Agronomy for Sustainable Development

, Volume 32, Issue 2, pp 365–399

A trait-based approach to comparative functional plant ecology: concepts, methods and applications for agroecology. A review

Review Article

Abstract

Comparative functional ecology seeks to understand why and how ecological systems and their components operate differently across environments. Although traditionally used in (semi)-natural situations, its concepts and methods could certainly apply to address key issues in the large variety of agricultural systems encountered across the world. In this review, we present major advances in comparative plant functional ecology that were made possible over the last two decades by the rapid development of a trait-based approach to plant functioning and prospects to apply it in agricultural situations. The strength of this approach is that it enables us to assess the interactions between organisms and their environment simultaneously on a large number of species, a prerequisite to address questions relative to species distribution, community assembly and ecosystem functioning. The trait concept will be first defined, before presenting a conceptual framework to understand the effects of environmental factors on plant community structure and ecosystem properties via plant traits. We will then argue that leading dimensions of variation among species can be captured by some selected traits and show that a combination of three easily measured traits—specific leaf area (the ratio of leaf area to leaf dry mass), plant height and seed mass—enables us to assess how different species use their resources, interact with neighbours and disperse in time and space. The use of traits to address central questions in community ecology will be reviewed next. It will be shown that traits allow us to (1) understand how plant species are sorted according to the nature of environmental gradients, (2) evaluate the relative importance of habitat filtering and limiting similarity in the process of community assembly and (3) quantify two main components of community functional structure, namely, community-weighted means of traits and community functional divergence. The relative impacts of these two components on ecosystem properties will then be discussed in the case of several components of primary productivity, litter decomposition, soil water content and carbon sequestration. There is strong support for the biomass ratio hypothesis, which states that the extent to which the traits of a species affect those ecosystem properties depends on the abundance of this species in the community. Assessing the role of functional divergence among species on ecosystem properties will require major methodological breakthroughs, both in terms of metrics and statistical procedures to be used. In agricultural situations, we show that trait-based approaches have been successfully developed to assess the impacts of management practices on (1) the agronomic value of grasslands and (2) the functional composition and structure of crop weed communities and how these could affect the functioning of the crop. Applications in forestry are still poorly developed, especially in temperate regions where the number of species in managed forest remains relatively low. The last decades of research have led to the constitution of large data sets of plant traits, which remain poorly compatible and accessible. Recent advances in the field of ecoinformatics suggest that major progress could be achieved in this area by using improved metadata standards and advancing trait domain ontologies. Finally, concluding remarks, unanswered questions and directions for research using the functional approach to biodiversity made possible by the use of traits will be discussed in the contexts of ecological and agronomical systems. The latter indeed cover a wide range of environmental conditions and biological diversity, and the prospect for reducing environmental impacts in highly productive, low-diversity systems will certainly imply improving our skills for the management of more diverse systems prone to a trait-based approach as reviewed here.

Keywords

Agroecology Biodiversity Community structure Comparative ecology Ecoinformatics Ecological strategy Ecosystem properties Environmental conditions Functional diversity Plant functional trait 

References

  1. Aber JD, Mellilo JM (2001) Terrestrial ecosystems. Brooks/Cole, Pacific GroveGoogle Scholar
  2. Ackerly DD (2003) Community assembly, niche conservatism, and adaptive evolution in changing environments. Int J Plant Sci 164(3):S165–S184. doi:10.1086/368401 Google Scholar
  3. Ackerly D (2004) Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol Monog 74:25–44. doi:10.1890/03-4022 Google Scholar
  4. Ackerly DD, Cornwell WK (2007) A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecol Lett 10:135–145. doi:10.1111/j.1461-0248.2006.01006.x PubMedGoogle Scholar
  5. Ackerly DD, Monson RK (2003) Waking the sleeping giant: the evolutionary foundations of plant functions. Int J Plant Sci 164(3):S1–S6. doi:10.1086/374729 Google Scholar
  6. Ackerly DD, Schwilk DW, Webb CO (2006) Niche evolution and adaptive radiation: testing the order of trait divergence. Ecology 87(7):S50–S61. doi:10.1890/0012-9658(2006)87[50:NEAART]2.0.CO;2 PubMedGoogle Scholar
  7. Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449Google Scholar
  8. Aerts R, Chapin FS III (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67. doi:10.1016/S0065-2504(08)60016-1 Google Scholar
  9. Al Haj Khaled R, Duru M, Decruyenaere V, Jouany C, Cruz P (2006) Using leaf traits to rank native grasses according to their nutritive value. Rangeland Ecol Manage 59:648–654. doi:10.2111/05-031R2.1 Google Scholar
  10. Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S (2010) Intraspecific functional variability: extent, structure and sources of variation. J Ecol 98:604–613. doi:10.1111/j.1365-2745.2010.01651.x Google Scholar
  11. Altesor A, Oesterheld M, Leoni E, Lezama F, Rodrìguez C (2005) Effect of grazing exclosure on community structure and productivity of a Uruguayan grassland. Plant Ecol 179:83–91. doi:10.1007/s11258-004-5800-5 Google Scholar
  12. Ansquer P, Duru M, Theau JP, Cruz P (2009a) Convergence in plant traits between species within grassland communities simplifies their monitoring. Ecol Indic 9(5):1020–1029. doi:10.1016/j.ecolind.2008.12.002 Google Scholar
  13. Ansquer P, Duru M, Theau JP, Cruz P (2009b) Functional traits as indicators of fodder provision over a short time scale in species-rich grasslands. Ann Bot 103(1):117–126. doi:10.1093/aob/mcn215 PubMedGoogle Scholar
  14. Arnold SJ (1983) Morphology, performance and fitness. Am Zool 23:347–361. doi:10.1093/icb/23.2.347 Google Scholar
  15. Aubertot J-N, Barbier J-M, Carpentier A, Gril J-J, Guichard L, Lucas P, Savary S, Voltz M (eds) (2007) Pesticides, agriculture et environnement. Réduire l’utilisation des pesticides et en limiter les impacts environnementaux. Quae, VersaillesGoogle Scholar
  16. Baker TR, Phillips OL, Laurance WF, Pitman NCA, Almeida S, Arroyo L, DiFiore A, Erwin T, Higuchi N, Killeen TJ, Laurance SG, Nascimento H, Monteagudo A, Neill DA, Silva JNM, Malhi Y, Lòpez GG, Peacock J, Quesada CA, Lewis SL, Lloyd J (2009) Do species traits determine patterns of wood production in Amazonian forests? Biogeosci 6:297–307. doi:10.5194/bg-6-297-2009 Google Scholar
  17. Balvanera P, Pfisterer AB, Buchmann N, He J-S, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156. doi:10.1111/j.1461-0248.2006.00963.x PubMedGoogle Scholar
  18. Bartholomeus RP, Witte J-PM, van Bodegom PM, Aerts R (2008) The need of data harmonization to derive robust empirical relationships between soil conditions and vegetation. J Veg Sci 19:799–808. doi:10.3170/2008-8-18450 Google Scholar
  19. Bazzaz FA, Ackerly DD, Reekie EG (2000) Reproductive allocation in plants. In: Fenner M (ed) Seeds. The ecology of regeneration in plant communities. CAB International, Wallingford, pp 1–29Google Scholar
  20. Belyea LR, Lancaster J (1999) Assembly rules within a contingent ecology. Oikos 86:402–416Google Scholar
