Agronomy for Sustainable Development

, Volume 32, Issue 2, pp 451–464

Sensing crop nitrogen status with fluorescence indicators. A review

Review Article
  • 1.1k Downloads

Abstract

The optimization of nitrogen (N) fertilization is the object of intense research efforts around the world. Overfertilization is commonly used as a form of insurance against uncertain soil fertility level. However, this practice results in lower nitrogen use efficiency, high levels of residual N after harvest, and losses in the environment. Determining an N recommendation that would preserve actual crop requirements, profitability of the farm, and quality of the environment has been subjected to a number of research initiatives with a variable degree of success. On one hand, soil tests are capable of estimating the intensity of N release at any point in time, but rarely the capacity factor over a longer period. On the other hand, in the context of in-season N applications, crops are often considered good integrators of factors such as the presence of mineral N, climatic conditions, soil properties, and crop management. Strategies have been proposed with plant sensor-based diagnostic information for N recommendations, but the sensitivity of reflectance-based parameters alone do not provide complete satisfaction (delayed sensitivity, need of specific chlorophyll, biomass or cover fraction ranges, lack of specificity to the N stress). Fluorescence sensing methods have been used to monitor crop physiology for years, and they may offer solutions for N status diagnosis over reflectance-based methods. In this paper, we review three plant fluorescence components related to four sensing approaches—variable chlorophyll fluorescence, leaf chlorophyll content-related fluorescence emission ratio, blue-green fluorescence, and epidermal screening of chlorophyll fluorescence by phenolic compounds—from the perspective of their relevance to N fertilization management of agricultural crops. We examine the existence of N-induced changes in each case, together with applications and limitations of the approach. Among these approaches, the fluorescence emission ratio method is the most important and the most widely used to date. However, blue-green fluorescence and epidermal screening of chlorophyll fluorescence by phenolic compounds has also received a great deal of attention particularly with the recent commercial release of instruments which can measure in real time and in vivo both the leaf chlorophyll content and several phenolic compounds (anthocyanins, flavonoïds, hydroxycinnamic acids). Overall, our conclusion is that fluorescence-based technologies allow for highly sensitive plant N status information, independently from soil interference, leaf area, or biomass status. They also allow for probing not only the chlorophyll status but also other physiological parameters known to react to N fertility conditions. These new parameters have the potential to provide new N status indicators that can be assessed remotely in a precision agriculture context.

Keywords

Chlorophyll fluorescence UV-excited fluorescence Optical sensors Nitrogen status Precision crop management Polyphenolics 

References

  1. Adams WW III, Demmig-Adams B, Logan BA, Barker DH, Osmond CB (1999) Rapid changes in xanthophyll cycle-dependent energy dissipation and photosystem II efficiency in two vines, Stephania japonica and Smilax australis, growing in the under-storey of an open eucalyptus forest. Plant Cell Environ 22:125–136. doi:10.1046/j.1365-3040.1999.00369.x Google Scholar
  2. Agati G (1998) Response of the in vivo chlorophyll fluorescence spectrum to environmental factors and laser excitation wavelength. Pure Appl Opt Opt 7(4):797–807. doi:10.1088/0963-9659/7/4/016 Google Scholar
  3. Agati G, Meyer S, Matteini P, Zoran G (2007) Cerovic. Assessment of anthocyanins in grape (Vitis vinifera L.) berries using a noninvasive chlorophyll fluorescence method. J Agric Food Chem 55(4):1053–1061. doi:10.1021/jf062956k PubMedGoogle Scholar
  4. Andersen RA, Kasperbauer MJ (1971) Effects of near-ultraviolet radiation and temperature on soluble phenols in Nicotiana tabacum. Phytochemistry 10:1229–1232. doi:10.1016/S0031-9422(00)84322-8 Google Scholar
