievements. In: Maxted N, Ford-Lloyd BV, Kell SP, Iriondo J, Dulloo E, Turok J (eds) Crop wild relative conservation and use. CABI, Wallingford, pp 275–284Google Scholar
  15. Bommer DFR (1991) The historical development of international collaboration in plant genetic resources. In: van Hintum TJL, Frese L, Perret PM, (eds) Searching for new concepts for collaborative genetic resources management. Papers of the EUCARPIA/IBPGR Symposium, Wageningen, The Netherlands, 3–6 December 1990. International Crop Networks Series no. 4. International Board for Plant Genetic Resources, Rome, pp 3–12Google Scholar
  16. Bothmer R, von Jacobsen N (1985) Origin, taxonomy, and related species. In: Rasmusson DC (ed) Barley. American Society of Agronomists, Madison, pp 19–56Google Scholar
  17. Brown AHD, Marshall DR (1995) A basic sampling strategy: theory and practice. In: Guarino L, Ramanatha Rao V, Reid R (eds) Collecting plant genetic diversity technical guidelines. CABI, Wallingford, pp 75–91Google Scholar
  18. Brummitt RK, Powell CE (1992) Authors of plant names. Royal Bot Garden Kew, KewGoogle Scholar
  19. Brush SP (1995) In situ conservation of landraces in centres of crop diversity. Crop Sci 35:346–354CrossRefGoogle Scholar
  20. Buerkert A, Oryakhail M, Filatenko AA, Hammer K (2006) Cultivation and taxonomic classification of wheat landraces Panjsher valley of Afghanistan after 23 years of war. Genet Resour Crop Evol 53:91–97. doi: 10.1007/s10722-004-0717-3 CrossRefGoogle Scholar
  21. Camacho Villa TC, Maxted N, Scholten MA, Ford-Lloyd BV (2005) Defining and identifying crop landraces. Plant Genet Resour: Charact Util 3:373–384. doi: 10.1079/PGR200591 CrossRefGoogle Scholar
  22. CBD (1993) Convention on Biological Diversity. Available from Accessed July 2011
  23. Chebotar S, Roder MS, Korzun V, Saal B, Weber WE, Börner A (2003) Molecular studies on genetic integrity of open-pollinating species rye (Secale cereale L.) after long-term genebank maintenance. Theor Appl Genet 107:1469–1476PubMedCrossRefGoogle Scholar
  24. Chwedorzewska KJ, Bednarek PT, Lewandowska R, Krajewski P, Puchalski J (2006) Studies on genetic changes in rye samples (Secale cereale L.) maintained in a seed bank. Cell Mol Biol Lett 11:338–347PubMedCrossRefGoogle Scholar
  25. Damania AB (1996) Biodiversity conservation: a review of options complementary to standard ex situ methods. Plant Genet Resour Newsl 107:1–18Google Scholar
  26. Damania AB (2008) History, achievements, and current status of genetic resources conservation. Agron J 100:9–21CrossRefGoogle Scholar
  27. Day Rubenstein K, Smale M, Widrlechne MP (2006) Demand for genetic resources and the U.S. National Plant Germplasm System. Crop Sci 46:1021–1031CrossRefGoogle Scholar
  28. de Bustos A, Jouve N (2002) Phylogenetic relationships of the genus Secale based on the characterization of rDNA ITS sequences. Pl Syst Evol 235:147–154CrossRefGoogle Scholar
  29. del Greco A, Negri V, Maxted N (2007) Report of a task force on on-farm conservation and management. Second Meeting, 19–20 June 2006, Stegelitz, Germany. Bioversity International, RomeGoogle Scholar
  30. Delipavlov D (1962) Secale rhodopaeum Delipavlov—a new species of rye from the Rhodope Mountains. Dokl Bulg AkadNauk 15:407–411Google Scholar
  31. Demissie A, Bjornstad A (1996) Phenotypic diversity of Ethiopian barleys in relation to geographical regions, altitudinal range, and agro-ecological zones: as an aid to germplasm collection and conservation strategy. Hereditas 124:17–29CrossRefGoogle Scholar
  32. DGADR (2009) Procedimentos de inscrição no Catálogo Nacional de Variedades e de produção, certificação e comercialização de variedades de conservação de espécies agrícolas. Ministério da Agricultura, do Desenvolvimento Rural e das Pescas. Direcção-Geral de Agricultura e Desenvolvimento Rural. DGADR-DSFMMP. DSVRG-27/09Google Scholar