  21. Berendse F, Aerts R (1987) Nitrogen-use-efficiency: a biologically meaningful definition ? Funct Ecol 1:293–296Google Scholar
  22. Bernhardt-Romermann M, Romermann C, Nuske R, Parth A, Klotz S, Schmidt W, Stadler J (2008) On the identification of the most suitable traits for plant functional trait analyses. Oikos 117(10):1533–1541. doi:10.1111/j.0030-1299.2008.16776.x Google Scholar
  23. Bolmgren K, Cowan PD (2008) Time-size tradeoffs: a phylogenetic comparative study of flowering time, plant height ans seed mass in a north-temperate flora. Oikos 117:424–429. doi:10.1111/j.2007.0030-1299.16142.x Google Scholar
  24. Booth BD, Swanton CJ (2002) Assembly theory applied to weed communities. Weed Sci 50(1):2–13. doi:10.1614/0043-1745(2002)050[0002:AIATAT]2.0.CO;2 Google Scholar
  25. Boulant N, Kunstler G, Rambal S, Lepart J (2008) Seed supply, drought, and grazing determine spatio-temporal patterns of recruitment for native and introduced invasive pines in grasslands. Divers Distrib 14:862–874. doi:10.1111/j.1472-4642.2008.00494.x Google Scholar
  26. Bradshaw AD (1987) Functional ecology: comparative ecology? Funct Ecol 1:71Google Scholar
  27. Butler SJ, Brooks D, Feber RE, Storkey J, Vickery JA, Norris K (2009) A cross-taxonomic index for quantifying the health of farmland biodiversity. J Appl Ecol 46(6):1154–1162. doi:10.1111/j.1365-2664.2009.01709.x Google Scholar
  28. Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH (2009) Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE 4(5):e5695. doi:10.1371/journal.pone.0005695 PubMedGoogle Scholar
  29. Cadotte MW, Davies TJ, Regetz J, Kembel SW, Cleland E, Oakley TH (2010) Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecol Lett 13(1):96–105. doi:10.1111/j.1461-0248.2009.01405.x PubMedGoogle Scholar
  30. Calow P (1987) Towards a definition of functional ecology. Funct Ecol 1:57–61Google Scholar
  31. Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992. doi:10.1038/nature05202 PubMedGoogle Scholar
  32. Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ (2007) Impacts of plant diversity on biomass production increase through time because of species complementarity. P Natl Acad Sci USA 104:18123–18128. doi:10.1073/pnas.0709069104 Google Scholar
  33. Cavender-Bares J, Keen A, Miles B (2006) Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87(7):S109–S122. doi:10.1890/0012-9658(2006)87[109:PSOFPC]2.0.CO;2] PubMedGoogle Scholar
  34. Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715. doi:10.1111/j.1461-0248.2009.01314.x PubMedGoogle Scholar
  35. Cebrián J, Duarte CM (1995) Plant growth-rate dependence of detrital carbon storage in ecosystems. Science 268:1606–1608. doi:10.1126/science.268.5217.1606 PubMedGoogle Scholar
  36. Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260Google Scholar
  37. Chapin FS III (1993) Functional role of growth forms in ecosystem and global processes. In: Ehleringer JR, Field CB (eds) Scaling physiological processes. Leaf to globe. Academic, San Diego, pp 287–312Google Scholar
  38. Chapin FS III, Autumn K, Pugnaire F (1993) Evolution of suites of traits in response to environmental stress. Am Nat 142:S78–S92. doi:10.1086/285524 Google Scholar
  39. Chapin FS III, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Díaz S (2000) Consequences of changing biodiversity. Nature 405:234–242. doi:10.1038/35012241 PubMedGoogle Scholar
  40. Chapin FS III, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, New YorkGoogle Scholar
  41. Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure J-P, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99. doi:10.1007/s00442-005-0100-x PubMedGoogle Scholar
  42. Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366. doi:10.1111/j.1461-0248.2009.01285.x PubMedGoogle Scholar
  43. Cingolani AM, Cabido M, Gurvich DE, Renison D, Díaz S (2007) Filtering processes in the assembly of plant communities: are species presence and adundance driven by the same traits? J Veg Sci 18:911–920. doi:0.1111/j.1654-1103.2007.tb02607.x Google Scholar
  44. Cochard H, Barigah ST, Kleinhentz M, Eshel A (2008) Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species? J Plant Physiol 165(9):976–982. doi:10.1016/j.jplph.2007.07.020 PubMedGoogle Scholar
  45. Cornelissen JHC, Thompson K (1997) Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol 135:109–114. doi:10.1046/j.1469-8137.1997.00628.x Google Scholar
  46. Cornelissen JHC, Pérez-Harguindeguy N, Díaz S, Grime JP, Marzano B, Cabido M, Vendramini F, Cerabolini B (1999) Leaf structure and defence control litter decomposition rate across species and life forms in regional flora on two continents. New Phytol 143:191–200. doi:10.1046/j.1469-8137.1999.00430.x Google Scholar
  47. Cornelissen JHC, Cerabolini B, Castro-Díez P, Villar-Salvador P, Montserrat-Martí G, Puyravaud JP, Maestro M, Werger MJA, Aerts R (2003a) Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? J Veg Sci 14:311–322. doi:10.1111/j.1654-1103.2003.tb02157.x Google Scholar
  48. Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003b) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380. doi:10.1071/BT02124 Google Scholar
  49. Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monog 79:109–126. doi:10.1890/07-1134.1 Google Scholar
  50. Cornwell WK, Schwilk DW, Ackerly DD (2006) A trait-based test for habitat filtering: convex hull volume. Ecology 87(6):1465–1471. doi:10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2 PubMedGoogle Scholar
  51. Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant traits are the dominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071. doi:10.1111/j.1461-0248.2008.01219.x PubMedGoogle Scholar
  52. Cortez J, Garnier E, Pérez-Harguindeguy N, Debussche M, Gillon D (2007) Plant traits, litter quality and decomposition in a Mediterranean old-field succession. Plant Soil 296:19–34. doi:10.1007/s11104-007-9285-6 Google Scholar
  53. Craine JM (2009) Resource strategies of wild plants. Princeton University Press, PrincetonGoogle Scholar
  54. Craine JM, Tilman D, Wedin D, Reich P, Tjoelker M, Knops J (2002) Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. Funct Ecol 16:563–574. doi:10.1046/j.1365-2435.2002.00660.x Google Scholar
  55. Crawley MJ, Johnston AE, Silvertown J, Dodd M, de Mazencourt C, Heard MS, Henman DF, Edwards GR (2005) Determinants of species richness in the Park Grass Experiment. Am Nat 165:179–192. doi:10.1086/427270 PubMedGoogle Scholar
  56. de Bello F, Thuiller W, Leps J, Choler P, Clement JC, Macek P, Sebastia MT, Lavorel S (2009) Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence. J Veg Sci 20(3):475–486. doi:10.1111/j.1654-1103.2009.01042.x Google Scholar
  57. de Bello F, Lavorel S, Díaz S, Harrington R, Cornelissen JHC, Bardgett RD, Berg MP, Cipriotti P, Feld CK, Hering D, Martins da Silva P, Potts SG, Sandin L, Sousa JP, Storkey J, Wardle DA, Harrison PA (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv 19:2873–2893. doi:10.1007/s10531-010-9850-9 Google Scholar
  58. de Chazal J, Quétier F, Lavorel S, Van Doorn A (2008) Including multiple differing stakeholder values into vulnerability assessments of socio-ecological systems. Glob Environ Chang 18:508–520. doi:10.1016/j.gloenvcha.2008.04.005 Google Scholar
  59. de Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531. doi:10.1111/j.1461-0248.2008.01164.x PubMedGoogle Scholar
  60. Deen W, Cousens R, Warringa J, Bastiaans L, Carberry P, Rebel K, Riha S, Murphy C, Benjamin LR, Cloughley C, Cussans J, Forcella F, Hunt T, Jamieson P, Lindquist J, Wang E (2003) An evaluation of four crop: weed competition models using a common data set. Weed Res 43(2):116–129. doi:10.1046/j.1365-3180.2003.00323.x Google Scholar
  61. Diamond JM (1975) Assembly of species communities. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Belknap, Cambridge, pp 342–444Google Scholar
  62. Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655. doi:10.1234/12345678 Google Scholar