  5. Anderson DM, Fredrickson EL, Nachman P, Estall RE, Havstad KM, Murray LW (1998) Laser-induced fluorescence (LIF) spectra of herbaceous and woody pre- and post-digested plant material. Anim Feed Sci Technol 70:315–337. doi:10.1016/S0377-8401(97)00088-6 Google Scholar
  6. Apostol S, Viau AA, Tremblay N, Briantais JM, Prasher S, Parent LE, Moya I (2003) Laser-induced fluorescence signatures as a tool for remote monitoring of water and nitrogen stresses in plants. Can J Remote Sens 29(1):57–65Google Scholar
  7. Apostol S, Viau AA, Tremblay N (2007) A comparison of multiwavelength laser-induced fluorescence parameters for the remote sensing of nitrogen stress in field cultivated corn. Can J Remote Sens 33(3):150–161Google Scholar
  8. Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55(403):1607–1621. doi:10.1093/jxb/erh196 PubMedGoogle Scholar
  9. Barnes PW, Searles PS, Ballaré CL, Ryel RJ, Caldwell MM (2000) Non-invasive measurements of leaf epidermal transmittance of UV radiation using chlorophyll fluorescence: field and laboratory studies. Physiol Plant 109:274–283. doi:10.1034/j.1399-3054.2000.100308.x Google Scholar
  10. Bélanger MC, Viau AA, Samson G, Chamberland M (2005) Determination of a multivariate indicator of nitrogen imbalance (MINI) in potato using reflectance and fluorescence spectroscopy. Agron J 97:1515–1523. doi:10.2134/agronj2005.0040 Google Scholar
  11. Ben Ghozlen N, Cerovic ZG, Germain C, Toutain S, Latouche G (2010) Non-destructive optical monitoring of grape maturation by proximal sensing. Sensors 10(11):10040–10068. doi:10.3390/s101110040 PubMedGoogle Scholar
  12. Bengtsson GB, Schöner R, Lombardo E, Schöner J, Borge GIA, Bilger W (2006) Chlorophyll fluorescence for non-destructive measurement of flavonoids in broccoli. Postharvest Biol Technol 39:291–298. doi:10.1016/j.postharvbio.2005.11.003 Google Scholar
  13. Bidel LPR, Meyer S, Goulas Y, Cadot Y, Cerovic ZG (2007) Responses of epidermal phenolic compounds to light acclimation: in vivo qualitative and quantitative assessment using chlorophyll fluorescence excitation spectra in leaves of three ligneous species. J Photochem Photobiol B 88:163–179. doi:10.1016/j.jphotobiol.2007.06.002 PubMedGoogle Scholar
  14. Bilger W, Veit M, Schreiber L, Schreiber U (1997) Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence. Physiol Plant 101:754–763. doi:10.1111/j.1399-3054.1997.tb01060.x Google Scholar
  15. Blaikie SJ, Chacko EK (1998) Sap flow, leaf gas exchange and chlorophyll fluorescence of container-grown cashew (Anacardium occidentale L.) trees subjected to repeated cycles of soil drying. Aust J Exp Agric 38:305–311. doi:10.1071/EA97124 Google Scholar
  16. Bolhar-Nordenkampf HR, Long SP, Baker NR, Öquist G, Schreiber U, Lechner EG (1989) Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Funct Ecol 3:497–514Google Scholar
  17. Bongi G, Palliotti A, Rocchi P, Moya I, Goulas Y (1994) Spectral characteristics and a possible topological assignment of blue green fluorescence excited by UV laser on leaves of unrelated species. Remote Sens Environ 47:55–64. doi:10.1016/0034-4257(94)90128-7 Google Scholar
  18. Bredemeier C, Schmidhalter U (2003) Non-contacting chlorophyll fluorescence sensing for site-specific nitrogen fertilization in wheat and maize. In: Stafford J, Werner A (eds) Precision agriculture: Papers from the 4th European Conference on Precision Agriculture, Berlin, Germany, pp 103–108Google Scholar
  19. Bryant JP, Chapin FS, Klein DR (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368. doi:10.2307/3544308 Google Scholar
  20. Buschmann C (2007) Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynth Res 92:261–271. doi:10.1007/s11120-007-9187-8 PubMedGoogle Scholar
  21. Buschmann C, Langsdorf G, Lichtenthaler HK (2000) Imaging of the blue, green, and red fluorescence emission of plants: an overview. Photosynthetica 38(4):483–491Google Scholar
  22. Butler WL (1978) Energy distribution in the photochemical apparatus of photosynthesis. Annu Rev Plant Physiol 29:345–378Google Scholar