  33. Dias S (2009) EURISCO-The European Plant Genetic Resources Search Catalogue. A vehicle to promote of the conservation and sustainable utilization of plant genetic resources. Poster abstract—poster P53. At Biodiversity Information Standards (TDWG), TDWG 2009 Annual Conference, 9-13th November 2009, CORUM Conference Centre Montpellier, FranceGoogle Scholar
  34. Dias S (2010) EURISCO Status. Presented at the “Meeting of the ECPGR Documentation and Information Network Coordinating Group 17–18 February 2009. Rome, Italy”. Slides. Available from
  35. Dias SR, Gaiji S, Turok J (2006) “EURISCO- Facts and Figures”. Second European Workshop on National Plant Genetic Resources Programmes: from research to policy making. November 2006. Available from (
  36. Dias S, Dulloo ME, Arnaud E (2011) Chapter 33 - The role of EURISCO in promoting use of agricultural biodiversity. In: Maxted N, Lothar F, Iriondo J, Dulloo E, Ford-Lloyd BV, Pinheiro de Carvalho MAA (eds) Agrobiodiversity conservation: securing the diversity of crop wild relatives and landraces. CABI, Wallingford. ISBN 9781845938512)Google Scholar
  37. Diederichsen A (2008) Assessments of genetic diversity within a world collection of cultivated hexaploid oat (Avena sativa L.) based on qualitative morphological characters. Genet Resour Crop Evol 55:419–440CrossRefGoogle Scholar
  38. Diederichsen A (2009) Duplication assessments in Nordic Avena sativa accessions at the Canadian national genebank. Genet Resour Crop Evol 56:587–597CrossRefGoogle Scholar
  39. Diulgheroff S (2006) A global overview of assessing and monitoring genetic erosion of crop wild relatives and local varieties using WIEWS and other elements of the FAO Global System on PGR. In: Ford-Lloyd BV, Dias SR, Bettencourt E (eds) Genetic erosion and pollution assessment methodologies. Proceedings of PGR Forum Workshop 5, Terceira Island, Autonomous Region of the Azores, Portugal, 8–11 September 2004. Published on behalf of the European Crop Wild Relative Diversity Assessment and Conservation Forum. Bioversity International, RomeGoogle Scholar
  40. Dobrovolskaya O, Saleh U, Malysheva-Otto L (2005) Rationalising germplasm collections: a case study for wheat. Theor Appl Genet 111:1322–1329PubMedCrossRefGoogle Scholar
  41. Dorofeev VF, Filatenko AA, Migushova EF, Udaczin RA, Jakubziner MM (1979) Wheat. In: Dorofeev VF, Korovina ON (eds) Flora of cultivated plants, vol 1. Kolos, LeningradGoogle Scholar
  42. dos Santos TMM, Slaski JJ, Pinheiro de Carvalho MAA, Taylor GJ, Clemente Vieira MR (2005) Evaluation of the Madeiran wheat germplasm for aluminium resistance using aluminium-induced callose formation in root apices as a marker. Acta Physiol Plant 27:297–302CrossRefGoogle Scholar
  43. dos Santos TMM, Ganança F, Slaski JJ, Pinheiro de Carvalho MAA (2009) Morphological characterization of wheat genetic resources from the Island of Madeira, Portugal. Genet Resour Crop Evol 56:363–375. doi: 10.1007/s10722-008-9371-5 CrossRefGoogle Scholar
  44. EC (2008) Commission Directive 2008/62/EC of 20 June 2008. Official Journal of the European Union. L 162/13. EN. 21.6.2008Google Scholar
  45. Ellstrand NC (2001) When transgenes wander, should we worry? Plant Physiol 125:1543–1545PubMedCrossRefGoogle Scholar
  46. Engels JMM, Visser L (eds) (2003) A guide to effective management of germplasm collections. IPGRI Handbooks for genebanks no. 6. IPGRI, Rome, ItalyGoogle Scholar
  47. EURISCO (2012) Available from Accessed February 2012
  48. European Wheat database (EWDB) (2012) Available from
  49. FAO (1996) Global plan of action for the conservation and sustainable utilization of plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome, p 63Google Scholar
  50. FAO (1998) The State of the World’s Plant Genetic Resources for Food and Agriculture. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  51. FAO (2010) The Second Report on The State of the World’s Plant Genetic Resources for Food and Agriculture. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  52. FAO (2011) Second Global Plan of Action for Plant Genetic Resources for Food and Agriculture. Food and Agriculture Organization of the United Nations, Rome, p 51Google Scholar
