Agronomy for Sustainable Development

, Volume 32, Issue 4, pp 873–888 | Cite as

A novel soil organic C model using climate, soil type and management data at the national scale in France

  • Jeroen MeersmansEmail author
  • Manuel Pascal Martin
  • Fjo De Ridder
  • Eva Lacarce
  • Johanna Wetterlind
  • Sarah De Baets
  • Christine Le Bas
  • Benjamin P. Louis
  • Thomas G. Orton
  • Antonio Bispo
  • Dominique Arrouays
Research Article


This report evidences factors controlling soil organic carbon at the national scale by modelling data of 2,158 soil samples from France. The global soil carbon amount, of about 1,500 Gt C, is approximately twice the amount of atmosphere C. Therefore, soil has major impact on atmospheric CO2, and, in turn, climate change. Soil organic carbon further controls many soil properties such as fertility, water retention and aggregate stability. Nonetheless, precise mechanisms ruling interactions between soil organic carbon and environmental factors are not well known at the large scale. Indeed, most soil investigations have been conducted at the plot scale using a limited number of factors. Therefore, a national soil survey of 2,158 soil samples from France was carried out to measure soil properties such as texture, organic carbon, nitrogen and heavy metal content. Here, we studied factors controlling soil organic carbon at the national scale using a model based on stepwise linear regression. Factors analysed were land use, soil texture, rock fragment content, climate and land management. We used several criteria for model selection, such as the Akaike information criterion (AIC), the corrected AIC rule and the Bayesian information criterion. Results show that organic carbon concentrations in fine earth increase with increasing rock fragment content, depending on land use and texture. Spreading farmyard manure and slurry induces higher carbon concentrations mostly in wet and stony grasslands. Nonetheless, a negative correlation has been found between carbon and direct C input from animal excrements on grasslands. Our findings will therefore help to define better land management practices to sequester soil carbon.


Land use Manure SOC Rock fragment content Climate Soil texture AIC AICc BIC Stepwise regression 

Abbreviation list


Akaike information criterion


Corrected Akaike information criterion


Bayesian information criterion


Geometric mean particle size


Giga tonne


Slurry and farmyard related C production


Direct on field C input from animal excrements


Potential evapotranspiration




Root mean square error


French National Soil Survey (Réseau de Mesures de la Qualité des Sols)


Ratio of performance to deviation


Adjusted coefficient of determination





The RMQS was financed by the “Groupement d’Intérêt Scientifique Sol”. Jeroen Meersmans post-doctoral position was funded by the French Environment and Energy Management Agency (ADEME). We thank all the people involved in sampling and sample preparation and analysis.


