Advertisement

Agronomy for Sustainable Development

, Volume 32, Issue 4, pp 841–851 | Cite as

A high resolution map of French soil organic carbon

  • Jeroen MeersmansEmail author
  • Manuel Pascal Martin
  • Eva Lacarce
  • Sarah De Baets
  • Claudy Jolivet
  • Line Boulonne
  • Sébastien Lehmann
  • Nicolas Philippe Anthony Saby
  • Antonio Bispo
  • Dominique Arrouays
Research Article

Abstract

Soil is a major carbon pool ruling the global C cycle and in climate change because soil carbon is a source and a sink of atmospheric CO2. Soil organic carbon also controls many beneficial properties such as fertility, aggregate stability and degradation of groundwater pollutants. Therefore mapping soil carbon at landscape scale is needed to define appropriate management that will favour higher soil quality. Actual soil carbon maps of France have a too coarse resolution, i.e. 8 and 12 km, to define efficient land management practices. Therefore, here, we model soil organic carbon in France at a resolution of 250 m. We study the impact of land use, soil type, climate and agro-management on soil organic carbon. We found that the total soil carbon stock in France is about 3.7 ± 1.3 Pg. Results also show that the precipitation pattern dominates the overall spatial distribution of soil carbon. Land use is the most important factor controlling organic carbon changes at landscape scale. Our high resolution national map of soil organic C will be useful to define land management practices that will improve soil quality.

Keywords

Land use Manure SOC Rock fragment content Climate Soil texture Spatial National AIC AICc 

Abbreviation list

ADEME

French Environment and Energy Management Agency

AGRESTE

French Ministry of Agriculture Food and Fishery

AIC

Akaike information criterion

AICc

Corrected Akaike information criterion

BIC

Bayesian information criterion

CEC

Commission of the European Communities

dg

geometric mean particle size

EEA

European Environment Agency

FAO

Food and Agriculture Organization of the United Nations

FYM

Farm yard manure

GEFSOC

Global Environment Facility Soil Organic Carbon

GIS

Geographical Information System

Gt C

Giga ton carbon

INRA

French National Institute for Agricultural Research

Pg C

Peta gram carbon

RMSE

Root mean square error

RMQS

French National Soil Survey (Réseau de Mesures de la Qualité des Sols)

RothC model

Rothamsted carbon model

RPD

Ratio of performance to deviation

Radj2

Adjusted coefficient of determination

SMU

Soil mapping units

SOC

Soil organic carbon

STU

Soil topological units

Notes

Acknowledgements

The RMQS was financed by the “Groupement d’Intérêt Scientifique Sol”. Jeroen Meersmans post-doctoral position was funded by the French Environment and Energy Management Agency (ADEME). We thank all the people involved in sampling and sample preparation and analysis.