  53. Farias RM, Bettencourt E (2006) Estratégia para missões sistemáticas de colheita de espécies vegetais para conservação ex situ. Editores: Instituto Nacional de Investigação Agrária e das Pescas (INIAP); Direcção Geral de Agricultura de Entre Douro e Minho (DRAEDM) pp 39Google Scholar
  54. Ferreira ME (2006) Molecular analysis of genebanks for sustainable conservation and increased use of crop genetic resources. In: Ruane J, Sonnino A (eds) The role of biotechnology in exploring and protecting the agricultural resources. FAO, Rome, pp 121–127Google Scholar
  55. Finkel E (2009) Scientists seek easier access to seed banks science. 12 June 2009: 1376. doi: 10.1126/science.324_1376
  56. Frankel OH, Hawkes JG (1975) Genetic resources—the past ten years and the next. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. Cambridge University Press, Cambridge, pp 1–11Google Scholar
  57. Friis-Hansen E, Sthapit B (2000) Participatory approaches to the conservation and use of plant genetic resources. International Plant Genetic Resources Institute (IPGRI), RomeGoogle Scholar
  58. Frisvold G, Sullivan J, Raneses A (2003) Genetic improvements in major U.S. crops: the size and distribution of benefits. Agric Econ 28:109–119CrossRefGoogle Scholar
  59. Gaiji S, Dias S, Endresen DTF, Franco T (2008) Building a global accession level information system in support to the International Treaty on Plant Genetic Resources for Food and Agriculture—ways forward in the Americas. Recur Natur Ambient 53:126–135Google Scholar
  60. Gandilyan PA (1980) Key to wheat, Aegilops, rye and barley. Academy of Science, Armenian SSR, ErevanGoogle Scholar
  61. Guarino L (2003) Approaches to measuring genetic erosion. PGR Documentation and Information in Europe—towards a sustainable and user-oriented information infrastructure. EPGRIS Final Conference combined with a meeting of the ECP/GR Information and Documentation Network. Prague, Czech Republic, 11–13 SeptemberGoogle Scholar
  62. Guarino L, Chadja H, Mokkadem A (1991) Wheat collecting in Southern Algeria. Short Commun Rachis Newsl, pp 23–25Google Scholar
  63. Guarino L, Ramanatha Rao V, Reid R (1995) Collecting plant genetic diversity—technical guidelines. IPGRI/FAO/IUCN/UNEP, p 748Google Scholar
  64. Hammer K, Gladis TH (1996) Funkionen der genebank des IPK Gatersleben bei der in situ Erhaltung on farm. Schr Genet Ressour 2:83–89Google Scholar
  65. Hammer K, Spahillar M (1998) Burimet gjenetike te bimeve dhe agrobiodiversiteti. Bul Shkencave Bujqesore 3:29–36Google Scholar
  66. Hammer K, Diederichsen A, Spahillar M (1999) Basic studies toward strategies for conservation of plant genetic resources pp 29–33. In: Serwinski J, Faberova I (eds) Proceedings of technical meeting on the methodology of the FAO World Information and Early Warning System on Plant Genetic Resources. FAO, Rome. Available from
  67. Hanson J (1985) International Board for Plant Genetic Resources. Practical Manuals for genebanks no 1. IBPGR Secretariat, RomeGoogle Scholar
  68. Harlan J (1975) Our vanishing genetic resources. Science 188:618–621CrossRefGoogle Scholar
  69. Harris DR (1990) Vavilov's concept of centres of origin of cultivated plants: its genesis and its influence on the study of agricultural origins. Biol J Linn Soc 39:7–16CrossRefGoogle Scholar
  70. Hawkes JG, Maxted N, Ford-Lloyd BV (2000) The ex situ conservation of plant genetic resources. Kluwer, DordrechtCrossRefGoogle Scholar
  71. Hirano R, Kikuchi A, Kawase M, Watanabe KN (2008) Evaluation of genetic diversity of bread wheat landraces from Pakistan by AFLP and implications for a future collection strategy. Genet Resour Crop Evol 55:1007–1015CrossRefGoogle Scholar