  1. ADEME (French Environment and Energy Management Agency) (2007) Bilan des flux de contaminants entrant sur les sols agricoles de France métropolitaine—final report: Bilan qualitatif de la contamination par les éléments tracés métalliques et les composés tracés organiques et application quantitative pour les éléments tracés métalliques Google Scholar
  2. AGRESTE (Ministère de l’Alimentation, de l’Agriculture et de la Pêche) (2009) Chiffres et Données-Série Agriculture, 208, L’utilisation du territoire en 2008-Teruti-Lucas.Google Scholar
  3. Akaike H (1974) New look at the statistical model identification. IEEE Trans Autom Control AC 19:716–723. doi: 10.1109/TAC.1974.1100705 CrossRefGoogle Scholar
  4. Arrouays D, Jolivet C, Boulonne L, Bodineau G, Saby N, Grolleau E (2002) A new initiative in France: a multi-institutional soil quality monitoring network. Comptes rendus de l’Academie d’Agriculture de France 88:93–105Google Scholar
  5. Bell SJ, Henschke PA (2005) Implications of nitrogen nutrition for grapes, fermentation and wine. Aust J Grape Wine Res 11:242–295. doi: 10.1111/j.1755-0238.2005.tb00028.x CrossRefGoogle Scholar
  6. Bolinder MA, Katterer T, Andren O, Ericson L, Parent LE, Kirchmann H (2010) Long-term soil organic carbon and nitrogen dynamics in forage-based crop rotations in Northern Sweden (63-64 degrees N). Agric Ecosyst Environ 138:335–342. doi: 10.1016/j.agee.2010.06.009 CrossRefGoogle Scholar
  7. CEC (1985) Soil Map of the European Communities at 1:1.000.000. CEC DG VI. Brussels-LuxembourgGoogle Scholar
  8. Cousin I, Nicoullaud B, Coutadeur C (2003) Influence of rock fragments on the water retention and water percolation in a calcareous soil. Catena 53:97–114. doi: 10.1016/S0341-8162(03)00037-7 CrossRefGoogle Scholar
  9. Dai FQ, Su ZA, Liu SZ, Liu GC (2011) Temporal variation of soil organic matter content and potential determinants in Tibet, China. Catena 85:288–294. doi: 10.1016/j.catena.2011.01.015 CrossRefGoogle Scholar
  10. Dawson JJC, Godsiffe EJ, Thompson IP, Ralebitso-Senior TK, Killham KS, Paton GI (2007) Application of biological indicators to assess recovery of hydrocarbon impacted soils. Soil Biol Biochem 39:164–177. doi: 10.1016/j.soilbio.2006.06.020 CrossRefGoogle Scholar
  11. De Ridder F, Pintelon R, Schoukens J, Gillikin DP (2005) Modified AIC and MDL model selection criteria for short data records. IEEE Trans Instrum Meas 54:144–150. doi: 10.1109/TIM.2004.838132 CrossRefGoogle Scholar
  12. European Soil Bureau Network European Commission (2005) Soil Atlas of Europe, Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  13. Grace J (2004) Understanding and managing the global carbon cycle. J Ecol 92:189–202. doi: 10.1111/j.0022-0477.2004.00874.x CrossRefGoogle Scholar
  14. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning, data mining, inference, and prediction, 2nd edn, Springer Series in Statistics. Springer, New YorkGoogle Scholar
  15. Jones RJA, Hiederer R, Rusco E, Montanarella L (2005) Estimating organic carbon in the soils of Europe for policy support. Eur J Soil Sci 56:655–671. doi: 10.1111/j.1365-2389.2005.00728.x CrossRefGoogle Scholar
  16. Lark RM, Bishop TFA (2007) Cokriging particle size fractions of the soil. Eur J Soil Sci 58:763–774. doi: 10.1111/j.1365-2389.2006.00866.x CrossRefGoogle Scholar
  17. Lashermes G, Nicolardot B, Parnaudeau V, Thuries L, Chaussod R, Guillotin ML, Lineres M, Mary B, Metzger L, Morvan T, Tricaud A, Villette C, Houot S (2009) Indicator of potential residual carbon in soils after exogenous organic matter application. Eur J Soil Sci 60:297–310. doi: 10.1111/j.1365-2389.2008.01110.x CrossRefGoogle Scholar
  18. Leifeld J, Bassin S, Fuhrer J (2005) Carbon stocks in Swiss agricultural soils predicted by land-use, soil characteristics, and altitude. Agric Ecosyst Environ 105:255–266. doi: 10.1016/j.agee.2004.03.006 CrossRefGoogle Scholar
  19. Lettens S, Van Orshoven J, van Wesemael B, De Vos B, Muys B (2005) Stocks and fluxes of soil organic carbon for landscape units in Belgium derived from heterogeneous data sets for 1990 and 2000. Geoderma 127:11–23. doi: 10.1016/j.geoderma.2004.11.001 CrossRefGoogle Scholar
  20. Martin MP, Wattenbach M, Smith P, Meersmans J, Jolivet C, Boulonne L, Arrouays D (2011) Spatial distribution of soil organic carbon stocks in France. Biogeosciences 8:1053–1065. doi: 10.5194/bg-8-1053-2011 CrossRefGoogle Scholar
  21. Meersmans J, van Wesemael B, Van Molle M (2009a) Determining soil organic carbon for agricultural soils: a comparison between the Walkley & Black and the dry combustion methods (north Belgium). Soil Use Manage 25:346–353. doi: 10.1111/j.1475-2743.2009.00242.x CrossRefGoogle Scholar
