Agronomy for Sustainable Development

, Volume 32, Issue 3, pp 791–801 | Cite as

Tapping panel diagnosis, an innovative on-farm decision support system for rubber tree tapping

  • Thierry Michels
  • Jean-Marie Eschbach
  • Régis Lacote
  • Aurore Benneveau
  • François Papy
Research Article


Latex is a key product for many tropical countries, of which 80% is produced by smallholders. Latex is produced by the rubber tree (Hevea brasiliensis). Given the 7-year immature unproductive period, establishing a rubber plantation requires considerable investment by smallholders, emphasizing the need for sustainable management. The difficulty of performing an agronomic diagnosis of a tree crop is to obtain an accurate picture of current and past cultivation practices, to be able to assess their impacts on the agro-ecosystem as well as on sustainability. Smallholders do not usually keep records of latex yield or of their technical practices, making it impossible to perform a diagnosis based on productivity. As latex harvesting involves tapping the bark, which leaves scars on the trunk, we hypothesised that these morphological traces would be good indicators of current and past practices and would thus enable a diagnosis based on the economic lifespan of plantation. To this end, we formalised a tapping panel diagnosis that involved reproducing the scars on tapping panel diagrams, and analysing them using two indicators: the amount of virgin bark consumed and the number of tapping years that remained. We validated this tapping panel diagnosis in a sample of 25 smallholder plantations in Cameroon, where we characterised eight tapping management systems reflecting different levels of tapping intensity. The assessment of the respective share of each tapping practice on virgin bark consumption revealed major effects of tapping frequency and of shaving thickness. We showed that the tapping panel diagnosis used as a decision support tool can increase remaining tapping years by 33% to 355%. To conclude, the tapping panel diagnosis formalised here for the first time will be a useful support for the participatory development of innovating tapping management schemes involving both technicians and smallholders.


Hevea brasiliensis Natural rubber Latex Diagnosis tool Sustainability Smallholder On-farm research Economic lifespan Cameroon 