  72. Hirano R, Jatoi SA, Kawase M, Kikuchi A, Watanabe KN (2009) Consequences of ex situ conservation on the genetic integrity of germplasm held at different genebanks: a case study of bread wheat collected in Pakistan. Crop Sci 49:2160–2166CrossRefGoogle Scholar
  73. Holubec V, Vymyslický T, Paprštein F (2010) Possibilities and reality of on-farm conservation. Czech J Genet Plant Breed 46(Special Issue):S60–S64Google Scholar
  74. IBPGR (1980) A glossary of plant genetic resources terms. IBPGR Secretariat, RomeGoogle Scholar
  75. Index Herbariorum (2012) A Global Directory of Public Herbaria and Associated Staff. [continuously updated]. Available from Accessed February 2012
  76. ITPGRFA (2004) International Treaty on Plant Genetic Resources for Food and Agriculture. Available from
  77. Jaradat AA, Shahid M, Al Maskri AY (2004) Genetic diversity in the Batini barley landrace from Oman: I. Spike and seed quantitative and qualitative traits. Crop Sci 44:304–315CrossRefGoogle Scholar
  78. Johnson RC (2008) Gene banks pay big dividends to agriculture, the environment and human welfare. PLoS Biol 6:e148PubMedCrossRefGoogle Scholar
  79. Jones H, Lister DL, Bower MA, Leigh FJ, Smith LM, Jones MK (2008) Approaches and constraints of using existing landrace and extant plant material to understand agricultural spread in prehistory. Plant Genet Resour 6:98–112. doi: 10.1017/S1479262108993138 CrossRefGoogle Scholar
  80. Kaplan JK (1998) Conserving the World’s plants. Agric Res 46:4–9Google Scholar
  81. Kebebew F, Tsehaye Y, McNeilly T (2001) Diversity of durum wheat (Triticum durum Desf.) at in situ conservation sites in North Shewa and Bale, Ethiopia. J Agric Sci 136:383–392CrossRefGoogle Scholar
  82. Kimber G, Feldman M (1987) Wild Wheat, an introduction. Special Report 353, College of Agriculture, University of Missouri, ColumbiaGoogle Scholar
  83. Kimber G, Sears ER (1987) Evolution in the genus Triticum and the origin of cultivated wheat. In: Heyne EG (ed) Wheat and wheat improvement, 2nd edn. American Society of Agronomy, Madison, pp 154–164Google Scholar
  84. Knüpffer H (2009) Triticeae genetic resources in ex situ genebank collections. In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae, plant genetics and genomics: crops and models 7. Springer, New York. doi: 10.1007/978-0-387-77489-3_2
  85. Koo B, Pardey PG, Wright BD (2003) The economic costs of conserving genetic resources at the CGIAR centres. Agric Econ 29:287–297Google Scholar
  86. Ladizinsky G (1998) Plant evolution under domestication. Kluwer, DordrechtCrossRefGoogle Scholar
  87. Leino MV, Hagenblad J (2010) Nineteenth century seeds reveal the population genetics of landrace barley (Hordeum vulgare). Mol Biol Evol 27:964–973PubMedCrossRefGoogle Scholar
  88. Li HB, Zhou MX, Liu CJ (2009) A major QTL conferring crown rot resistance in barley and its association with plant height. Theor Appl Genet 118:903–910. doi: 10.1007/s10681-009-9905-8 PubMedCrossRefGoogle Scholar
  89. Liston A, Rieseberg LH, Adams RP, Do N, Zhu GL (1990) A Method for collecting dried plant specimens for DNA and isozyme analyses and the results of a field test in Xinjiang China. Ann Mo Bot Gard 77:859–863CrossRefGoogle Scholar
  90. Lorenzetti F, Negri V (2009) The European seed legislation on conservation varieties. In: Veteläinen M, Negri V, Maxted N (eds) European landraces: on-farm conservation, management and use. Bioversity Technical Bulletin no 15. Bioversity International, Rome, pp. 287–295Google Scholar
  91. Lorenzetti F, Lorenzetti S, Negri V (2009) The Italian laws on conservation varieties and the national implementation of Commission Directive 2008/62 EC. In: Veteläinen M, Negri V, Maxted N (eds) European landraces: on-farm conservation, management and use. Bioversity Technical Bulletin no 15. Bioversity International, Rome, pp. 300–304Google Scholar
  92. Loskutov IG (1999) Vavilov and His Institute—a history of world collection of plant genetic resources in Russia. International Plant Genetics Research Institute, Rome, p 188Google Scholar