  63. Diaz S, Lavorel S, McIntyre S, Falczuk V, Casanoves F, Milchunas DG, Skarpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Zhang W, Clark H, Campbell BD (2007) Plant trait responses to grazing—a global synthesis. Glob Change Biol 13(2):313–341. doi:10.1111/j.1365-2486.2006.01288 Google Scholar
  64. Díaz S, Fargione J, Chapin FS III, Tilman D (2006) Biodiversity loss threatens human well-being. PLoS Biol 4(8):e277. doi:10.1371/journal.pbio.0040277 PubMedGoogle Scholar
  65. Díaz S, Lavorel S, Chapin FS III, Tecco PA, Gurvich DE, Grigulis K (2007a) Functional diversity—at the crossroads between ecosystem functioning and environmental filters. In: Canadell JG, Pataki DE, Pitelka LF (eds) Terrestrial ecosystems in a changing world. Springer, Berlin, pp 81–91Google Scholar
  66. Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson M (2007b) Incorporating plant functional diversity effects in ecosystem service assessments. P Natl Acad Sci USA 104:20684–20689. doi:10.1073/pnas.0704716104 Google Scholar
  67. Duarte CM, Sand-Jensen K, Nielsen SL, Enríquez S, Agustí S (1995) Comparative functional ecology: rationale and potentials. Trends Ecol Evol 10:418–421. doi:10.1016/S0169-5347(00)89163-6 PubMedGoogle Scholar
  68. Duru M, Ducrocq H (1997) A nitrogen and phosphorus herbage nutrient index as a tool for assessing the effect of N and P supply on the dry matter yield of permanent pastures. Nutr Cycl Agroecosyst 47:59–69Google Scholar
  69. Duru M, Balent G, Gibon A, Magda D, Theau JP, Cruz P, Jouany C (1998) Fonctionnement et dynamique des prairies permanentes. Exemple des pyrenees centrales. Fourrages 153:97–113Google Scholar
  70. Eckstein RL, Karlsson PS, Weih M (1999) Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate–arctic regions. New Phytol 143:177–189. doi:10.1046/j.1469-8137.1999.00429.x Google Scholar
  71. Enquist BJ, Niklas KJ (2002) Global allocation rules for patterns of biomass partitioning in seed plants. Science 295:1517–1520. doi:10.1126/science.1066360 PubMedGoogle Scholar
  72. Enquist BJ, Economo EP, Huxman TE, Allen AP, Ignace DD, Gilloly JF (2003) Scaling metabolism from organisms to ecosystems. Nature 423:639–642. doi:10.1038/nature01671 PubMedGoogle Scholar
  73. Eviner VT, Chapin FS III (2003) Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystems. Annu Rev Ecol Syst 34:455–485. doi:10.1146/annurev.ecolsys.34.011802.132342 Google Scholar
  74. Evju M, Austrheim G, Halvorsen R, Mysterud A (2009) Grazing responses in herbs in relation to herbivore selectivity and plant traits in an alpine ecosystem. Oecologia 161:77–85. doi:10.1007/s00442-009-1358-1 PubMedGoogle Scholar
  75. Fayolle A (2008) Structure des communautés de plantes herbacées sur les Grands Causses: stratégies fonctionnelles des espèces et interactions spécifiques. PhD thesis SupAgro Montpellier (ED SIBAGHE), Montpellier, p 225Google Scholar
  76. Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, CambridgeGoogle Scholar
  77. Flynn DFB, Gogol-Prokurat M, Nogeire T, Molinari N, Richers BT, Lin BB, Simpson N, Mayfield MM, DeClerck F (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12(1):22–33. doi:10.1111/j.1461-0248.2008.01255.x PubMedGoogle Scholar
  78. Fortunel C, Garnier E, Joffre R, Kazakou E, Quested H, Grigulis K, Lavorel S, Ansquer P, Castro H, Cruz P, Dolezal J, Eriksson O, Freitas H, Golodets C, Jouany C, Kigel J, Kleyer M, Lehsten V, Lepš J, Meier T, Pakeman R, Papadimitriou M, Papanastasis VP, Quétier F, Robson M, Sternberg M, Theau J-P, Thébault A, Zarovali M (2009a) Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90:598–611. doi:10.1890/08-0418.1 PubMedGoogle Scholar
  79. Fortunel C, Violle C, Roumet C, Buatois B, Navas M-L, Garnier E (2009b) Allocation strategies and seed traits are hardly affected by nitrogen supply in 18 species differing in successional status. Perspect Plant Ecol Evol Syst 11:267–283. doi:10.1016/j.ppees.2009.04.003 Google Scholar
  80. Freckleton RP, Sutherland WJ, Watkinson AR (2003) Deciding the future of GM crops in Europe. Science 302(5647):994–996. doi:10.1126/science.1092671 PubMedGoogle Scholar
  81. Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010) Evidence of the ‘plant economics spectrum’ in a subarctic flora. J Ecol 98:362–373. doi:10.1111/j.1365-2745.2009.01615.x Google Scholar
  82. Fried G, Norton LR, Reboud X (2008) Environmental and management factors determining weed species composition and diversity in France. Agr Ecosyst Environ 128:68–76. doi:10.1016/j.agee.2008.05.003 Google Scholar
  83. Fried G, Chauvel B, Reboud X (2009) A functional analysis of large-scale temporal shifts from 1970 to 2000 in weed assemblages of sunflower crops in France. J Veg Sci 20(1):49–58. doi:10.1111/j.1654-1103.2009.05284.x Google Scholar
  84. Fukami T, Bezemer TM, Mortimer SR, van der Putten WH (2005) Species divergence and trait convergence in experimental plant community assembly. Ecol Lett 8(12):1283–1290. doi:10.1111/j.1461-0248.2005.00829.x Google Scholar
  85. Garnier E, Aronson J (1998) Nitrogen use efficiency from leaf to stand level: clarifying the concept. In: Lambers H, Poorter H, van Vuuren MMI (eds) Inherent variation in plant growth. Physiological mechanisms and ecological consequences. Backhuys, Leiden, pp 515–538Google Scholar
  86. Garnier E, Laurent G (1994) Leaf anatomy, specific mass and water content in congeneric annual and perennial grass species. New Phytol 128:725–736. doi:10.1111/j.1469-8137.1994.tb04036.x Google Scholar
  87. Garnier E, Laurent G, Bellmann A, Debain S, Berthelier P, Ducout B, Roumet C, Navas M-L (2001a) Consistency of species ranking based on functional leaf traits. New Phytol 152:69–83. doi:10.1046/j.0028-646x.2001.00239.x Google Scholar
  88. Garnier E, Shipley B, Roumet C, Laurent G (2001b) A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct Ecol 15:688–695. doi:10.1046/j.0269-8463.2001.00563.x Google Scholar
  89. Garnier E, Cortez J, Billès G, Navas M-L, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint J-P (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85(9):2630–2637. doi:10.1890/03-0799 Google Scholar
  90. Garnier E, Lavorel S, Ansquer P, Castro H, Cruz P, Dolezal J, Eriksson O, Fortunel C, Freitas H, Golodets C, Grigulis K, Jouany C, Kazakou E, Kigel J, Kleyer M, Lehsten V, Lepš J, Meier T, Pakeman R, Papadimitriou M, Papanastasis VP, Quested H, Quétier F, Robson M, Roumet C, Rusch G, Skarpe M, Sternberg M, Theau J-P, Thébault A, Vile D, Zarovali M (2007) Assessing the effects of land use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann Bot 99:967–985. doi:10.1093/aob/mcl215 PubMedGoogle Scholar
  91. Gaudet CL, Keddy PA (1988) A comparative approach to predicting competitive ability from plant traits. Nature 334:242–243. doi:10.1038/334242a0 Google Scholar
  92. Gilbert B, Lechowicz MJ (2004) Neutrality, niches, and dispersal in a temperate forest understory. P Natl Acad Sci USA 101(20):7651–7656. doi:10.1073/pnas.0400814101 Google Scholar
  93. Giller KE, Beare MH, Lavelle P, Izac MN, Swift MJ (1997) Agricultural intensification, soil biodiversity and agroecosystem function. Appl Soil Ecol 6:3–16. doi:10.1016/S0929-1393(96)00149-7 Google Scholar
  94. Gitay H, Noble IR (1997) What are funtional types and how should we seek them? In: Smith TM, Shugart HH, Woodward FI (eds) Plant funtional types. Their relevance to ecosystem properties and global change. Cambridge University Press, Cambridge, pp. 3-19Google Scholar
  95. Gourlet-Fleury S, Blanc L, Picard N, Sist P, Dick J, Nasi R, Swaine MD, Forni E (2005) Grouping species for predicting mixed tropical forest dynamics: looking for a strategy. Ann For Sci 62:785–796. doi:10.1051/forest:2005084 Google Scholar
  96. Gower ST (2002) Productivity of terrestrial ecosystems. In: Mooney HA, Canadell JG (eds) The Earth system: biological and ecological dimensions of global environmental change. Wiley, New York, pp 516–521Google Scholar
  97. Grace JB, Anderson TM, Smith MD, Seabloom E, Andelman SJ, Meche G, Weiher E, Allain LK, Jutila H, Sankaran M, Knops J, Ritchie M, Willig MR (2007) Does species diversity limit productivity in natural grassland communities? Ecol Lett 10:680–689. doi:10.1111/j.1461-0248.2007.01058.x PubMedGoogle Scholar