  22. Meersmans J, Van Wesemael B, De Ridder F, Dotti MF, De Baets S, Van Molle M (2009b) Changes in organic carbon distribution with depth in agricultural soils in northern Belgium, 1960–2006. Glob Change Biol 15:2739–2750. doi: 10.1111/j.1365-2486.2009.01855.x CrossRefGoogle Scholar
  23. Meersmans J, van Wesemael B, Goidts E, van Molle M, De Baets S, De Ridder F (2011) Spatial analysis of soil organic carbon evolution in Belgian croplands and grasslands, 1960–2006. Glob Change Biol 17:466–479. doi: 10.1111/j.1365-2486.2010.02183.x CrossRefGoogle Scholar
  24. Meersmans J, Martin MP, Lacarce E, De Baets S, Jolivet C, Boulonne L, Lehmann S, Saby NPA, Bispo A, Arrouays D (2012) A high resolution map of French soil organic carbon. Agron Sust Devel. doi:  10.1007/s13593-012-0086-9
  25. Moore DS, McCabe GP (2001) Introduction to the practice of statics. W.H. Freeman, New York, USAGoogle Scholar
  26. Poesen J, Lavee H (1994) Rock fragments in top soils—significance and processes. Catena 23:1–28. doi: 10.1016/0341-8162(94)90050-7 CrossRefGoogle Scholar
  27. Poissant L, Beauvais C, Lafrance P, Deblois C (2008) Pesticides in fluvial wetlands catchments under intensive agricultural activities. Sci Total Environ 404:182–195. doi: 10.1016/j.scitotenv.2008.05.030 PubMedCrossRefGoogle Scholar
  28. Razafimbelo TM, Albrecht A, Oliver R, Chevallier T, Chapuis-Lardy L, Feller C (2008) Aggregate associated-C and physical protection in a tropical clayey soil under Malagasy conventional and no-tillage systems. Soil Tillage Res 98:140–149. doi: 10.1016/j.still.2007.10.012 CrossRefGoogle Scholar
  29. Rusco E, Jones R, Bidoglio G (2001) Organic matter in the soils of Europe: present status and future trends. European Soil Bureau, Soil and Waste Unit, Institute for Environment and Sustainability, JRC Ispra Institute, Joint Research Centre European Commission, ItalyGoogle Scholar
  30. Schulp CJA, Verburg PH (2009) Effect of land use history and site factors on spatial variation of soil organic carbon across a physiographic region. Agric Ecosyst Environ 133:86–97. doi: 10.1016/j.agee.2009.05.005 CrossRefGoogle Scholar
  31. Schulze ED, Ciais P, Luyssaert S, Schrumpf M, Janssens IA, Thiruchittampalam B, Theloke J, Saurat M, Bringezu S, Lelieveld J, Lohila A, Rebmann C, Jung M, Bastviken D, Abril G, Grassi G, Leip A, Freibauer A, Don A, Nieschulze J, Börner A, Gash JH, Dolman AJ (2010) Part4: integration of carbon and other trace-gas fluxes. Glob Change Biol 16:1451–1469. doi: 10.1111/j.1365-2486.2010.02215 CrossRefGoogle Scholar
  32. Schwarz G (1978) Estimating dimension of a model. Ann Stat 6:461–464. doi: 10.1214/aos/1176344136 CrossRefGoogle Scholar
  33. Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 241:155–176. doi: 10.1023/A:1016125726789 CrossRefGoogle Scholar
  34. Stevens A, van Wesemael B (2008) Soil organic carbon stock in the Belgian Ardennes as affected by afforestation and deforestation from 1868 to 2005. For Ecol Manage 256:1527–1539. doi: 10.1016/j.foreco.2008.06.041 CrossRefGoogle Scholar
  35. Van Oost K, Quine TA, Govers G, De Gryze S, Six J, Harden JW, Ritchie JC, McCarty GW, Heckrath G, Kosmas C, Giraldez JV, da Silva JRM, Merckx R (2007) The impact of agricultural soil erosion on the global carbon cycle. Science 318:626–629. doi: 10.1126/science.1145724 PubMedCrossRefGoogle Scholar
  36. West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Sci Soc Am J 66:1930–1946. doi: 10.3334/CDIAC/tcm.002 CrossRefGoogle Scholar
  37. Zinn YL, Lal R, Resck DVS (2005) Texture and organic carbon relations described by a profile pedotransfer function for Brazilian Cerrado soils. Geoderma 127:168–173. doi: 10.1016/j.geoderma.2005.02.010 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag, France 2012

Authors and Affiliations

  • Jeroen Meersmans
    • 1
    Email author
  • Manuel Pascal Martin
    • 1
  • Fjo De Ridder
    • 2
  • Eva Lacarce
    • 1
  • Johanna Wetterlind
    • 1
  • Sarah De Baets
    • 3
  • Christine Le Bas
    • 1
  • Benjamin P. Louis
    • 1
  • Thomas G. Orton
    • 1
  • Antonio Bispo
    • 4
  • Dominique Arrouays
    • 1
  1. 1.INRA Orléans, InfoSol UnitOrléans, Cedex 2France
  2. 2.Earth System Science and Department of GeographyVrije Universiteit BrusselBrusselsBelgium
  3. 3.Earth and Life Institute (ELI), Georges Lemaître Centre for Earth and Climate Research (TECLIM)Université catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.Agriculture and Forestry DepartmentADEMEAngers, Cedex 01France

Personalised recommendations