  23. Campbell PKE, Middleton EM, McMurtrey JE, Corp LA, Chappelle EW (2007) Assessment of vegetation stress using reflectance or fluorescence measurements. J Environ Qual 36:832–845. doi:10.2134/jeq2005.0396 PubMedGoogle Scholar
  24. Campbell EPK, Middleton EM, Corp LA, Kim MS (2008) Contribution of chlorophyll fluorescence to the apparent vegetation reflectance. Sci Total Environ 404:433–439. doi:10.1016/j.scitotenv.2007.11.004 PubMedGoogle Scholar
  25. Cartelat A, Cerovic ZG, Goulas Y, Meyer S, Lelarge C, Prioul JL, Barbottin A, Jeuffroy MH, Gate P, Agati G, Moya I (2005) Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crops Res 91:35–49. doi:10.1016/j.fcr.2004.05.002 Google Scholar
  26. Cerovic ZG, Bergher M, Goulas Y, Tosti S, Moya I (1993) Simultaneous measurement of changes in red and blue fluorescence in illuminated isolated chloroplasts and leaf pieces: the contribution of NADPH to the blue fluorescence signal. Photosynth Res 36:193–204Google Scholar
  27. Cerovic ZG, Morales F, Moya I (1994) Time-resolved spectral studies of blue-green fluorescence of leaves, mesophyll and chloroplasts of sugar beet (Beta vulgaris L.). Biochim Biophys Acta 1188:58–68. doi:10.1016/0005-2728(94)90022-1 Google Scholar
  28. Cerovic ZG, Goulas Y, Camenen L, Guyot G, Briantais JM, Morales F, Moya I (1995) Scaling fluorescence signals from the chloroplast to the canopy level. In: Guyot G (ed) Photosynthesis and remote sensing, Montpellier, France EARSel, Paris-Sud, Orsay, 220, pp 21–27Google Scholar
  29. Cerovic ZG, Langrand E, Latouche G, Morales F, Moya I (1998) Spectral characterization of NAD(P)H fluorescence in intact isolated chloroplasts and leaves: effect of chlorophyll concentration on reabsorption of blue-green fluorescence. Photosynth Res 56:291–301Google Scholar
  30. Cerovic ZG, Samson G, Morales F, Tremblay N, Moya I (1999) Ultraviolet-induced fluorescence for plant monitoring: present state and prospects. Agronomie 19:543–578. doi:10.1051/agro:19990701 Google Scholar
  31. Cerovic ZG, Ounis A, Cartelat A, Latouche G, Goulas Y, Meyer S, Moya I (2002) The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves. Plant Cell Environ 25:1663–1676. doi:10.1046/j.1365-3040.2002.00942.x Google Scholar
  32. Cerovic ZG, Cartelat A, Goulas Y, Meyer S (2005) In-the-field assessment of wheat-leaf polyphenolics using the new optical leaf-clip Dualex. In: Stafford JV (ed) Precision agriculture, 05. Wageningen Academic Publishers, Wageningen, pp 243–250Google Scholar
  33. Cerovic ZG, Goutouly JP, Hilbert G, Destrac-Irvine A, Martinon V, Moise N (2009) Mapping winegrape quality attributes using portable fluorescence-based sensors. In: Best S (ed) Progap INIA, FRUTIC 09, Conception, Chile, pp 301–310Google Scholar
  34. Chaerle L, Leinonen I, Jones HG, van der Straeten D (2007) Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. J Exp Bot 58:773–784. doi:10.1093/jxb/erl257 PubMedGoogle Scholar
  35. Chappelle EW, Williams DL (1987) Laser-induced fluorescence (LIF) from plant foliage. IEEE Trans Geosci Remote Sens 25(6):726–736. doi:10.1109/TGRS.1987.289742 Google Scholar
  36. Chappelle EW, Wood FM Jr, McMurtrey JE III, Newcomb WW (1984) Laser-induced fluorescence of green plants. 1: A technique for the remote detection of plant stress and species differentiation. Appl Opt 23:134–138. doi:10.1364/AO.23.000134 PubMedGoogle Scholar
  37. Chappelle EW, McMurtrey JE III, Kim MS (1991) Identification of the pigment responsible for the blue fluorescence band in the laser induced fluorescence (LIF) spectra of green plants, and the potential use of this band in remotely estimating rates of photosynthesis. Remote Sens Environ 36:213–218. doi:10.1016/0034-4257(91)90058-E Google Scholar
  38. Close DC, McArthur C, Hagerman AE, Davies NW, Beadle CL (2007) Phenolic acclimation to ultraviolet-A irradiation in Eucalyptus nitens seedlings raised across a nutrient environment gradient. Photosynthetica 45(1):36–42. doi:10.1007/s11099-007-0006-4 Google Scholar
  39. Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev Camb Philos 74:311–345. doi:10.1111/j.1469-185X.1999.tb00189.x Google Scholar
  40. Colls JJ, Hall DP (2004) Application of a chlorophyll fluorescence sensor to detect chelate-induced metal stress in Zea mays. Photosynthetica 42(1):139–145Google Scholar