  98. Green JL, Bohannan BJM, Whitaker RJ (2008) Microbial biogeography: from taxonomy to traits. Science 320:1039–1043. doi:10.1126/science.1153475 PubMedGoogle Scholar
  99. Greene DF, Johnson EA (1989) A model of wind dispersal of winged or plumed seeds. Ecology 70:339–347. doi:10.2307/1937538 Google Scholar
  100. Griffon M (2010) Pour des agricultures écologiquement intensives, Editions de l’Aube, La Tour d’AiguesGoogle Scholar
  101. Grime JP, Hunt R (1975) Relative growth-rate: its range and adaptive significance in a local flora. J Ecol 63:393-422. http://www.jstor.org/stable/2258728 Google Scholar
  102. Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194. doi:10.1086/283244 Google Scholar
  103. Grime JP (1979) Plant strategies and vegetation processes. Wiley, ChichesterGoogle Scholar
  104. Grime JP (1997) Biodiversity and ecosystem function: the debate deepens. Science 277:1260–1261. doi:10.1126/science.277.5330.1260 Google Scholar
  105. Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910. doi:10.1046/j.1365-2745.1998.00306.x Google Scholar
  106. Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties. Wiley, ChichesterGoogle Scholar
  107. Grime JP (2006) Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. J Veg Sci 17(2):255–260. doi:10.1111/j.1654-1103.2006.tb02444.x Google Scholar
  108. Grime JP, Anderson JM (1986) Environmental controls over organism activity. In: Van Cleve K, Chapin FSI, Flanagan PW, Viereck LA, Dyrness CT (eds) Forest ecosystems in Alaskan taïga: a synthesis of structure and function. Springer, Berlin, pp 89–95Google Scholar
  109. Grime JP, Thompson K, Hunt R, Hodgson JG, Cornelissen JHC, Rorison IH, Hendry GAF, Ashenden TW, Askew AP, Band SR, Booth RE, Bossard CC, Campbell BD, Cooper JEL, Davison AW, Gupta PL, Hall W, Hand DW, Hannah MA, Hillier SH, Hodkinson DJ, Jalili A, Liu Z, Mackey JML, Matthews N, Mowforth MA, Neal AM, Reader RJ, Reiling K, Ross-Fraser W, Spencer RE, Sutton F, Tasker DE, Thorpe PC, Whitehouse J (1997) Integrated screening validates primary axes of specialisation in plants. Oikos 79:259–281Google Scholar
  110. Gross N, Robson TM, Lavorel S, Albert C, Le Bagousse-Pinguet Y, Guillemin R (2008) Plant response traits mediate the effects of subalpine grasslands on soil moisture. New Phytol 180:652–662. doi:10.1111/j.1469-8137.2008.02577.x PubMedGoogle Scholar
  111. Grubb PJ (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol Rev 52:107–145. doi:10.1111/j.1469-185X.1977.tb01347.x Google Scholar
  112. Guralnick RP, Hill AP, Lane M (2007) Towards a collaborative, global infrastructure for biodiversity assessment. Ecol Lett 10:663–672. doi:10.1111/j.1461-0248.2007.01063.x PubMedGoogle Scholar
  113. Hallik L, Niinemets U, Wright IJ (2009) Are species shade and drought tolerance reflected in leaf-level structural and functional differentiation in Northern Hemisphere temperate woody flora? New Phytol 184(1):257–274. doi:10.1111/j.1469-8137.2009.02918.x PubMedGoogle Scholar
  114. Harper JL, Lovell PH, Moore KG (1970) The shapes and sizes of seeds. Annu Rev Ecol Syst 1:327–356Google Scholar
  115. Harrison SP, Prentice IC, Barboni D, Kohfeld KE, Ni J, Sutra JP (2010) Ecophysiological and bioclimatic foundations for a global plant functional classification. J Veg Sci 21(2):300–317. doi:10.1111/j.1654-1103.2009.01144.x Google Scholar
  116. Hawes C, Begg GS, Squire GR, Iannetta PPM (2005) Individuals as the basic accounting unit in studies of ecosystem function: functional diversity in shepherd’s purse, Capsella. Oikos 109(3):521–534. doi:10.1111/j.0030-1299.2005.13853.x Google Scholar
  117. Hawes C, Haughton AJ, Bohan DA, Squire GR (2009) Functional approaches for assessing plant and invertebrate abundance patterns in arable systems. Basic Appl Ecol 10(1):34–42. doi:10.1016/j.baae.2007.11.007 Google Scholar
  118. Heisse K, Roscher C, Schuhmacher J, Schulze E-D (2007) Establishment of grassland species in monocultures: different strategies lead to success. Oecologia 152:435–447. doi:10.1007/s00442-007-0666-6 PubMedGoogle Scholar
  119. Hendry GAF, Grime JP (eds) (1993) Methods in comparative plant ecology. Chapman & Hall, LondonGoogle Scholar
  120. Hobbie SE, Oleksyn J, Eissenstat DM, Reich PB (2010) Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia 162:505–513. doi:10.1007/s00442-009-1479-6 PubMedGoogle Scholar
  121. Hodgson JG, Montserrat-Martí G, Cerabolini B, Ceriani RM, Maestro-Martí M, Peco B, Wilson PJ, Thompson K, Grime JP, Band SR, Bogard A, Castro-Díez P, Charles M, Jones G, Pérez-Rontomé MC, Caccianiga M, Alard D, Bakker JP, Cornelissen JHC, Dutoit T, Grootjans AP, Guerrero-Campo J, Gupta PL, Hynde A, Kahmen S, Poschlod P, Romo-Díez A, Rorison IH, Rosén E, Schreiber K-F, Tallowin J, de Torres EL, Villar-Salvador P (2005) A functional method for classifying European grasslands for use in joint ecological and economic studies. Basic Appl Ecol 6:119–131. doi:10.1016/j.baae.2005.01.006 Google Scholar
  122. Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monog 75:3–35. doi:10.1890/04-0922 Google Scholar
  123. Hughes L, Dunlop M, French K, Leishman MR, Rice B, Rodgerson L, Westoby M (1994) Predicting dispersal spectra: a minimal set of hypotheses based on plant attributes. J Ecol 82:933–950Google Scholar
  124. Hummel I, Vile D, Violle C, Devaux J, Ricci B, Blanchard A, Garnier E, Roumet C (2007) Relating root structure and anatomy to whole plant functioning: the case of fourteen herbaceous Mediterranean species. New Phytol 173:313–321. doi:10.1111/j.1469-8137.2006.01912.x PubMedGoogle Scholar
  125. Jaiswal P, Ware D, Ni J, Chang K, Zhao W, Schmidt S, Pan X, Clark K, Teytelman L, Cartinhour S, Stein L, McCouch SR (2002) Gramene: development and integration of trait and gene ontologies for rice. Comp Funct Genomics 3:132–136. doi:10.1002/cfg.156 PubMedGoogle Scholar
  126. Jakobsson A, Eriksson O (2000) A comparative study of seed number, seed size, seedling size and recruitment in grassland plants. Oikos 88:494–502. doi:10.1034/j.1600-0706.2000.880304.x Google Scholar
  127. Janse-ten Klooster SH, Thomas EJP, Sterck FJ (2007) Explaining interspecific differences in sapling growth and shade tolerance in temperate forests. J Ecol 95:1250–1260. doi:10.1111/j.1365-2745.2007.01299.x Google Scholar
  128. Jones MB, Schildhauer MP, Reichman OJ, Bowers S (2006) The new bioinformatics: integrating ecological data from the gene to the biosphere. Annu Rev Ecol Syst 37:519–544. doi:10.1146/annurev.ecolsys.37.091305.110031 Google Scholar
  129. Kaelke CM, Kruger EL, Reich PB (2001) Trade-offs in seedling survival, growth, and physiology among hardwood species of contrasting successional status along a light-availability gradient. Can J Bot 31(9):1602–1616. doi:10.1139/cjfr-31-9-1602 Google Scholar
  130. Kahmen S, Poschlod P (2008) Effects of grassland management on plant functional trait composition. Agr Ecosyst Environ 128(3):137–145. doi:10.1016/j.agee.2008.05.016 Google Scholar
  131. Kazakou E, Garnier E, Navas M-L, Roumet C, Collin C, Laurent G (2007) Components of nutrient residence time and the leaf economics spectrum in species from Mediterranean old-fields differing in successional status. Funct Ecol 21:235–245. doi:10.1111/j.1365-2435.2006.01242.x Google Scholar
  132. Kazakou E, Violle C, Roumet C, Pintor C, Gimenez O, Garnier E (2009) Litter quality and decomposability of species from a Mediterranean succession depend on leaf traits but not on nitrogen supply. Ann Bot 104:1151–1161. doi:10.1093/aob/mcp202 PubMedGoogle Scholar
  133. Keddy P (1992a) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3:157–164. doi:10.2307/3235676 Google Scholar
  134. Keddy PA (1992b) A pragmatic approach to functional ecology. Funct Ecol 6:621–626Google Scholar
  135. Keith DA, Holman L, Rodoreda S, Lemmon J, Bedward M (2007) Plant functional types can predict decade-scale changes in fire-prone vegetation. J Ecol 95(6):1324–1337. doi:10.1111/j.1365-2745.2007.01302.x Google Scholar