References

  1. ADEME (French Environment and Energy Management Agency) (2007) Bilan des flux de contaminants entrant sur les sols agricoles de France métropolitaine—final report: Bilan qualitatif de la contamination par les éléments tracés métalliques et les composés tracés organiques et application quantitative pour les éléments tracés métalliquesGoogle Scholar
  2. AGRESTE (Ministère de l’Alimentation, de l’Agriculture et de la Pêche) (2009) Chiffres et Données—Série Agriculture, 208, L’utilisation du territoire en 2008—Teruti-LucasGoogle Scholar
  3. Akaike H (1974) New look at statistical-model identification. IEEE Trans Autom Control AC 19:716–723. doi: 10.1109/TAC.1974.1100705 CrossRefGoogle Scholar
  4. Arrouays D, Deslais W, Badeau V (2001) The carbon content of topsoil and its geographical distribution in France. Soil Use Manag 17:7–11. doi: 10.1111/j.1475-2743.2001.tb00002.x CrossRefGoogle Scholar
  5. Arrouays D, Jolivet C, Boulonne L, Bodineau G, Saby N, Grolleau E (2002) A new initiative in France: a multi-institutional soil quality monitoring network. Comptes rendus de l’Academie d’Agriculture de France 88:93–105Google Scholar
  6. Batjes NH (2002) Carbon and nitrogen stocks in the soils of Central and Eastern Europe. Soil Use Manag 18:324–329. doi: 10.1079/SUM2002138 CrossRefGoogle Scholar
  7. Batlle-Aguilar J, Brovelli A, Porporato A, Barry DA (2011) Modelling soil carbon and nitrogen cycles during land use change. A review. Agron Sustain Dev 31:251–274. doi: 10.1051/agro/2010007 CrossRefGoogle Scholar
  8. Bohn HL (1976) Estimates of organic carbon in world soils. Soil Sci Soc Am J 40:468–470CrossRefGoogle Scholar
  9. Bolin B (1970) Carbon Cycle. Sci Am 223:124–132CrossRefGoogle Scholar
  10. CEC (1985) Soil Map of the European Communities at 1:1.000.000. CEC DG VI, Brussels-LuxembourgGoogle Scholar
  11. Chaney K, Swift RS (1984) The influence of organic-matter on aggregate stability in some British soils. J Soil Sci 35:223–230. doi: 10.1111/j.1365-2389.1984.tb00278.x CrossRefGoogle Scholar
  12. Chenu C, Le Bissonnais Y, Arrouays D (2000) Organic matter influence on clay wettability and soil aggregate stability. Soil Sci Soc Am J 64:1479–1486CrossRefGoogle Scholar
  13. De Ridder F, Pintelon R, Schoukens J, Gillikin DP (2005) Modified AIC and MDL model selection criteria for short data records. IEEE Trans Instrum Meas 54:144–150. doi: 10.1109/TIM.2004.838132 CrossRefGoogle Scholar
  14. EEA (2007) CLC2006 technical guidelines, Technical report No. 17/2007. European Environment Agency, CopenhagenGoogle Scholar
  15. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning, data mining, inference, and prediction, Springer Series in statistics, 2nd edn. Springer, New YorkGoogle Scholar
  16. Jones RJA, Hiederer R, Rusco E, Montanarella L (2005) Estimating organic carbon in the soils of Europe for policy support. Eur J Soil Sci 56:655–671. doi: 10.1111/j.1365-2389.2005.00728.x CrossRefGoogle Scholar
  17. Kern JS (1994) Spatial patterns of soil organic carbon in the contiguous United States. Soil Sci Soc Am J 58:439–455CrossRefGoogle Scholar
  18. King D, Burill A, Daroussin J, Le Bas C, Tavernier R, Van Ranst E (1995) The EU soil geographical database. In: King D, Jones RJA, Thomasson AJ (eds) European Land Information Systems for Agro-environmental Monitoring, EUR 16232 EN. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  19. Lashermes G, Nicolardot B, Parnaudeau V, Thuries L, Chaussod R, Guillotin ML, Lineres M, Mary B, Metzger L, Morvan T, Tricaud A, Villette C, Houot S (2009) Indicator of potential residual carbon in soils after exogenous organic matter application. Eur J Soil Sci 60:297–310. doi: 10.1111/j.1365-2389.2008.01110.x CrossRefGoogle Scholar
  20. Ludwig B, Geisseler D, Michel K, Joergensen RG, Schulz E, Merbach I, Raupp J, Rauber R, Hu K, Niu L, Liu X (2011) Effects of fertilization and soil management on crop yields and carbon stabilization in soils. A review. Agron Sustain Dev 31:361–372. doi: 10.1051/agro/2010030 CrossRefGoogle Scholar
  21. Manrique LA, Jones CA (1991) Bulk density of soils in relation to soil physical and chemical properties. Soil Sci Soc Am J 55:476–481CrossRefGoogle Scholar
  22. Martin MP, Wattenbach M, Smith P, Meersmans J, Jolivet C, Boulonne L, Arrouays D (2011) Spatial distribution of soil organic carbon stocks in France. Biogeosciences 8:1053–1065. doi: 10.5194/bg-8-1053-2011 CrossRefGoogle Scholar
  23. Meersmans J, De Ridder F, Canters F, De Baets S, Van Molle M (2008) A multiple regression approach to assess the spatial distribution of Soil Organic Carbon (SOC) at the regional scale (Flanders, Belgium). Geoderma 143:1–13. doi: 10.1016/j.geoderma.2007.08.025 CrossRefGoogle Scholar
  24. Meersmans J, Van Wesemael B, De Ridder F, Dotti MF, De Baets S, Van Molle M (2009) Changes in organic carbon distribution with depth in agricultural soils in northern Belgium, 1960–2006. Glob Change Biol 15:2739–2750. doi: 10.1111/j.1365-2486.2009.01855.x CrossRefGoogle Scholar