  1. Affholder F, Scopel E, Madera Neto J, Capillon A (2003) Diagnosis of the productivity gap using a crop model. Methodology and case study of small-scale maize production in central Brazil. Agronomie 23:305–325CrossRefGoogle Scholar
  2. Anekachai C (1989) Tapping systems approach for smallholders in Southern Thailand. The Franco-Thai Workshop on natural rubber tapping practices on smallholdings in Southern Thailand. Patthavuh Jewtragoon, Hat-Yai, pp 27–31Google Scholar
  3. Ballal M, El Siddig E, Elfadl M, Luukkanen O (2005) Gum arabic yield in differently managed acacia senegal stands in western Sudan. Agroforest Syst 63:237–245CrossRefGoogle Scholar
  4. Chambon B, Eschbach JM (2009) Marketing of smallholder natural rubber: an essential factor in the development of Cameroonian rubber-growing. Cah Agric 18:364–368Google Scholar
  5. Chatelin MH, Aubry C, Poussin JC, Meynard JM, Massé J, Verjux N, Gate P, Le Bris X (2005) Déciblé, a software package for wheat crop management simulation. Agr Syst 83:77–99CrossRefGoogle Scholar
  6. Commère J, Eschbach JM (1988) The advantages of low intensity upward tapping in Côte d’Ivoire. CR Coll Expl Physiol Amél HévéaGoogle Scholar
  7. Commère J, Eschbach JM (1988b) Résultats des essais de réduction de fréquence de saignée en Côte d'Ivoire. In: Prévôt JC, Jacob JL (eds) CR Coll Expl Physiol Amél Hévéa. CIRAD-IRCA, Montpellier, pp 321–333Google Scholar
  8. Compagnon P (1986) Le Caoutchouc Naturel-Biologie-Culture-Production. Maisonneuve et Larose, ParisGoogle Scholar
  9. R. Development Core Team (2005) R: a language and environment for statistical computing. Vienna, AustriaGoogle Scholar
  10. Doré T, Sebillotte M, Meynard JM (1997) A diagnostic method for assessing regional variations in crop yield. Agr Syst 54:169–188CrossRefGoogle Scholar
  11. Doré T, Clermont-Dauphin C, Crozat Y, David C, Jeuffroy MH, Loyce C, Makwski D, Malezieux E, Meynard JM, Valentin-Morison M (2008) Methodological progress in on-farm regional agronomic diagnosis. A review. Agron Sustain Dev 28:151–161CrossRefGoogle Scholar
  12. Eschbach JM, Banchi Y (1985) Advantages of ethrel stimulation in association with reduced tapping intensity in the Ivory Cost. Planter (MYS) 61:555–567Google Scholar
  13. Eschbach JM, Lacrotte R, Serres E (1989) Conditions which favor the onset of brown bast. In: d’Auzac J, Jacob JL, Chrestin H (eds) Physiology of rubber tree latex. CRC, Boca Raton, pp 443–454Google Scholar
  14. Fox J, Weisberg S (2010) An R companion to applied regression. Sage, Thousand Oaks (CA-USA)Google Scholar
  15. Gras R, Benoit M, Deffontaines JP, Duru M, Lafarge M, Langlet A, Osty PL (1989) Le fait technique en agronomie-Activité agricole, concepts et méthodes d’étude. INRA, PARISGoogle Scholar
  16. IRSG (2010) Rubber statistical bulletin. The International Rubber Study Group, Singapore, p 55Google Scholar
  17. Jacob JL, Prévôt JC, Roussel D, Lacrotte R, Serres E, d’Auzac J, Eschbach JM, Omont H (1989) Yield limiting factors, latex physiological parameters, latex diagnosis and clonal typology. In: d’Auzac J, Jacob JL, Chrestin H (eds) Physiology of rubber tree latex. CRC, Boca Raton, pp 345–403Google Scholar
  18. Lacote R, Obouayeba S, Clément-Demange A, Dian K, Gnagne M, Gohet E (2004) Panel management in rubber (Hevea brasiliensis) tapping and impact on yield, growth, and latex diagnosis. J Rubber Res 7:199–217Google Scholar
  19. Lacote R, Gabla O, Obouayeba S, Eschbach JM, Rivano F, Dian K, Gohet E (2010) Long-term effect of ethylene stimulation on the yield of rubber trees is linked to latex cell biochemistry. Field Crop Res 115:94–98CrossRefGoogle Scholar
  20. Le Bail M, Meynard JM (2003) Yield and protein concentration of spring malting barley: the effects of cropping systems in the Paris Basin (France). Agronomie 23:13–27CrossRefGoogle Scholar
  21. Lemenih M, Abebe T, Olsson M (2003) Gum and resin resources from some Acacia, Boswellia and Commiphora species and their economic contributions in Liban, south-east Ethiopia. J Arid Environ 55:465–482CrossRefGoogle Scholar
  22. Lichtfouse E, Navarrete M, Debaeke P, Souchère V, Alberola C (2009) Sustainable agriculture. Springer, HeidelbergCrossRefGoogle Scholar
  23. Meynard JM, Cerf M, Guichard L, Jeuffroy M-H, Makowski D (2002) Which decision support tools for the environmental management of nitrogen? Agronomie 22:817–829CrossRefGoogle Scholar
  24. Michels T (2005) Adapter la conduite des plantations d’hévéa à la diversité des exploitations villageoises (étude de cas au Cameroun). Ecole doctorale ABIES, Institut National Agronomique Paris-Grignon, ParisGoogle Scholar
  25. Nesme T, Lescourret F, Bellon S, Plénet D, Habib R (2003) Relevance of orchard design issuing from growers’ planting choices to study fruit tree cropping systems. Agronomie 23:651–660CrossRefGoogle Scholar
  26. Nesme T, Lescourret F, Bellon S, Habib R (2010) Is the plot concept an obstacle in agricultural sciences? A review focussing on fruit production. Agr Ecosyst Environ 138:133–138CrossRefGoogle Scholar
  27. Obouayeba S, Coulibaly LF, Gohet E, Yao TN, Ake S (2009) Effect of tapping systems and height of tapping opening on clone PB 235 agronomic parameters and it’s susceptibility to tapping panel dryness in south-east of Côte d’Ivoire. J Appl Biosci 24:1535–1542Google Scholar
  28. Plénet D, Giauque P, Navarro E, Millan M, Hilaire C, Hostalnou E, Lyoussoufi A, Samie J-F (2009) Using on-field data to develop the EFI information system to characterise agronomic productivity and labour efficiency in peach (Prunus persica L. Batsch) orchards in France. Agric Syst 100:1–10CrossRefGoogle Scholar
  29. Silpi U, Lacointe A, Kasempsap P, Thanysawanyangkura S, Chantuma P, Gohet E, Musigamart N, Clément A, Améglio T, Thaler P (2007) Carbohydrate reserves as a competing sink: evidence from tapping rubber trees. Tree Physiol 27:881–889PubMedCrossRefGoogle Scholar
  30. Vijayakumar KR, Thomas KU, Rajagopal R (2000) Tapping. In: Georges PJ, Jacob KC (eds) Natural rubber, agro management and crop processing. Rubber Research Institute of India, Kottayam, pp 215–238Google Scholar
  31. Vijayakumar KR, Thomas KU, Rajagopal R, Karunaichamy K (2001) Low frequency tapping systems for reductions in cost of production of natural rubber. Planters’ Chron 97:451–454Google Scholar
  32. Vijayakumar KR, Thomas KU, Rajagopal R, Karunaichamy K (2003) In: Vijayakumar KR, Thomas KU, Rajagopal R, Karunaichamy K (eds) Proceedings of the International Workshop on Exploitation Technology. Rubber Research Institute of India, Kottayam, pp 17–42Google Scholar
  33. Vijayakumar KR, Gohet E, Thomas KU, Xiaodi W, Sumarmadji LRSL, Thanh DK, Pichit S, Karunaichamy K, Mohd Akbar MDS (2009) Revised international notation for latex harvest technology. J Rubb Res 12:103–115Google Scholar
  34. Webster CC, Baulkwill WJ (1989) Rubber. Longman Scientific and Technical, HarlowGoogle Scholar

Copyright information

© INRA and Springer-Verlag, France 2011

Authors and Affiliations

  • Thierry Michels
    • 1
  • Jean-Marie Eschbach
    • 2
  • Régis Lacote
    • 2
  • Aurore Benneveau
    • 1
  • François Papy
    • 3
  1. 1.CIRAD, UPR HortSysSaint Pierre CedexFrance
  2. 2.CIRAD, UPR Systèmes de pérenneMontpellier Cedex 5France
  3. 3.INRA, UMR SAD-APTThiverval GrignonFrance

Personalised recommendations