  136. Kerkhoff AJ, Enquist BJ (2006) Ecosystem allometry: the scaling of nutrient stocks and primary productivity across plant communities. Ecol Lett 9:419–427. doi:10.1111/j.1461-0248.2006.00888.x PubMedGoogle Scholar
  137. King DA (1990) The adaptive significance of tree height. Am Nat 135:809–828. doi:10.1086/285075 Google Scholar
  138. Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimes L, Klimesova J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Gotzenberger L, Hodgson JG, Jackel AK, Kuhn I, Kunzmann D, Ozinga WA, Romermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96(6):1266–1274. doi:10.1111/j.1365-2745.2008.01430.x Google Scholar
  139. Klimes L, Klimesova J (1999) CLO-PLA2—a database of clonal plants in Central Europe. Plant Ecol 141:9–19Google Scholar
  140. Klumpp K, Soussana J-F (2009) Using functional traits to predict grassland ecosystem change: a mathematical test of the response-and-effect trait approach. Glob Change Biol 15:2921–2934. doi:10.1111/j.1365-2486.2009.01905.x Google Scholar
  141. Knevel IC, Bekker RM, Kunzmann D, Stadler M, Thompson K (eds) (2005) The LEDA traitbase. Collecting and measuring standards of life-history traits of the Northern European flora. University of Groningen, GroningenGoogle Scholar
  142. Kooyman R, Rossetto M (2008) Definition of plant functional groups for informing implementation scenarios in resource-limited multi-species recovery planning. Biodivers Conserv 17(12):2917–2937. doi:10.1007/s10531-008-9405-5 Google Scholar
  143. Kraft NJB, Valencia R, Ackerly D (2008) Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322:580–582. doi:10.1126/science.1160662 PubMedGoogle Scholar
  144. Kropff MJ, Weaver SE, Smits MA (1992) Use of ecophysiological models for crop–weed interference: relations amongst weed density, relative time of weed emergence, relative leaf area and yield loss. Weed Sci 40:296–301Google Scholar
  145. Kühn I, Durka W, Klotz S (2004) BiolFlor—a new plant-trait database as a tool for plant invasion ecology. Divers Distrib 10:363–365. doi:10.3170/2007-8-18349 Google Scholar
  146. Kuparinen A (2006) Mechanistic models for wind dispersal. Trends Plant Sci 11:296–301. doi:10.1016/j.tplants.2006.04.006 PubMedGoogle Scholar
  147. Larcher W (2003) Physiological plant ecology: ecophysiology and stress physiology of functional groups. Springer, BerlinGoogle Scholar
  148. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556. doi:10.1046/j.1365-2435.2002.00664.x Google Scholar
  149. Lavorel S, Mcintyre S, Landsberg J, Forbes TDA (1997) Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol Evol 12(12):474–478. doi:10.1016/S0169-5347(97)01219-6 PubMedGoogle Scholar
  150. Lavorel S, Díaz S, Cornelissen JHC, Garnier E, Harrison SP, McIntyre S, Pausas J, Pérez-Harguindeguy N, Roumet C, Urcelay C (2007) Plant functional types: are we getting any closer to the Holy Grail? In: Canadell J, Pataki D, Pitelka L (eds) Terrestrial ecosystems in a changing world. Springer, Berlin, pp 149–164Google Scholar
  151. Lavorel S, Grigulis K, McIntyre S, Williams NSG, Garden D, Dorrough J, Berman S, Quetier F, Thebault A, Bonis A (2008) Assessing functional diversity in the field—methodology matters! Funct Ecol 22(1):134–147. doi:10.1111/j.1365-2435.2007.01339.x Google Scholar
  152. Le Roux X, Barbault R, Baudry J, Burel F, Doussan I, Garnier E, Herzog F, Lavorel S, Lifran R, Roger-Estrade J, Sarthou J-P, Trommetter M (eds) (2009) Agriculture et biodiversité. Valoriser les synergies. Quae, VersaillesGoogle Scholar
  153. Leishman MR, Westoby M (1998) Seed size and shape are not related to persistence in soil in Australia in the same way as in Britain. Funct Ecol 12:480–485. doi:10.1046/j.1365-2435.1998.00215.x Google Scholar
  154. Leishman MR, Wright IJ, Moles AT, Westoby M (2000) The evolutionary ecology of seed size. In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities. CAB International, Wallingford, pp 31–57Google Scholar
  155. Lemaire G, Gastal F (1997) N uptake and distribution in plant canopies. In: Lemaire G (ed) Diagnosis of the nitrogen status in the crops. Springer, Berlin, pp 3–44Google Scholar
  156. Leoni E, Altesor A, Paruelo JM (2009) Explaining patterns of primary production from individual level traits. J Veg Sci 20:612–619. doi:10.1111/j.1654-1103.2009.01080.x Google Scholar
  157. Lepš J, de Bello F, Lavorel S, Berman S (2006) Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78:481–501Google Scholar
  158. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808. doi:10.1126/science.1064088 PubMedGoogle Scholar
  159. Lortie CJ, Aarssen LW (1999) The advantage of being tall: higher flowers receive more pollen in Verbascum thapsus L. (Scrophulariaceae). EcoScience 6:68–71Google Scholar
  160. Lortie CJ, Brooker RW, Choler P, Kikvidze Z, Michalet R, Pugnaire FI, Callaway RM (2004) Rethinking plant community theory. Oikos 107(2):433–438. doi:10.1111/j.0030-1299.2004.13250.x Google Scholar
  161. Lososova Z, Chytry M, Kuhn I, Hajek O, Horakova V, Pysek P, Tichy L (2006) Patterns of plant traits in annual vegetation of man-made habitats in central Europe. Perspect Plant Ecol Evol 8(2):69–81. doi:10.1016/j.ppees.2006.07.001 Google Scholar
  162. Lososova Z, Chytry M, Kuehn I (2008) Plant attributes determining the regional abundance of weeds on central European arable land. J Biogeogr 35(1):177–187. doi:10.1111/j.1365-2699.2007.01778.x Google Scholar
  163. Louault F, Pillar VD, Aufrère J, Garnier E, Soussana J-F (2005) Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. J Veg Sci 16:151–160. doi:10.1658/1100-9233(2005)016[0151:PTAFTI]2.0.CO;2 Google Scholar
  164. Madin J, Bowers S, Schildhauer M, Krivov S, Pennington D, Villa F (2007) An ontology for describing and synthesizing ecological observation data. Ecol Inf 2:279–296. doi:10.1016/j.ecoinf.2007.05.004 Google Scholar
  165. Madin JS, Bowers S, Schildhauer MP, Jones MB (2008) Advancing ecological research with ontologies. Trends Ecol Evol 23:159–168. doi:10.1016/j.tree.2007.11.007 PubMedGoogle Scholar
  166. Malézieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, de Tourdonnet S, Valantin-Morison M (2009) Mixing plant species in cropping systems: concepts, tools and models. A review. Agron Sustain Dev 29:43–62. doi:10.1051/agro:2007057 Google Scholar
  167. Martineau Y, Saugier B (2007) A process-based model of old field succession linking ecosystem and community ecology. Ecol Model 204:399–419. doi:10.1016/j.ecolmodel.2007.01.023 Google Scholar
  168. Mason NWH, MacGillivray K, Steel JB, Wilson JB (2003) An index of functional diversity. J Veg Sci 14(4):571–578. doi:10.1111/j.1654-1103.2003.tb02184.x Google Scholar
  169. Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112–118. doi:10.1111/j.0030-1299.2005.13886.x Google Scholar
  170. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185. doi:10.1016/j.tree.2006.02.002 PubMedGoogle Scholar
  171. McIntyre S (2008) The role of plant leaf attributes in linking land use to ecosystem function in temperate grassy vegetation. Agr Ecosyst Environ 128(4):251–258. doi:10.1016/j.agee.2008.06.015 Google Scholar
  172. McIntyre S, Lavorel S, Landsberg J, Forbes TDA (1999) Disturbance response in vegetation—towards a global perspective on functional traits. J Veg Sci 10:621–630. doi:10.2307/3237077 Google Scholar
  173. McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JA, Murray G (2002) Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415(6867):68–71. doi:10.1038/415068a PubMedGoogle Scholar
  174. McNaughton SJ, Milchunas DG, Franck DA (1996) How can net primary productivity be measured in grazing ecosystems? Ecology 77(3):974–977. doi:10.2307/2265518 Google Scholar
  175. Meinzer FC, Andrade JL, Goldstein G, Holbrook NM, Cavelier J, Wright SJ (1999) Partitioning of soil water among canopy trees in a seasonally dry tropical forest. Oecologia 121:293–301Google Scholar
  176. Michener WK (2006) Meta-information concepts for ecological data management. Ecol Inf 1:3–7. doi:10.1016/j.ecoinf.2005.08.004 Google Scholar