  93. Loskutov IG (2003) Classification and diversity of the genus Avena L. In: Lipman E, Maggioni L, Knüpffer H, Ellis R, Leggett JM, Kleijer G, Faberová I, Le Blanc A Cereal Genetic Resources in Europe. Report of a Cereals Network/Report of a Working Group on Wheat, First Meeting, Yerevan, Armenia, 3–5 July 2003/Second Meeting, 22–24 September 2005, La Rochelle, France, IPGRI, Rome, pp 85–90Google Scholar
  94. Louette D (1999) Traditional management of seed and genetic diversity: what is a landrace? In: Brush SB (ed) Genes in the field: on-farm conservation of crop diversity. Lewis Publishers, CRDI/IPGRI, pp 109–142Google Scholar
  95. Löve Á (1984) Conspectus of the Triticeae. Feddes Repert 95:425–521Google Scholar
  96. Mac Key J (1988) A plant breeder’s perspective on taxonomy of cultivated plants. Biol Zentralblatt 107:369–379Google Scholar
  97. MADRP (2009) Portaria no. 1268/2009 de 16 de Outubro. Ministério da Agricultura, do Desenvolvimento Rural e das Pescas. Diário da República, 1.ª série—no. 201–16 de Outubro de 2009. pp. 7808–7813Google Scholar
  98. Mantzavinou A, Bebeli PJ, Kaltsikes PJ (2005) Estimating genetic diversity in Greek durum wheat landraces with RAPD markers. Aust J Agric Res 56:1355–1364CrossRefGoogle Scholar
  99. Martos V, Royo C, Rharrabti Y, Garcia del Moral LF (2005) Using AFLPs to determine phylogenetic relationships and genetic erosion in durum wheat cultivars released in Italy and Spain throughout the 20th century. Field Crops Res 91:107–116. doi: 10.1016/j.fcr.2004.06.003 CrossRefGoogle Scholar
  100. Maxted N, Ford-Lloyd BV, Hawkes JG (1997) Contemporary conservation strategies. In: Maxted N, Ford-Lloyd BV, Hawkes JG (eds) Plant genetic conservation: the in-situ approach. Chapman & Hall, London, pp 20–55CrossRefGoogle Scholar
  101. Maxted N, Lothar F, Iriondo J, Dulloo E, Ford-Lloyd BV, Pinheiro de Carvalho MAA (2012). Agrobiodiversity conservation: securing the diversity of crop wild relatives and landraces. CABI, Wallingford,365 pp. ISBN: 978-1-84593-851-2Google Scholar
  102. Miller AG, Nyberg JA (1995) Collecting herbarium vouchers. I-27. In: Guarino L, Ramanatha Rao V, Reid R (eds) Collecting plant genetic diversity—technical guidelines. IPGRI/FAO/IUCN/UNEP, pp 561–573Google Scholar
  103. Moragues M, Zarco-Hernandez J, Moralejo MA, Royo C (2006) Genetic diversity of glutenin protein subunits composition in durum wheat landraces [Triticum turgidum ssp. turgidum convar. durum (Desf.) MacKey] from the Mediterranean basin. Genet Resour Crop Evol 53:993–1002CrossRefGoogle Scholar
  104. Moss H, Guarino L (1995) Gathering and recording data in the field. I-19. In: Guarino L, Ramanatha Rao V, Reid R (eds) Collecting plant genetic diversity—technical guidelines. IPGRI/FAO/IUCN/UNEP, pp 367–417Google Scholar
  105. Nagel M, Vogel H, Landjeva S et al (2009) Seed conservation in ex situ genebanks-genetic studies on longevity in barley. Euphytica 170:5–14CrossRefGoogle Scholar
  106. NCBI (2012) Available from Accessed February 2012
  107. Negri V (2003) Landraces in central Italy: where and why they are conserved and perspectives for their on-farm conservation. Genet Resour Crop Evol 50:871–885CrossRefGoogle Scholar
  108. Nevski A (1941) Beiträge zur Kenntniss der wildwachsenden Gersten in Zusammenhang mit der Frage über den Ursprung von Hordeum vulgare L. und Hordeum distichon L. (Versucheiner Monographie der Gattung Hordeum). Trudy Eot Imr Akad Nauk SSSR 1:64–255Google Scholar
  109. Newton AC, Akar T, Baresel JP, Bebeli PJ, Bettencourt E, Bladenopoulos KV, Czembor JH, Fasoula DA, Katsiotis A, Koutis K, Koutsika-Sotiriou M, Kovacs G, Larsson H, Pinheiro de Carvalho MAA, Rubiales D, Russell J, dos Santos TMM, Vaz Patto MC (2010) Cereal landraces for sustainable agriculture. A review. Agron Sust Dev 30:237–269. doi: 10.1051/agro/2009032 CrossRefGoogle Scholar
  110. NordGen (2012) Available from Accessed February 2012