  41. Corp LA, McMurtrey JE III, Chappelle EW, Daughtry CST, Kim MS, Mulchi CL (1998) Applications of fluorescence sensing systems to the remote assessment of nitrogen supply in field corn (Zea mays L.). Adv Laser Remote Sens Terrestrial Hydrogr Appl SPIE 3382:80–90. doi:10.1117/12.312631 Google Scholar
  42. Corp LA, Chappelle EW, McMurtrey III JE, Mulchi CL, Daughtry CST, Kim MS (2000) Advances in fluorescence sensing systems for the remote assessment of nitrogen supply in field corn. Geoscience and Remote Sensing Symposium, Proceedings. IGARSS 2000, IEEEGoogle Scholar
  43. Corp LA, McMurtrey JE III, Middleton EM, Mulchi CL, Chappelle EW, Daughtry CST (2003) Fluorescence sensing systems: in vivo detection of biophysical variations in field corn due to nitrogen supply. Remote Sens Environ 86(4):470–479. doi:10.1016/S0034-4257(03)00125-1 Google Scholar
  44. Cregg BM, Duck MW, Rios CM, Rowe DB, Koelling MR (2004) Chlorophyll fluorescence and needle chlorophyll concentration of Fir (Abies sp.) seedlings in response to pH. Hortscience 39(5):1121–1125Google Scholar
  45. DaMatta FM, Loos RA, Silva EA, Loureiro ME (2002) Limitations to photosynthesis in Coffea canephora as a result of nitrogen and water availability. J Plant Physiol 159:975–981. doi:10.1078/0176-1617-00807 Google Scholar
  46. Debuisson S, Germain C, Garcia O, Panigai L, Moncomble D, Le Moigne M, Fadaili EM, Evain S, Cerovic ZG (2010) Using Multiplex® and Greenseeker™ to manage spatial variation of vine vigor in Champagne. 10th International Conference on Precision Agriculture. Denver, Colorado, July 18–21, 2010, CD-ROM, p 15Google Scholar
  47. Demmig-Adams B, Björkman O (1987) Comparison of the effect of excessive light on chlorophyll fluorescence (77 K) and photon yield of O2 evolution in leaves of higher plants. Planta 171:171–184Google Scholar
  48. Demmig-Adams B, Adams WW III, Winter K, Meyer A, Schreiber U, Pereira JS, Krüger A, Czygan FC, Lange OL (1989) Photo-chemical efficiency of photosystem II, photon yield of O2 evolution, photosynthetic capacity, and carotenoid composition during the “midday depression” of net CO2 uptake in Arbutus unedo growing in Portugal. Planta 177:377–387Google Scholar
  49. Dudelzak A, Babichenko SM, Poryvkina LV, Lapimaa J (1991) Laser-induced spectral signatures in investigations of sea upper layer. 5th International Colloquium—Physical Measurements and Signatures in Remote Sensing, Vol. ESA SP-319, Paris, Courchevel, France, pp 711–714Google Scholar
  50. Esteban R, Olascoaga B, Becerril JM, García-Plazaola JI (2010) Insights into carotenoid dynamics in non-foliar photosynthetic tissues of avocado. Physiol Plantarum 140:69–78. doi:10.1111/j.1399-3054.2010.01385.x Google Scholar
  51. Ferguson RB, Hergert GW, Schepers JS, Gotway CA, Cahoon JE, Peterson TA (2002) Site-specific nitrogen management of irrigated maize: yield and soil residual nitrate effects. Soil Sci Soc Am J 66:544–553Google Scholar
  52. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92. doi:10.1016/S0304-4165(89)80016-9 Google Scholar
  53. Georgieva K, Szigeti Z, Sarvari E, Gaspar L, Maslenkova L, Peeva V, Peli E, Tuba Z (2007) Photosynthetic activity of homoiochlorophyllous desiccation tolerant plant Haberlea rhodopensis during dehydration and rehydration. Planta 225:955–964. doi:10.1007/s00425-006-0396-8 PubMedGoogle Scholar
  54. Gitelson AA, Buschmann C, Lichtenthaler HK (1998) Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements. J Plant Physiol 152:283–296Google Scholar
  55. Gitelson AA, Buschmann C, Lichtenthaler HK (1999) The chlorophyll fluorescence ratio F735/F700 as an accurate measurement of the chlorophyll content in plants. Remote Sens Environ 69(3):296–302. doi:10.1016/S0034-4257(99)00023-1 Google Scholar
  56. Guidi L, Di Cagno R, Soldatini GF (2000) Screening of bean cultivars for their response to ozone as evaluated by visible symptoms and leaf chlorophyll fluorescence. Environ Pollut 107:349–355. doi:10.1016/S0269-7491(99)00170-0 PubMedGoogle Scholar
  57. Günther KP, Dahn HG, Lüdeker W (1994) Remote sensing vegetation status by laser-induced fluorescence. Remote Sens Environ 47:10–17. doi:10.1016/0034-4257(94)90122-8 Google Scholar