  25. Meersmans J, van Wesemael B, Goidts E, van Molle M, De Baets S, De Ridder F (2011) Spatial analysis of soil organic carbon evolution in Belgian croplands and grasslands, 1960–2006. Glob Change Biol 17:466–479. doi: 10.1111/j.1365-2486.2010.02183.x CrossRefGoogle Scholar
  26. Meersmans J, Martin MP, De Ridder F, Lacarce E, Wetterlind J, De Baets S, Le Bas C, Louis BP, Orton TG, Bispo A, Arrouays, D (2012) A novel soil organic C model using climate, soil type and management data at the national scale (France). Agron Sustain Dev. doi: 10.1007/s13593-012-0085-x
  27. Milne E, Al Adamat R, Batjes NH, Bernoux M, Bhattacharyya T, Cerri CC, Cerri CEP, Coleman K, Easter M, Falloon P, Feller C, Gicheru P, Kamoni P, Killian K, Pal DK, Paustian K, Powlson DS, Rawajfih Z, Sessay M, Williams S, Wokabi S (2007) National and sub-national assessments of soil organic carbon stocks and changes: The GEFSOC modelling system. Agric Ecosyst Environ 122:3–12. doi: 10.1016/j.agee.2007.01.002 CrossRefGoogle Scholar
  28. Mishra U, Lal R, Slater B, Calhoun F, Liu D, Van Meirvenne M (2009) Predicting soil organic carbon stock using profile depth distribution functions and ordinary kriging. Soil Sci Soc Am J 73:614–621. doi: 10.2136/sssaj2007.0410 CrossRefGoogle Scholar
  29. Morra L, Pagano L, Iovieno P, Baldanton A, Alfani A (2010) Soil and vegetable crop response to addition of different levels of municipal waste compost under Mediterranean greenhouse condition. Agron Sustain Dev 30:701–709. doi: 10.1051/agro/2009046 CrossRefGoogle Scholar
  30. Olvera-Velona A, Benoit P, Barriuso E, Ortiz-Hernandez L (2008) Sorption and desorption of organophosphate pesticides, parathion and cadusafos, on tropical agricultural soils. Agron Sustain Dev 28:231–238. doi: 10.1051/agro:2008009 CrossRefGoogle Scholar
  31. Poesen J, Lavee H (1994) Rock fragments in top soils – significance and processes. Catena 23: 1-28. doi: 10.1016/0341-8162(94)90050-7
  32. Razafimbelo TM, Albrecht A, Oliver R, Chevallier T, Chapuis-Lardy L, Feller C (2008) Aggregate associated-C and physical protection in a tropical clayey soil under Malagasy conventional and no-tillage systems. Soil Tillage Res 98:140–149. doi: 10.1016/j.still.2007.10.012 CrossRefGoogle Scholar
  33. Reeves DW (1997) The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res 43:131–167. doi: 10.1016/S0167-1987(97)00038-X CrossRefGoogle Scholar
  34. Rusco E, Jones R, Bidoglio G (2001) Organic matter in the soils of Europe: present status and future trends, European Soil Bureau, Soil and Waste Unit, Institute for Environment and Sustainability. JRC Ispra, Institute, Joint Research Centre European Commission, ItalyGoogle Scholar
  35. Saha D, Kukal SS, Sharma S (2011) Landuse impacts on SOC fractions and aggregate stability in typic ustochrepts of Northwest India. Plant Soil 339:457–470. doi: 10.1007/s11104-010-0602-0 CrossRefGoogle Scholar
  36. Stavi I, Lal R, Owens LB (2011) On-farm effects of no-till versus occasional tillage on soil quality and crop yields in eastern Ohio. Agron Sustain Dev 31:475–482. doi: 10.1007/s13593-011-0006-4 CrossRefGoogle Scholar
  37. Stevens A, van Wesemael B (2008) Soil organic carbon stock in the Belgian Ardennes as affected by afforestation and deforestation from 1868 to 2005. For Ecol Manag 256:1527–1539. doi: 10.1016/j.foreco.2008.06.041 CrossRefGoogle Scholar
  38. Tan ZX, Lal R, Smeck NE, Calhoun FG (2004) Relationships between surface soil organic carbon pool and site variables. Geoderma 121:187–195. doi: 10.1016/j.geoderma.2003.11.003 CrossRefGoogle Scholar
  39. Ungaro F, Staffilani F, Tarocco P (2010) Assessing and mapping topsoil organic carbon stocks at regional scale: a scorpan kriging approach conditional on soil map delineations and land use. Land Degrad Dev 21:565–581. doi: 10.1002/ldr.998 CrossRefGoogle Scholar
  40. Van Oost K, Quine TA, Govers G, De Gryze S, Six J, Harden JW, Ritchie JC, McCarty GW, Heckrath G, Kosmas C, Giraldez JV, da Silva JRM, Merckx R (2007) The impact of agricultural soil erosion on the global carbon cycle. Science 318:626–629. doi: 10.1126/science.1145724 PubMedCrossRefGoogle Scholar
  41. van Wesemael B, Paustian K, Meersmans J, Goidts E, Barancikova G, Easter M (2010) Agricultural management explains historic changes in regional soil C stocks. Proc Natl Acad Sci USA 107:14926–14930. doi: 10.1073/pnas.1002592107 PubMedCrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag, France 2012

Authors and Affiliations

  • Jeroen Meersmans
    • 1
    Email author
  • Manuel Pascal Martin
    • 1
  • Eva Lacarce
    • 1
  • Sarah De Baets
    • 2
  • Claudy Jolivet
    • 1
  • Line Boulonne
    • 1
  • Sébastien Lehmann
    • 1
  • Nicolas Philippe Anthony Saby
    • 1
  • Antonio Bispo
    • 3
  • Dominique Arrouays
    • 1
  1. 1.INRA Orléans, InfoSol UnitOrléans, cedex 2France
  2. 2.Earth and Life Institute (ELI), Georges Lemaître Centre for Earth and Climate Research (TECLIM)Université catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Agriculture and Forestry DepartmentADEMEAngers, cedex 01France

Personalised recommendations