  111. Painting KA, Perry MC, Denning RA, Ayad WG (1993) Guidebook for genetic resources documentation. A self-teaching approach to the understanding, analysis and development of genetic resources documentation. International Plant Genetic Resources Institute, RomeGoogle Scholar
  112. Papadakis JS (1929) Formes Grecques de blé. Bulletin Scientifique No. 1. Station d’Amélioration des Plantes, A SaloniqueGoogle Scholar
  113. Pardey PG, Koo K, Wright BD, van Dusen ME, Skovmand B, Taba S (2001) Plant genetic resources. Costing the conservation of genetic resources: CIMMYT’s ex situ maize and wheat collection. Crop Sci 41:1286–1299CrossRefGoogle Scholar
  114. Parzies HK, Spoor W, Ennos RA (2000) Genetic diversity of barley landrace accessions (Hordeum vulgare ssp. vulgare) conserved for different lengths of time in ex situ gene banks. Heredity 84:476–486PubMedCrossRefGoogle Scholar
  115. Pecetti L, Doust MA, Calcagno L, Raciti CN, Boggini G (2001) Variation of morphological and agronomical traits, and protein composition in durum wheat germplasm from Eastern Europe. Genet Resour Crop Evol 48:609–620CrossRefGoogle Scholar
  116. Perry MC, Bettencourt E (1995) Sources of information on existing germplasm collections. I-8. In: Guarino L, Ramanatha Rao V, Reid R (eds) Collecting plant genetic diversity—technical guidelines. IPGRI/FAO/IUCN/UNEP, pp 121–129Google Scholar
  117. Pinheiro de Carvalho MAA, Slaski JJ, dos Santos TMM, Ganança FT, Abreu I, Taylor GJ, Clemente Vieira MR, Popova TN, Franco E (2003) Identification of aluminium resistant genotypes among Madeiran regional wheats. Commun Soil Sci Plant Anal 34(19 & 20):2973–2985. doi: 10.1081/CSS-120025219 Google Scholar
  118. Pistorius R (1997) Scientists, plants and politics. A history of the plant genetic resources movement. IPGRI, RomeGoogle Scholar
  119. Pita JM, Pfrez-Garcia F, Escudero A, de la Cuadra C (1998) Viability of Avena sativa L. seeds after 10 years of storage in base collection. Field Crops Res 55:183–187CrossRefGoogle Scholar
  120. Porceddu E, Damania AB (1992) Sampling strategies for conserving variability of genetic resources in seed crops. Technical Manual no 17. ICARDA, AleppoGoogle Scholar
  121. Porfiri O, Costanza MT, Negri V (2009) Landrace Inventories in Italy and the Lazio Region Case Study. In: Veteläinen M, Negri V, Maxted N (eds) European landraces: on-farm conservation, management and use. Biodiversity technical bulletin no 15. Biodiversity International, Rome, pp 117–123Google Scholar
  122. Qualset CO (1975) Sampling germplasm in the centre of diversity: an example of disease resistance in Ethiopian barley. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. Cambridge University Press, Cambridge, pp 81–96Google Scholar
  123. Rao NK, Hanson J, Dulloo ME, Ghosh K, Nowell D, Larinde M (2006) Manual of seed handling in genebanks. Handbook for genebanks no 8. Bioversity International, Rome, ItalyGoogle Scholar
  124. Rawashdeh NK, Haddad NI, Al-Ajlouni MM, Turk MA (2007) Phenotypic diversity of durum wheat (Triticum durum Desf.) from Jordan. Genet Resour Crop Evol 54:129–138CrossRefGoogle Scholar
  125. Reem H, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13CrossRefGoogle Scholar
  126. Reynolds M, Dreccer F, Trethowan R (2007) Drought-adaptive traits derived from wheat wild relatives and landraces. Integrated approaches to sustain and improve plant production under drought stress. J Exp Bot 58(2):177–186PubMedCrossRefGoogle Scholar
  127. Ribeiro-Carvalho C, Guedes-Pinto H, Heslop-Harrison JS, Schwarzacher T (2001) Introgression of rye chromatin on chromosome 2D in the Portuguese wheat landrace ‘Barbela’. Genome 44:1122–1128PubMedCrossRefGoogle Scholar
  128. Rice EB, Smith ME, Mitchell SE, Kresovich S (2006) Conservation and change: a comparison of in situ and ex situ conservation of Jala maize germplasm. Crop Sci 46:428–436CrossRefGoogle Scholar