  58. Häder DP, Herrmann H, Schäfer J, Santas R (1997) Photosynthetic fluorescence induction and oxygen production in two Mediterranean Cladophora species measured on site. Aquat Bot 56:253–264. doi:10.1016/S0304-3770(96)01107-2 Google Scholar
  59. Hamilton J, Zangerl A, DeLucia E, Berenbaum M (2001) The carbon–nutrient balance hypothesis: its rise and fall. Ecol Lett 4:86–95. doi:10.1046/j.1461-0248.2001.00192.x Google Scholar
  60. Hashimoto M, Herai Y, Nagaoka T, Kouno K (2007) Nitrate leaching in granitic regosol as affected by N uptake and transpiration by corn. Soil Sci Plant Nutr 53(3):300–309. doi:10.1111/j.1747-0765.2007.00134.x Google Scholar
  61. Hassan IA (2006) Effects of water stress and high temperature on gas exchange and chlorophyll fluorescence in Triticum aestivum L. Photosynthetica 44(2):312–315. doi:10.1007/s11099- 006-0024-7 Google Scholar
  62. Heege HJ, Reusch S, Thiessen E (2008) Prospects and results for optical systems for site-specific on-the-go control of nitrogen-top-dressing in Germany. Precis Agric 9:115–131. doi:10.1007/s11119-008-9055-3 Google Scholar
  63. Heisel F, Sowinska M, MiehéJ A, Lang M, Lichtenthaler HK (1996) Detection of nutrient deficiencies of maize by laser induced fluorescence imaging. J Plant Physiol 148:622–631Google Scholar
  64. Heisel F, Sowinska M, Khalili E, Eckert C, Miehé J, Lichtenthaler HK (1997) Laser-induced fluorescence imaging for monitoring nitrogen fertilizing treatments of wheat. SPIE 3059:10–21. doi:10.1117/12.277607 Google Scholar
  65. Huang ZA, Jiang DA, Yang Y, Sun JW, Jin SH (2004) Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants. Photosynthetica 42(3):357–364. doi:10.1023/B:PHOT.0000046153.08935.4c Google Scholar
  66. Hura T, Grzesiak S, Hura K, Grzesiak M, Rzepka A (2006) Differences in the physiological state between triticale and maize plants during drought stress and followed rehydration expressed by the leaf gas exchange and spectrofluorimetric methods. Acta Physiol Plant 28:433–443Google Scholar
  67. Hura T, Grzesiak S, Hura K, Thiemt E, Tokarz K, Wedzony M (2007) Physiological and biochemical tools useful in drought–tolerance detection in genotypes of winter triticale: accumulation of ferulic acid correlates with drought tolerance. Ann Bot 100:767–775. doi:10.1093/aob/mcm162 PubMedGoogle Scholar
  68. Khamis S, Lamaze T, Lemoine Y, Foyer C (1990) Adaptation of the photosynthetic apparatus in maize leaves as a result of N limitation. Plant Physiol 94:1436–1443. doi:10.1093/aob/mci244 PubMedGoogle Scholar
  69. Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta 376(1):105–115. doi:10.1016/0005-2728(75)90209-1 PubMedGoogle Scholar
  70. Krause GH, Gallé A, Gademann R, Winter K (2003) Capacity of protection against ultraviolet radiation in sun and shade leaves of tropical forest plants. Funct Plant Biol 30:533–542. doi:10.1071/FP03047 Google Scholar
  71. Kruskopf M, Flynn KJ (2006) Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytol 169:525–536. doi:10.1111/j.1469-8137.2005.01601.x PubMedGoogle Scholar
  72. Lang M, Siffel P, Braunova Z, Lichtenthaler HK (1992) Investigations of the blue-green fluorescence emission of plant leaves. Bot Acta 105:435–440Google Scholar
  73. Langsdorf G, Buschmann C, Sowinska M, Babani F, Mokry M, Timmermann F, Lichtenthaler HK (2000) Multicolour fluorescence imaging of sugar beet leaves with different nitrogen status by flash lamp UV-excitation. Photosynthetica 38(4):539–551Google Scholar
  74. Lea US, Slimestad R, Smedvig P, Lillo C (2007) Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta 225:1245–1253. doi:10.1007/s00425-006-0414-x PubMedGoogle Scholar
  75. Lejealle S, Evain S, Cerovic ZG (2010) Multiplex: a new diagnostic tool for management of nitrogen fertilization of turfgrass. 10th International Conference on Precision Agriculture, Denver, Colorado, July 18–21, 2010, CD-ROM, p 15Google Scholar
  76. Lenk S, Chaerle L, Pfündel EE, Langsdorf G, Hagenbeek D, Lichtenthaler HK, van der Straeten D, Buschmann C (2007) Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications. J Exp Bot 58:807–814. doi:10.1093/jxb/erl207 PubMedGoogle Scholar