  177. Michener WK, Brunt JW, Helly JJ, Kirchner TB, Stafford SG (1997) Nongeospatial metadata for the ecological sciences. Ecol Appl 7:330–342. doi:10.1890/1051-0761(1997)007[0330:NMFTES]2.0.CO;2] Google Scholar
  178. Mitchell P, Veneklaas E, Lambers H, Burgess S (2008) Using multiple trait associations to define hydraulic functional types in plant communities of south-western Australia. Oecologia 158(3):385–397. doi:10.1007/s00442-008-1152-5 PubMedGoogle Scholar
  179. Mokany K, Ash J (2008) Are traits measured on pot grown plants representative of those in natural communities? J Veg Sci 19:119–126. doi:10.3170/2007-8-18340 Google Scholar
  180. Mokany K, Ash J, Roxburgh S (2008) Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. J Ecol 96:884–893. doi:10.1111/j.1365-2745.2008.01395.x Google Scholar
  181. Moles AT, Leishman MR (2008) The seedling as part of a plant’s life history strategy. In: Leck MA, Parker VT, Simpson RL (eds) Seedling ecology and evolution. Cambridge University Press, Cambridge, pp 217–238Google Scholar
  182. Moles AT, Ackerly DD, Webb CO, Tweddle JC, Dickie JB, Pitman AJ, Westoby M (2005a) Factors that shape seed mass evolution. P Natl Acad Sci USA 102:10540–10544. doi:10.1073/pnas.0501473102 Google Scholar
  183. Moles AT, Ackerly DD, Webb CO, Tweddle JC, Dickie JB, Westoby M (2005b) A brief history of seed size. Science 307:576–580. doi:10.1126/science.1104863 PubMedGoogle Scholar
  184. Moles AT, Warton DI, Warman L, Swenson NG, Laffan SW, Zanne AE, Pitman A, Hemmings FA, Leishman MR (2009) Global patterns in plant height. J Ecol 97(5):923–932. doi:10.1111/j.1365-2745.2009.01526.x Google Scholar
  185. Muller-Landau HC, Wright SJ, Calderon O, Condit R, Hubbell SP (2008) Interspecific variation in primary seed dispersal in a tropical forest. J Ecol 96(4):653–667. doi:10.1111/j.1365-2745.2008.01399.x Google Scholar
  186. Naeem S, Bunker DA, Hector A, Loreau M, Perrings C (eds) (2009) Biodiversity, ecosystem functioning, and human wellbeing—an ecological and economic perspective. Oxford University Press, New York CityGoogle Scholar
  187. Navas ML, Violle C (2009) Plant traits related to competition: how do they shape the functional diversity of communities? Community Ecol 10(1):131–137. doi:10.1556/ComEc.10.2009.1.15 Google Scholar
  188. Navas ML, Roumet C, Bellmann A, Laurent G, Garnier E (2010) Suites of plant traits in species from different stages of a Mediterranean secondary succession. Plant Biol Stuttg 12(1):183–196. doi:10.1111/j.1438-8677.2009.00208.x PubMedGoogle Scholar
  189. Niinemets Ü (2001) Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82(2):453–469. doi:10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2] Google Scholar
  190. Niklas KJ (1995a) Plant height and the properties of some herbaceous stems. Ann Bot 75:133–142. doi:10.1006/anbo.1995.1004 Google Scholar
  191. Niklas KJ (1995b) Size-dependent allometry of tree height, diameter and trunk-taper. Ann Bot 75:217–227. doi:10.1006/anbo.1995.1015 Google Scholar
  192. Niklas KJ, Enquist BJ (2001) Invariant scaling relationships for interspecific plant biomass production rates and body size. P Natl Acad Sci USA 98:2922–2997. doi:10.1073/pnas.041590298 Google Scholar
  193. Ordoñez JC, van Bodegom PM, Witte J-PM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18:137–149. doi:10.1111/j.1466-8238.2008.00441.x Google Scholar
  194. Oren O, Sperry JS, Katul GG, Pataki DE, Ewers BE, Phillips N, Schäfer KVR (1999) Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ 22:1515–1526. doi:10.1046/j.1365-3040.1999.00513.x Google Scholar
  195. Pakeman RJ, Garnier E, Lavorel S, Ansquer P, Castro H, Cruz P, Doležal J, Eriksson O, Freitas H, Golodets C, Kigel J, Kleyer M, Lepš J, Meier T, Papadimitriou M, Papanastasis VP, Quested H, Quétier F, Rusch G, Sternberg M, Theau J-P, Thébault A, Vile D (2008) Impact of abundance weighing on the response of seed traits to climate and land use change. J Ecol 96:355–366. doi:10.1111/j.1365-2745.2007.01336.x Google Scholar
  196. Paula S, Arianoutsou M, Kazanis D, Tavsanoglu C, Lloret F, Buhk C, Ojeda F, Luna B, Moreno JM, Rodrigo A, Espelta JM, Palacio S, Fernández-Santos B, Fernandes PM, Pausas JG (2009) Fire-related traits for plant species of the Mediterranean Basin. Ecology 90:1420. doi:10.1890/08-1309.1 Google Scholar
  197. Pausas JG, Bradstock RA, Keith DA, Keeley JE, Fire Network GCTE (2004) Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85(4):1085–1100. doi:10.1890/02-4094 Google Scholar
  198. Pérez-Harguindeguy N, Díaz S, Cornelissen JHC, Vendramini F, Cabido M, Castellanos A (2000) Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218:21–30. doi:10.1023/A:1014981715532 Google Scholar
  199. Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758. doi:10.1111/j.1461-0248.2006.00924.x PubMedGoogle Scholar
  200. Petchey OL, Hector A, Gaston KJ (2004) How do different measures of functional diversity perform? Ecology 85(3):847–857. doi:10.1890/03-0226 Google Scholar
  201. Pickett STA, Bazzaz FA (1978) Organization of an assemblage of early successional species on a soil moisture gradient. Ecology 59:1248–1255. doi:10.2307/1938238 Google Scholar
  202. Plantureux S, Bellon S, Burel F, Chauvel B, Dajoz I, Guy P, Lelievre V, Ranjard L, Roger-Estrade J, Sarthou J-P, Viaux P (2009) Prospective Agriculture Biodiversité. INRA Département Environnement Agronomie, Montpellier, p 310Google Scholar
  203. Pontes LDS, Soussana J-F, Louault F, Andueza D, Carrère P (2007) Leaf traits affect the above-ground productivity and quality of pasture grasses. Funct Ecol 21:844–853. doi:10.1111/j.1365-2435.2007.01316.x Google Scholar
  204. Poorter H, Garnier E (2007) Ecological significance of inherent variation in relative growth rate and its components. In: Pugnaire FI, Valladares F (eds) Functional plant ecology, 2nd edn. CRC, Boca Raton, pp 67–100Google Scholar
  205. Poorter L, Rose S (2005) Light-dependent changes in the relationship between seed mass and seedling traits: a meta-analysis for rain forest tree species. Oecologia 142(3):378–387. doi:10.1007/s00442-004-1732-y PubMedGoogle Scholar
  206. Prentice IC, Bondeau A, Cramer W, Harrison SP, Hickler T, Lucht W, Sitch S, Smith B, Sykes MT (2007) Dynamic global vegetation modeling: quantifying terrestrial ecosystem responses to large-scale environmental change. In: Canadell J, Pitelka LF, Pataki D (eds) Terrestrial ecosystems in a changing world. Springer, Berlin, pp 175–192Google Scholar
  207. Prior LD, Eamus D, Bowman DMJS (2003) Leaf attributes in the seasonally dry tropics: a comparison of four habitats in northern Australia. Funct Ecol 17:504–515. doi:10.1046/j.1365-2435.2003.00761.x Google Scholar
  208. Pugnaire F, Valladares F (eds) (2007) Functional plant ecology. CRC, Boca RatonGoogle Scholar
  209. Pujar A, Jaiswal P, Kellogg EA, Ilic K, Vincent L, Avraham S, Stevens P, Zapata F, Reiser L, Rhee SY, Sachs MM, Schaeffer M, Stein L, Ware D, McCouch SR (2006) Whole plant growth stage ontology for angiosperms and its application in plant biology. Plant Physiol 142:414–428. doi:10.1104/pp.106.085720 PubMedGoogle Scholar
  210. Quested H, Eriksson O, Fortunel C, Garnier E (2007) Plant traits relate to whole-community litter quality and decomposition following land use change. Funct Ecol 21:1016–1026. doi:10.1111/j.1365-2435.2007.01324.x Google Scholar
  211. Quétier F, Thébault A, Lavorel S (2007) Plant traits in a state and transition framework as markers of ecosystem response to land-use change. Ecol Monog 77:33–52. doi:10.1890/06-0054 Google Scholar
  212. Raunkiaer C (1934) The life forms of plants and statistical plant geography. Oxford University Press, OxfordGoogle Scholar
  213. Rees M (1997) Evolutionary ecology of seed dormancy and seed size. In: Silvertown J, Franco M, Harper JL (eds) Plant life histories. Ecology, phylogeny and evolution. The Royal Society, Cambridge, pp 121–142Google Scholar
  214. Rees M, Venable DL (2007) Why do big plants make big seeds? J Ecol 95:926–936. doi:10.1111/j.1365-2745.2007.01277.x Google Scholar
  215. Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. P Natl Acad Sci USA 101:11001–11006. doi:10.1073/pnas.0403588101 Google Scholar