  129. Rocha F, Bettencourt E, Gaspar C (2008) Genetic erosion assessment through the re-collecting of crop germplasm. Counties of Arcos de Valdevez, Melgaço, Montalegre, Ponte da Barca and Terras de Bouro (Portugal). Plant Genet Resour Newsl 154:6–13Google Scholar
  130. Roshevitz RY (1947) A monograph of the wildweedy and cultivated species of rye. Acta Inst Bot Nomine Acad Sci USSR Ser 1 Fe Et Syst 6:105–163Google Scholar
  131. Ruiz M, Aguiriano E (2004) Analysis of duplication in the Spanish durum wheat collection maintained in the CRF-INIA on the basis of agro-morphological traits and gliadin proteins. Genet Resour Crop Evol 51:231–235CrossRefGoogle Scholar
  132. Ruiz M, Martín I (1998) Spanish landraces collection of durum wheat maintained at the CRF-INIA. CIHEAM-Options Mediterraneennes 40:601–606Google Scholar
  133. Ruiz M, Martín I, de la Cuadra C (1999) Cereal seeds viability after 10 years of storage in active and base germplasm collections. Field Crops Res 64:229–236CrossRefGoogle Scholar
  134. Ruiz M, Rodriguez-Quizano M, Metakovsky EV, Vazquez JF, Carrillo JM (2002) Polymorphism, variation and genetic identity of Spanish common wheat germplasm based on gliadins alleles. Field Crops Res 79:185–196CrossRefGoogle Scholar
  135. Sackville Hamilton NR, Chorlton KH (1997) Regeneration of accessions in seed collections: a decision guide. Handbook for genebanks no 5. International Plant Genetic Resources Institute, RomeGoogle Scholar
  136. Saker M, Adawy S, Smith CM (2008) Entomological and genetic variation of cultivated barley (Hordeum vulgare) from Egypt. Arch Phytopathol Plant Prot 41:526–536CrossRefGoogle Scholar
  137. Saxena S, Singh AK (2006) Revisit to definitions and need for inventorization or registration of landrace, folk, farmers’ and traditional varieties. Curr Sci 91:1451–1454Google Scholar
  138. Sencer HA, Haekes JG (1980) On the origin of cultivated rye. Biol J Linn Soc 13:299–313CrossRefGoogle Scholar
  139. SINGER (2012) Available from Accessed February 2012
  140. Smale M, Day-Rubenstein K (2002) The demand for crop genetic resources: international use of the US national plant germplasm system. World Dev 30:1639–1655CrossRefGoogle Scholar
  141. Smale M, Koo B (2003) What is a genebank worth? International Food Policy Research Institute, Biotechnology and Genetic Resource Policies. Brief 7. pp 5Google Scholar
  142. Steiner AM, Ruckenbauer P, Goecke E (1997) Maintenance in GeneBanks, a case study: contaminations observed in the Nurnberg oats of 1831. Genet Resour Crop Evol 44:533–538CrossRefGoogle Scholar
  143. Swaminathan MS (2002) The past, present and future contributions of farmers to the conservation and development of genetic diversity. In: Engels JMM, Ramanatha Rao V, Brown AHD, Jackson MT (eds) IPGRI. Managing Plant Genetic Diversity. CABI, Wallingford, pp 23–31Google Scholar
  144. Teklu Y, Hammer K (2009) Diversity of Ethiopian tetraploid wheat germplasm: breeding opportunities for improving grain yield potential and quality traits. Plant Genet Resour 7:1–8CrossRefGoogle Scholar
  145. Teklu Y, Hammer K, Huang XQ, Roder MS (2005) Analysis of microsatellite diversity in Ethiopian tetraploid wheat landraces. Genet Resour Crop Evol 53:1115–1126CrossRefGoogle Scholar
  146. Tesemma T, Tsegaye S, Belay G, Bechere E, Mitiku D (1998) Stability of performance of tetraploid wheat landraces in the Ethiopian highland. Euphytica 102:301–308CrossRefGoogle Scholar
  147. Torricelli R, Quintalian L, Falcinelli M (2009) The “Farro” (Triticum dicoccon Schrank) from Monteleone di Spoleto (Valnerina Valley, Umbria). In: Veteläinen M, Negri V, Maxted N (eds.) European landraces: on-farm conservation, management and use. Bioversity Technical Bulletin no 15. Bioversity International, Rome, pp 183–186Google Scholar
  148. Trethowan RM, Mujeeb-Kazi A (2008) Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci 48:1255–1265CrossRefGoogle Scholar