  77. Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148:4–14Google Scholar
  78. Lichtenthaler HK, Miehé JA (1997) Fluorescence imaging as a diagnostic tool for plant stress. Trends Plant Sci 2(8):316–320. doi:10.1016/S1360-1385(97)89954-2 Google Scholar
  79. Lichtenthaler HK, Schweiger J (1998) Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants. J Plant Physiol 152:272–282Google Scholar
  80. Lichtenthaler HK, Langdorf G, Lenk S, Buschmann C (2005) Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system. Photosynthetica 43(3):355–369. doi:10.1007/s11099-005-0060-8 Google Scholar
  81. Lima JD, Mosquim PR, Da Matta FM (1999) Leaf gas exchange and chlorophyll fluorescence parameters in Phaseolus vulgaris as affected by nitrogen and phosphorus deficiency. Photosynthetica 37(1):113–121Google Scholar
  82. Lu C, Zhang J (2000) Photosynthetic CO2 assimilation, chlorophyll fluorescence and photoinhibition as affected by nitrogen deficiency in maize plants. Plant Sci 151:135–143. doi:10.1016/S0168-9452(99)00207-1 PubMedGoogle Scholar
  83. Maier SW, Günther KP (2001) Sun-induced fluorescence—a new tool for precision farming. Proceedings of the International Workshop on Spectroscopy Application in Precision Farming, Freising-Weihenstephan, Germany, January, 16th–18th, pp 90–93Google Scholar
  84. Mauromicale G, Ierna A, Marchese M (2006) Chlorophyll fluorescence and chlorophyll content in field-grown potato as affected by nitrogen supply, genotype, and plant age. Photosynthetica 44(1):76–82. doi:10.1007/s11099-005-0161-4 Google Scholar
  85. McMurtrey JE, Middleton EM, Corp LA, Campbell PKE, Butcher LM, Daughtry CST (2003) Optical reflectance and fluorescence for detecting nitrogen needs in Zea mays L. Geoscience and Remote Sensing Symposium, IGARSS’03. Proceedings, 2003 IEEE International, Volume 7, 21–25 July 2003, pp 4602–4604Google Scholar
  86. Mercure SA, Daoust B, Samson G (2004) Causal relationship between growth inhibition, accumulation of phenolic metabolites, and changes of UV-induced fluorescences in nitrogen-deficient barley plants. Can J Bot 6:815–821. doi:10.1139/B04-062 Google Scholar
  87. Meroni M, Busetto L, Colombo R, Guanter L, Moreno J, Verhoef W (2010) Performance of spectral fitting methods for vegetation fluorescence quantification. Remote Sens Environ 114:363–374. doi:10.1016/j.rse.2009.09.010 Google Scholar
  88. Méthy M, Lacaze B, Olioso A (1991) Perspectives et limites de la fluorescence pour la télédétection de l’état hydrique d’un couvert végétal: cas d’une culture de soja. Int J Remote Sens 12(1):223–230. doi:10.1080/01431169108929648 Google Scholar
  89. Méthy M, Olioso A, Trabaud L (1994) Chlorophyll fluorescence as a tool for management of plant resources. Remote Sens Environ 47:2–9. doi:10.1016/0034-4257(94)90121-X Google Scholar
  90. Meyer S, Cartelat A, Moya I, Cerovic ZG (2003) UV-induced blue-green and far-red fluorescence along wheat leaves: a potential signature of leaf ageing. J Exp Bot 54(383):757–769. doi:10.1093/jxb/erg063 PubMedGoogle Scholar
  91. Morales F, Cerovic ZG, Moya I (1994) Characterization of blue-green fluorescence in the mesophyll of sugar beet (Beta vulgaris L.) leaves affected by iron deficiency. Plant Physiol 106:127–133PubMedGoogle Scholar
  92. Morales F, Cerovic ZG, Moya I (1998) Time-resolved blue-green fluorescence of sugar beet leaves. Temperature-induced changes and consequences for the potential use of blue-green fluorescence as a signature for remote sensing of plants. Aust J Plant Physiol 25:325–334. doi:10.1071/PP97085 Google Scholar
  93. Moshou D, Bravo C, Wahlen S, West J, McCartney A, De Baerdemaeker J, Ramon H (2006) Simultaneous identification of plant stresses and diseases in arable crops using proximal optical sensing and self-organising maps. Precis Agric 7:149–164. doi:10.1007/s11119-006-9002-0 Google Scholar
  94. Moya I, Guyot G, Goulas Y (1992) Remotely sensed blue and red fluorescence emission for monitoring vegetation. ISPRS J Photogramm 47:205–231. doi:10.1016/0924-2716(92)90033-6 Google Scholar
  95. Norikane JH, Kurata K (2001) Water stress detection by monitoring fluorescence of plants under ambient light. T ASAE 44(6):1915–1922Google Scholar