  216. Reich PB, Walters MB, Ellsworth DS (1992) Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol Monog 62:365–392. doi:10.2307/2937116 Google Scholar
  217. Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. Proc Nat Acad Sci USA 94:13730–13734PubMedGoogle Scholar
  218. Reich PB, Tjoelker MG, Machado J-L, Oleksyn J (2006) Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439:457–461. doi:10.1038/nature04282 PubMedGoogle Scholar
  219. Roche P, Díaz BN, Gachet S (2004) Congruency analysis of species ranking based on leaf traits: which traits are the more reliable? Plant Ecol 174:37–48Google Scholar
  220. Roderick ML, Berry SL, Noble IR, Farquhar GD (1999) A theoretical approach to linking the composition and morphology with the function of leaves. Funct Ecol 13:683–695. doi:10.1046/j.1365-2435.1999.00368.x Google Scholar
  221. Romermann C, Tackenberg O, Jackel AK, Poschlod P (2008) Eutrophication and fragmentation are related to species’ rate of decline but not to species rarity: results from a functional approach. Biodivers Conserv 17(3):591–604. doi:10.1007/s10531-007-9283-21 Google Scholar
  222. Roumet C, Urcelay C, Díaz S (2006) Suites of root traits differ between annual and perennial species growing in the field. New Phytol 170:357–358. doi:10.1111/j.1469-8137.2006.01667.x PubMedGoogle Scholar
  223. Ryser P, Urbas P (2000) Ecological significance of leaf life span among Central European grass species. Oikos 91:41–50. doi:10.1034/j.1600-0706.2000.910104.x Google Scholar
  224. Sala OE, Parton WJ, Joyce LA, Lauenroth WK (1988) Primary production of the central grassland region of the United States. Ecology 69:40–45. doi:10.2307/1943158 Google Scholar
  225. Sasaki T, Okubo S, Okayasu T, Jamsran U, Ohkuro T, Takeuchi K (2009a) Management applicability of the intermediate disturbance hypothesis across Mongolian rangeland ecosystems. Ecol Appl 19(2):423–432. doi:10.1890/08-1850.1 PubMedGoogle Scholar
  226. Sasaki T, Okubo S, Okayasu T, Jamsran U, Ohkuro T, Takeuchi K (2009b) Two-phase functional redundancy in plant communities along a grazing gradient in Mongolian rangelands. Ecology 90(9):2598–2608. doi:10.1890/08-0144.1 PubMedGoogle Scholar
  227. Saugier B, Roy J, Mooney HA (2001) Estimations of global terrestrial productivity: converging towards a single number? In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic, San Diego, pp 543–557Google Scholar
  228. Schenk HJ, Jackson RB (2002) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494. doi:10.1046/j.1365-2745.2002.00682.x Google Scholar
  229. Schulze E-D, Zwölfer H (eds) (1987) Potential and limitations in ecosystem analysis. Springer, BerlinGoogle Scholar
  230. Schulze E-D, Leuning R, Kelliher FM (1995) Environmental regulation of surface conductance for evaporation from vegetation. Vegetatio 121:79–87Google Scholar
  231. Schulze E-D, Beck E, Müller-Hohenstein K (2005) Plant ecology. Springer, BerlinGoogle Scholar
  232. Schumacher J, Roscher C (2009) Differential effects of functional traits on aboveground biomass in semi-natural grasslands. Oikos 118(11):1659–1668. doi:10.1111/j.1600-0706.2009.17711.x Google Scholar
  233. Schuurman N, Leszczynski A (2008) Ontologies for bioinformatics. Bioinf Biol 2:187–200Google Scholar
  234. Schwinning S, Ehleringer JR (2001) Water use trade-offs and optimal adaptations to pulse-driven arid ecosystems. J Ecol 89:464–480. doi:10.1046/j.1365-2745.2001.00576.x Google Scholar
  235. Scurlock JMO, Johnson K, Olson RJ (2002) Estimating net primary productivity from grassland biomass dynamics measurements. Glob Change Biol 8:736–753. doi:10.1046/j.1365-2486.2002.00512.x Google Scholar
  236. Shipley B (2010) From plant traits to vegetation structure. Chance and selection in the assembly of ecological communities. Cambridge University Press, CambridgeGoogle Scholar
  237. Shipley B, Dion J (1992) The allometry of seed production in herbaceous angiosperms. Am Nat 139:467–483. doi:10.1086/285339 Google Scholar
  238. Shipley B, Vile D, Garnier E (2006) From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science 314:812–814. doi:10.1126/science.1131344 PubMedGoogle Scholar
  239. Silvertown J, Franco M, Harper JL (eds) (1997) Plant life histories. Ecology, phylogeny and evolution. Cambridge University Press, CambridgeGoogle Scholar
  240. Small E (1972) Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants. Can J Bot 50:2227–2233Google Scholar
  241. Smith RG (2006) Timing of tillage is an important filter on the assembly of weed communities. Weed Sci 54(4):705–712. doi:10.1614/WS-05-177R1.1 Google Scholar
  242. Smith CC, Fretwell SD (1974) The optimal balance between size and number of offspring. Am Nat 108:499–506. doi:10.1086/282929 Google Scholar
  243. Smith RG, Gross KL (2007) Assembly of weed communities along a crop diversity gradient. J Appl Ecol 44(5):1046–1056. doi:10.1111/j.1365-2664.2007.01335.x Google Scholar
  244. Smith RG, Mortensen DA, Ryan MR (2009) A new hypothesis for the functional role of diversity in mediating resource pools and weed-crop competition in agroecosystems. Weed Res 50:37–48. doi:10.1111/j.1365-3180.2009.00745.x Google Scholar
  245. Soons MB, Heil GW, Nathan R, Katul GG (2004) Determinants of long-distance seed dispersal by wind in grasslands. Ecology 85:3056–3068. doi:10.1890/03-0522 Google Scholar
  246. Stancioiu PT, O’Hara KL (2006) Leaf area and growth efficiency of regeneration in mixed species, multiaged forests of the Romanian Carpathians. For Ecol Manag 222(1–3):55–66. doi:10.1016/j.foreco.2005.10.018 Google Scholar
  247. Stein LD (2008) Towards a cyberinfrastructure for the biological sciences: progress, visions and challenges. Nat Rev Genet 9:678–688. doi:10.1038/nrg2414 PubMedGoogle Scholar
  248. Stokes A, Atger C, Bengough AG, Fourcaud T, Sidle RC (2009) Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant Soil 324(1–2):1–30. doi:10.1007/s11104-009-0159-y Google Scholar
  249. Storkey J (2006) A functional group approach to the management of UK arable weeds to support biological diversity. Weed Res 46(6):513–522. doi:10.1111/j.1365-3180.2006.00528.x Google Scholar
  250. Storkey J, Moss SR, Cussans JW (2010) Using assembly theory to explain changes in a weed flora in response to agricultural intensification. Weed Sci 58(1):39–46. doi:10.1614/ws-09-096.1 Google Scholar
  251. Stubbs WJ, Wilson JB (2004) Evidence for limiting similarity in a sand dune community. J Ecol 92(4):557–567. doi:10.1111/j.0022-0477.2004.00898.x Google Scholar
  252. Suding KN, Lavorel S, Chapin FS III, Cornelissen JHC, Díaz S, Garnier E, Goldberg DE, Hooper DU, Jackson ST, Navas M-L (2008) Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob Change Biol 14:1125–1140. doi:10.1111/j.1365-2486.2008.01557.x Google Scholar
  253. Swift MJ, Anderson JM (1993) Biodiversity and ecosystem function in agricultural systems. In: Schulze E-D, Mooney HA (eds) Biodiversity and ecosystem function. Springer, Berlin, pp 15–41Google Scholar
  254. Tautenhahn S, Heilmeier H, Götzenberger L, Klotz S, Wirth C, Kühn I (2008) On the biogeography of seed mass in Germany—distribution patterns and environmental correlates. Ecography 31:457–468. doi:10.1111/j.2008.0906-7590.05439.x Google Scholar
  255. Thompson K, Band SR, Hodgson JG (1993) Seed size and shape predict persistence in soil. Funct Ecol 7:236–241Google Scholar
  256. Thompson K, Bakker JP, Bekker RM, Hodgson JG (1998) Ecological correlates of seed persistence in soil in the NW European flora. J Ecol 86:163–169. doi:10.1046/j.1365-2745.1998.00240.x Google Scholar
  257. Thompson K, Askew AP, Grime JP, Dunnett NP, Willis AJ (2005) Biodiverstiy, ecosystem function and plant traits in mature and immature plant communities. Funct Ecol 19:355–358. doi:10.1111/j.1365-2435.2005.00936.x Google Scholar
  258. Thuiller W, Lavorel S, Midgley G, Lavergne S, Rebelo T (2004) Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron taxa. Ecology 85(6):1688–1699. doi:10.1890/03-0148 Google Scholar