  149. Tsegaye S, Tesemma T, Belay G (1996) Relationships among tetraploid wheat (Triticum turgidum L.) landrace populations revealed by isozyme markers and agronomic traits. Theor Appl Genet 93:600–605CrossRefGoogle Scholar
  150. van Hintum TJL, Ellings A (1991) Assessment of glutenin and phenotypic diversity of Syrian durum wheat landraces in relation to their geographical regions. Euphytica 55:209–215CrossRefGoogle Scholar
  151. van Hintum TJL, Knüpffer H (1995) Duplication within and between germplasm collections. I. Identification duplication on the basis of passport data. Genet Resour Crop Evol 42:1127–1133Google Scholar
  152. van Hintum TJL, Sackville Hamilton NR, Engles JMM, van Treuren R (2002) Accession management strategies: splitting and lumping. In: Engels JMM, Ramanatha Rao V, Brown AHD, Jackson MT (eds) Managing plant genetic diversity. CABI, New York, pp 113–120Google Scholar
  153. van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agriculture University Papers, 7. Wageningen Agricultural University, Wageningen, 513 ppGoogle Scholar
  154. van Treuren R, van Hintum TJL (2001) Identification of intra-accession genetic diversity in selfing crops using AFLP markers: Implications for collection management. Genet Resour Crop Evol 48:287–295CrossRefGoogle Scholar
  155. van Treuren R, Bas N, Goossens PJ, Jansen H, van Soest LJM (2005) Genetic diversity in perennial ryegrass and white clover among old Dutch grasslands as compared to cultivars and nature reserves. Mol Ecol 14:39–52PubMedCrossRefGoogle Scholar
  156. Vasconcelos JC (1933) Trigos Portugueses ou de há muito cultivados no País (subsídios para o seu estudo botânico). Boletim de Agricultura Ano I, (1–2 1 série), Direcção Geral de Acção Social Agrária, LisboaGoogle Scholar
  157. Veteläinen M, Negri V, Maxted N (2009) European landraces: on-farm conservation, management and use. Bioversity Technical Bulletin no 15. Bioversity International, RomeGoogle Scholar
  158. von Rümker K (1908) Die systematische Einteilung und Benen-ung der Getreidesorten für praktische Zwecke. Jahrb Dtsch landwirts Ges 23:137–167Google Scholar
  159. WIEWS (2012) Available from Accessed March 2012
  160. Wood D, Lenne J (1997) The conservation of agrobiodiversity on-farm: questioning the emerging paradigm. Biodivers Conserv 6:109–129CrossRefGoogle Scholar
  161. Yonezawa K (1985) A definition of the optimal allocation of effort in conservation of plant genetic resources with application to sample size determination for field collection. Euphytica 34:345–354CrossRefGoogle Scholar
  162. Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104:127–139CrossRefGoogle Scholar
  163. Zeven AC (2002) Traditional maintenance breeding of landraces: 2 Practical and theoretical considerations on maintenance of variation of landraces by farmers and gardeners. Euphytica 123:147–158CrossRefGoogle Scholar
  164. Zeven AC, Schachl R (1989) Groups of bread wheat landraces in Austrian Alps. Euphytica 41:235–246CrossRefGoogle Scholar
  165. Zohary D, Hopf M (2000) Domestication of plants in the old world: the origin and spread of cultivated plants in West Asia, Europe, and the Nile Valley. Oxford University Press, New YorkGoogle Scholar

Copyright information

© INRA and Springer-Verlag, France 2012

Authors and Affiliations

  • Miguel A. A. Pinheiro de Carvalho
    • 1
  • Penelope J. Bebeli
    • 2
  • Eliseu Bettencourt
    • 3
  • Graça Costa
    • 1
  • Sonia Dias
    • 4
  • Teresa M. M. Dos Santos
    • 1
  • Jan J. Slaski
    • 1
    • 5
    Email author
  1. 1.ISOPlexis Germplasm BankUniversity of MadeiraFunchalPortugal
  2. 2.Department of Plant Breeding and BiometryAgricultural University of AthensAthensGreece
  3. 3.Genetic Resources, Ecophysiology and Plant Breeding UnitInstituto Nacional de Investigação Agrária e Veterinária (INIAV, I. P.)OeirasPortugal
  4. 4.Bioversity InternationalMaccarese (Rome)Italy
  5. 5.Bioresource Technologies, Alberta Innovates Technology FuturesVegrevilleCanada

Personalised recommendations