  96. Norikane J, Goto E, Kurata K, Takakura T (2003) A new relative referencing method for crop monitoring using chlorophyll fluorescence. Adv Space Res 31:245–248. doi:10.1016/S0273-1177(02)00746-9 PubMedGoogle Scholar
  97. Nybakken L, Bilger W, Johanson U, Björn LO, Zielke M, Solheim B (2004) Epidermal UV-screening in vascular plants from Svalbard (Norwegian Arctic). Polar Biol 27:383–390. doi:10.1007/s00300-004-0602-8 Google Scholar
  98. Ounis A, Cerovic ZG, Briantais JM, Moya I (2001) Dual-excitation FLIDAR for the estimation of epidermal UV absorption in leaves and canopies. Remote Sens Environ 76:33–48. doi:10.1016/S0034-4257(00)00190-5 Google Scholar
  99. Pfündel EE, Ben Ghozlen N, Meyer S, Cerovic ZG (2007) Investigating UV screening in leaves by two different types of portable UV fluorimeters reveals in vivo screening by anthocyanins and carotenoids. Photosynth Res 93:205–221. doi:10.1007/s11120-007-9135-7 PubMedGoogle Scholar
  100. Porra RJ, Thompson WA, Kreidemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394. doi:10.1016/S0005-2728(89)80347-0 Google Scholar
  101. Poryvkina L, Babichenko S, Leeben A (1997) Spectral fluorescent signatures (SFS) in characterisation of water environment. In: Babichenko S, Reuter R (eds) 3rd EARSeL Workshop on Lidar Remote Sensing of Land and Sea, Tallinn, Estonia, pp 140–144Google Scholar
  102. Richards JT, Schuerger AC, Capelle G, Guikema JA (2003) Laser-induced fluorescence spectroscopy of dark- and light-adapted bean (Phaseolus vulgaris L.) and wheat (Triticum aestivum L.) plants grown under three irradiance levels and subjected to fluctuating lighting conditions. Remote Sens Environ 84:323–341. doi:10.1016/S0034-4257(02)00115-3 Google Scholar
  103. Robberecht R, Caldwell MM (1978) Leaf epidermal transmittance of ultraviolet radiation and its implications for plant sensitivity to ulraviolet-radiation induced injury. Oecologia 32(3):277–287Google Scholar
  104. Rodríguez-Román A, Iglesias-Prieto R (2005) Regulation of photochemical activity in cultured symbiotic dinoflagellates under nitrate limitation and deprivation. Mar Biol 46:1063–1073. doi:10.1007/s00227-004-1529-x Google Scholar
  105. Rouse JW Jr, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great Plains with ERTS. Third ERTS Symposium, Vol. 1. Washington, DC, NASA SP-351, pp 309–317Google Scholar
  106. Samborski SM, Tremblay N, Fallon E (2009) Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agron J 101:800–816. doi:10.2134/agronj2008.0162Rx Google Scholar
  107. Samson G, Tremblay N, Dudelzak AE, Babichenko SM, Dextraze L, Wollring J (2000) Nutrient stress of corn plants: early detection and discrimination using a compact multiwavelength fluorescent lidar. 4th EARSeL Workshop Lidar Remote Sensing of Land and Sea held during the 20th EARSeL Symposium, Dresden, 14–16 June 2000. http://las.physik.uni–oldenburg.de/projekte/earsel/4th_workshop.html
  108. Schächtl J, Huber G, Maidl FX, Sticksel E, Schulz J, Haschberger P (2005) Laser-induced chlorophyll fluorescence measurements for detecting the nitrogen status of wheat (Triticum aestivum L.) canopies. Precis Agric 6:143–156. doi:10.1007/s11119-004-1031-y Google Scholar
  109. Schreiber U, Bilger W (1993) Progress in chlorophyll fluorescence research: major developments during the past years in retrospect. In: Liittge U, Ziegler H (eds) Progress in botany, vol 54. Springer, Berlin, pp 151–153Google Scholar
  110. Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Ecological studies, vol 100. Springer, Berlin, pp 49–70Google Scholar
  111. Schweiger J, Lang M, Lichtenthaler HK (1996) Differences in fluorescence excitation spectra of leaves between stressed and non-stressed plant. J Plant Physiol 148:536–547Google Scholar
  112. Shelly K, Higgins T, Beardall J, Wood B, McNaughton D, Heraud P (2007) Characterising nutrient-induced fluorescence transients (NIFTs) in nitrogen-stressed Chlorella emersonii (Chlorophyta). Phycologia 46:503–512. doi:10.2216/06-55.1 Google Scholar
  113. Stober F, Lang M, Lichtenthaler HK (1994) Studies on the blue, green, and red fluorescence emission signatures of green, etiolated, and white leaves. Remote Sens Environ 47:65–71. doi:10.1016/0034-4257(94)90129-5 Google Scholar