  259. Van Calster H, Vandenberghe R, Ruysen M, Verheyen K, Hermy M, Decocq G (2008) Unexpectedly high 20th century floristic losses in a rural landscape in northern France. J Ecol 96(5):927–936. doi:10.1111/j.1365-2745.2008.01412.x Google Scholar
  260. van Wijk MT (2007) Predicting ecosystem functioning from plant traits: results from a multi-scale ecophysiological modeling approach. Ecol Model 203:453–463. doi:10.1016/j.ecolmodel.2006.12.007 Google Scholar
  261. Vanclay JK, Gillison AN, Keenan RJ (1997) Using plant functional attributes to quantify site productivity and growth patterns in mixed forests. For Ecol Manag 94(1–3):149–163. doi:10.1016/S0378-1127(96)03972-2 Google Scholar
  262. Venable DL, Rees M (2009) The scaling of seed size. J Ecol 97:27–31. doi:10.1111/j.1365-2745.2008.01461.x Google Scholar
  263. Verbeek NAM, Boasson R (1995) Flowering height and postfloral elongation of flower stalks in 13 species of angiosperms. Can J Bot 73:723–727Google Scholar
  264. Vila M, Vayreda J, Comas L, Ibanez JJ, Mata T, Obon B (2007) Species richness and wood production: a positive association in Mediterranean forests. Ecol Lett 10(3):241–250. doi:10.1111/j.1461-0248.2007.01016.x PubMedGoogle Scholar
  265. Vile D, Garnier E, Shipley B, Laurent G, Navas M-L, Roumet C, Lavorel S, Díaz S, Hodgson JG, Lloret F, Midgley GF, Poorter H, Rutherford MC, Wilson PJ, Wright IJ (2005) Specific leaf area and dry matter content estimate thickness in laminar leaves. Ann Bot 96:1129–1136. doi:10.1093/aob/mci264 PubMedGoogle Scholar
  266. Vile D, Shipley B, Garnier E (2006a) Ecosystem productivity can be predicted from potential relative growth rate and species abundance. Ecol Lett 9:1061–1067. doi:10.1111/j.1461-0248.2006.00958.x PubMedGoogle Scholar
  267. Vile D, Shipley B, Garnier E (2006b) A structural equation model to integrate changes in functional strategies during old-field succession. Ecology 87:504–517. doi:10.1890/05-0822 PubMedGoogle Scholar
  268. Villeger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89(8):2290–2301. doi:10.1890/07-1206.1 PubMedGoogle Scholar
  269. Violle C, Lecoeur J, Navas M-L (2007a) How relevant are instantaneous measurements for assessing resource depletion under plant cover? A test on light and soil water availability in 18 herbaceous communities. Funct Ecol 21:185–190. doi:10.1111/j.1365-2435.2006.01241.x Google Scholar
  270. Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007b) Let the concept of trait be functional! Oikos 116:882–892. doi:10.1111/j.2007.0030-1299.15559.x Google Scholar
  271. Violle C, Garnier E, Lecœur J, Roumet C, Podeur C, Blanchard A, Navas M-L (2009) Competition, traits and resource depletion in plant communities. Oecologia 160:747–755. doi:10.1007/s00442-009-1333-x PubMedGoogle Scholar
  272. Vitousek PM, Hooper DU (1993) Biological diversity and terrestrial ecosystem biogeochemistry. In: Schulze E-D, Mooney HA (eds) Biodiversity and ecosystem function. Springer, Berlin, pp 3–14Google Scholar
  273. Wahl S, Ryser P (2000) Root tissue structure is linked to ecological strategies of grasses. New Phytol 148:459–471. doi:10.1046/j.1469-8137.2000.00775.x Google Scholar
  274. Walker B, Kinzig A, Langridge J (1999) Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2:95–113Google Scholar
  275. Walker KJ, Preston CD, Boon CR (2009) Fifty years of change in an area of intensive agriculture: plant trait responses to habitat modification and conservation, Bedfordshire. Engl Biodivers Conserv 18(13):3597–3613. doi:10.1007/s10531-009-9662-y Google Scholar
  276. Waller DM (1988) Plant morphology and reproduction. In: Lovett Doust J, Lovett Doust L (eds) Plant reproductive ecology patterns and strategies. Oxford University Press, New York, pp 203–227Google Scholar
  277. Wardle DA (2002) Communities and ecosystems. Linking the aboveground and belowground components. Princeton University Press, PrincetonGoogle Scholar
  278. Wardle DA, Barker GM, Bonner KI, Nicholson KS (1998) Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems? J Ecol 86:405–420. doi:10.1046/j.1365-2745.1998.00268.x Google Scholar
  279. Watanabe T, Broadley MR, Jansen S, White PJ, Takada J, Satake K, Takamatsu T, Tuah SJ, Osaki M (2007) Evolutionary control of leaf element composition in plants. New Phytol 174:516–523. doi:10.1111/j.1469-8137.2007.02078.x PubMedGoogle Scholar
  280. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505. doi:10.1146/annurev.ecolsys.33.010802.150448 Google Scholar
  281. Weedon JT, Cornwell WK, Cornelissen JHC, Zanne AE, Wirth C, Coomes DA (2009) Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol Lett 12:45–56. doi:10.1111/j.1461-0248.2008.01259.x PubMedGoogle Scholar
  282. Weiher E, Keddy PA (1995) Assembly rules, null models, and trait dispersion: new questions front old patterns. Oikos 74(1):159–164Google Scholar
  283. Weiher E, Keddy P (1999) Ecological assembly rules. Perspectives, advances, retreats. Cambridge University Press, CambridgeGoogle Scholar
  284. Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620. doi:10.2307/3237076 Google Scholar
  285. West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126. doi:10.1126/science.276.5309.122 PubMedGoogle Scholar
  286. West GB, Brown JH, Enquist BJ (1999) A general model for the structure and allometry of plant vascular systems. Nature 400:664–667. doi:10.1038/23251 Google Scholar
  287. Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227. doi:10.1023/A:1004327224729 Google Scholar
  288. Westoby M (1999) Generalization in functional plant ecology: the species sampling problem, plant ecology strategy schemes, and phylogeny. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology. Marcel Dekker, Inc, New York, pp 847–872Google Scholar
  289. Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159. doi:10.1146/annurev.ecolsys.33.010802.150452 Google Scholar
  290. Westoby M, Moles AT, Falster DS (2009) Evolutionary coordination between offspring size at independence and adult size. J Ecol 97(1):23–26. doi:10.1111/j.1365-2745.2008.01396.x Google Scholar
  291. Wezel A, Bellon S, Doré T, Francis C, Vallod D, David C (2009) Agroecology as a science, a movement and a practice. A review. Agron Sustain Devt 29:503–515. doi:10.1051/agro/2009004 Google Scholar
  292. Whittaker RH (1965) Dominance and diversity in land plant communities. Science 147:250–260. doi:10.1126/science.147.3655 PubMedGoogle Scholar
  293. Wilson JB (2007) Trait-divergence assembly rules have been demonstrated: limiting similarity lives! A reply to Grime. J Veg Sci 18(3):451–452. doi:10.1658/1100-9233(2007)18[451:TARHBD]2.0.CO;2 Google Scholar
  294. Wilson PJ, Thompson K, Hodgson JG (1999) Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol 143:155–162. doi:10.1046/j.1469-8137.1999.00427.x Google Scholar
  295. Wirth C, Schumacher J, Schulze E-D (2004) Generic biomass functions for Norway spruce in Central Europe—a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiol 24:121–139. doi:10.1093/treephys/24.2.121 PubMedGoogle Scholar
  296. Woodward FI, Diament AD (1991) Functional approaches to predicting the ecological effects of global change. Funct Ecol 5:202–212Google Scholar
  297. Wright IJ (2001) Leaf economics of perennial species from sites contrasted on rainfall and soil nutrients. Division of Environment and Life Sciences, Macquarie University, Sydney, p 217Google Scholar
  298. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin FS III, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas E, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827. doi:10.1038/nature02403 PubMedGoogle Scholar
  299. Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005) Assessing the generality of global leaf trait relationships. New Phytol 166:485–496. doi:10.1111./j.1469-8137.2005.01349.x PubMedGoogle Scholar

Copyright information

© INRA and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.CNRS, Centre d’Ecologie Fonctionnelle et Evolutive (UMR 5175)Montpellier Cedex 5France
  2. 2.Montpellier SupAgro, Centre d’Ecologie Fonctionnelle et Evolutive (UMR 5175)Montpellier Cedex 5France

Personalised recommendations