  114. Subhash N, Wenzel O, Lichtenthaler HK (1999) Changes in blue-green and chlorophyll fluorescence emission and fluorescence ratios during senescence of tobacco plants. Remote Sens Environ 69:215–223. doi:10.1016/S0034-4257(99)00029-2 Google Scholar
  115. Takeuchi A, Saito Y, Kanoh M, Kawahara TD, Nomura A, Ishizawa H, Matsuzawa T, Komatsu K (2002) Laser-induced fluorescence detection of plant and optimal harvest time of agricultural products (lettuce). Am Soc Agric Eng 18(3):361–366Google Scholar
  116. Tartachnyk I, Rademacher I (2003) Estimation of nitrogen deficiency of sugar beet and wheat using parameters of laser induced and pulse amplitude modulated chlorophyll fluorescence. J Appl Botany-Angewandte Botanik 77:61–67Google Scholar
  117. Tartachnyk I, Rademacher I, Kuhbauch W (2006) Distinguishing nitrogen deficiency and fungal infection of winter wheat by laser-induced fluorescence. Precis Agric 7:281–293Google Scholar
  118. Tartachnyk I, Blanke MM, Jackson MB (2007) Effect of hail on photosynthesis, chlorophyll fluorescence, stomatal closure and evapotranspiration of apple leaves. Acta Hortic 732:543–547Google Scholar
  119. Thoren D, Schmidhalter U (2009) Nitrogen status and biomass determination of oilseed rape by laser-induced chlorophyll fluorescence. Eur J Agron 30:238–242. doi:10.1016/j.eja.2008.12.001 Google Scholar
  120. Thoren D, Thoren P, Schmidhalter U (2010) Influence of ambient light and temperature on laser-induced chlorophyll fluorescence measurements. Eur J Agron 32:169–176. doi:10.1016/j.eja.2009.10.003 Google Scholar
  121. Tremblay N (2004) Determining nitrogen requirements from crops characteristics. Benefits and challenges. Recent Research Development in Agronomy & Horticulture 1. Chapter 9, pp 157–182Google Scholar
  122. Tremblay N, Wang Z, Bélec C (2007) Evaluation of the Dualex for the assessment of corn nitrogen status. J Plant Nutr 30:1355–1369. doi:10.1080/01904160701555689 Google Scholar
  123. Tremblay N, Wang Z, Bélec C (2010) Performance of Dualex in spring wheat for crop nitrogen status assessment, yield prediction and estimation of soil nitrate content. J Palnt Nutr 33(1):57–70. doi:10.1080/01904160903391081 Google Scholar
  124. Valentini R, Cecchi G, Mazzinghi P, Mugnozza GS, Agati G, Bazzani M, De Angelis P, Fusi F, Matteucci G, Raimondi V (1994) Remote sensing of chlorophyll a fluorescence of vegetation canopies: 2. Physiological significance of fluorescence signal in response to environmental stresses. Remote Sens Environ 47:29–35. doi:10.1016/0034-4257(94)90124-4 Google Scholar
  125. Wagner H, Gilbert M, Wilhelm C (2003) Longitudinal leaf gradients of UV-absorbing screening pigments in barley (Hordeum vulgare). Physiol Plant 117:383–391. doi:10.1034/j.1399-3054.2003.00045.x PubMedGoogle Scholar
  126. Xu ZZ, Zhou GS, Wang YL, Han GX, Li YJ (2008) Changes in chlorophyll fluorescence in maize plants with imposed rapid dehydration at different leaf ages. J Plant Growth Regul 27:83–92. doi:10.1007/s00344-007-9035-2 Google Scholar
  127. Zarco-Tejada PJ, Miller JR, Mohammed GH, Noland TL, Sampson PH (2002) Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery. J Environ Qual 31:1433–1441. doi:10.2134/jeq2002.1433 PubMedGoogle Scholar
  128. Zarco-Tejada PJ, Berni JAJ, Suarez L, Sepulcre-Cantó G, Morales F, Miller JR (2009) Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection. Remote Sens Environ 113:1262–1275. doi:10.1016/j.rse.2009.02.016 Google Scholar
  129. Zhang YP, Tremblay N (2010) Evaluation of the Multiplex® fluorescence sensor for the assessment of corn nitrogen status. 10th International Conference on Precision Agriculture, Denver, Colorado, July 18–21, 2010, CD-ROM, p 9Google Scholar

Copyright information

© INRA and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Nicolas Tremblay
    • 1
    • 3
  • Zhijie Wang
    • 1
  • Zoran G. Cerovic
    • 2
  1. 1.Agriculture and Agri-Food CanadaSaint-Jean-sur-RichelieuCanada
  2. 2.Laboratoire Ecologie, Systématique et Évolution UMR 8079, CNRSUniversité Paris-Sud 11Orsay CedexFrance
  3. 3.Saint-Jean-sur-RichelieuCanada

Personalised recommendations