Skip to main content

Advertisement

Log in

Microalgae as second generation biofuel. A review

  • Review Paper
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Microalgae are autotrophic microorganisms having extremely high photosynthetic efficiency and are valued as rich source of lipids, hydrocarbons, and other complex oils for biodiesel besides being an invaluable source of bioethanol, biomethane, and biohydrogen. Biodiesel produced from oilseed crops such as jatropha and soy have lower yields per unit land area and threaten food security. Indeed, microalgae have higher oil yields amounting to about 40 times more oil per unit area of land in comparison to terrestrial oilseed crops such as soy and canola. Further, microalgae production does not require arable land for cultivation. Biofuel is regarded as a proven clean energy source and several entrepreneurs are attempting to commercialize this renewable source. Technology for producing and using biofuel has been known for several years and is frequently modified and upgraded. In view of this, a review is presented on microalgae as second generation biofuel. Microalgal farming for biomass production is the biggest challenge and opportunity for the biofuel industry. These are considered to be more efficient in converting solar energy into chemical energy and are amongst the most efficient photosynthetic plants on earth. Microalgae have simple cellular structure, a lipid-rich composition, and a rapid rate of reproduction. Many microalgal strains can be grown in saltwater and other harsh conditions. Some autotrophic microalgae can also be converted to heterotrophic ones to accumulate high quality oils using organic carbon. However, there are several technical challenges that need to be addressed to make microalgal biofuel profitable. The efficiency of microalgal biomass production is highly influenced by environmental conditions, e.g., light of proper intensity and wavelength, temperature, CO2 concentration, nutrient composition, salinities and mixing conditions, and by the choice of cultivation systems: open versus closed pond systems, photobioreactors. Currently, microalgae for commercial purpose are grown mostly in open circular/elongated “raceway” ponds which generally have low yields and high production costs. However, a hybrid system combining closed photobioreactor and open pond is a better option. The biggest hurdle in commercialization of microalgal biofuel is the high cost and energy requirement for the microalgal biomass production, particularly agitation, harvesting, and drying of biomass. In order to conserve energy and reduce costs, algae are often harvested in a two-step process involving flocculation followed by centrifugation, filtration, or micro-straining to get a solid concentration. However, the major bottlenecks in algal biodiesel production within the cell can be identified and handled by adopting a system approach involving transcriptomics, proteomics, and metabolomics. Research and developments in the field of new materials and advanced designs for cultivation in closed bioreactors, use of waste water for biomass production, screening of efficient strains, high-value coproduct strategy, and cutting-edge metabolic engineering are thought to provide the biggest opportunities to substantially improve the cost effectiveness of such production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achitouv E, Metzger P, Rager MN (2004) C31–C34 methylated squalene from a Bolivian strain of Botryococcus braunii. Phytochem 65:3159–3165

    Article  CAS  Google Scholar 

  • Acien Fernandez FG, Fernandez Sevilla JM, Sanchez Perez JA, Molina GE, Chisti Y (2001) Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem Eng Sci 56(8):2721–2732

    Article  Google Scholar 

  • Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrogen Energy 27:1195–1208

    Article  CAS  Google Scholar 

  • Anderson RA (ed) (2005) Algal culturing techniques, Phycological Society of America. Elsevier Academic, USA, p 578

    Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signalling pathways modulates defense gene expression and disease resistance. Plant Cell 16:3460–3479

    Article  PubMed  CAS  Google Scholar 

  • Angelidaki I, Ahring BK (1993) Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Appl Microbiol Biotechnol 38:560–564

    Article  CAS  Google Scholar 

  • Antal TK, Lindblad P (2005) Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. J Appl Microbiol 98:114–120

    Article  PubMed  CAS  Google Scholar 

  • Antonopoulou S, Karantonis HC, Nomikos T, Oikonomou A, Fragopoulou E, Pantazidou A (2005) Bioactive polar lipids from Chroococcidiopsis sp. (Cyanobacteria). Comp Biochem Physiol B Biochem Mol Biol 142:269–282

    Article  PubMed  CAS  Google Scholar 

  • Aoyama K, Uemura I, Miyake J, Asada Y (1997) Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium Spirulina platensis. J Ferment Bioeng 83:17–20

    Article  CAS  Google Scholar 

  • Apt KA, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215–226

    Article  Google Scholar 

  • Apt KE, Kroth-Pancic PG, Grossman AR (1996) Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet 252:572–579

    PubMed  CAS  Google Scholar 

  • Asinari Di San Marzano CM, Legros A, Naveau HP, Nyns EJ (1982) Biomethanation of the marine algae Tetraselmis. Int J Sustain Energy 1:263–272

    Article  Google Scholar 

  • Aslan S, Kapdan I (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64–70

    Article  Google Scholar 

  • Ayehunie S, Belay A, Baba TW, Ruprecht RM (1998) Inhibition of HIV-1 replication by an aqueous extract of Spirulina platensis. J Aquir Immun Defic Syndr Hum Retrovirol 18:7–12

    Article  CAS  Google Scholar 

  • Baker ER, McLaughlin JJA, Hutner SH (1981) Water-soluble vitamins in cells and spent culture supernatants of Poteriochromonas stipitata, Euglena gracilis and Tetrahymena thermophila. Arch Microbiol 129:310–313

    Article  CAS  Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279

    Article  PubMed  CAS  Google Scholar 

  • Barbosa B, Albrecht M, Wijffels R (2003) Hydrodynamic stress and lethal events in sparged microalgae cultures. Biotechnol Bioeng 83:112–120

    Article  PubMed  CAS  Google Scholar 

  • Barclay WR, Terry KL, Nagle NJ, Weissman JC, Goebel RP (1985) Potential of new strains of marine and inland saline-adapted microalgae for aquaculture. J World Aquac Soc 18(40):218–228

    Google Scholar 

  • Barclay WR, Meager KM, Abril JR (1994) Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol 6(2):123–129

    Article  CAS  Google Scholar 

  • Barnwal BK, Sharma MP (2005) Prospects of biodiesel production from vegetables oils in India. Renew Sustain Energy Rev 9:363–378

    Article  Google Scholar 

  • Becker EW (1988) Micro-algae for human and animal consumption. In: Borowitzka MA, Borowitzka LJ (Eds.), Micro-algal technology, Cambridge University Press, pp. 222–256

  • Becker EW (2007) Micro–algae as a source of protein. Biotechnol Adv 25:207–210

    Article  PubMed  CAS  Google Scholar 

  • Behrens PW, Kyle DJ (1996) Microalgae as a source of fatty acids. J Food Lipids 3:259–272

    Article  CAS  Google Scholar 

  • Belarbi EH, Molina Grima E, Chisti Y (2000) A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb Technol 26(7):516–529

    Article  PubMed  CAS  Google Scholar 

  • Ben-Amote A, Tornabene TG, Thomas WH (1985) Chemical profile of selected species of microalgae with emphasis on lipids. J Phycol 21:72–81

    Article  Google Scholar 

  • Ben-Amotz A, Avron M (1990) The biotechnology of cultivating the halotolerant alga Dunaliella. Trends Biotechnol 8:121–126

    Article  CAS  Google Scholar 

  • Benemann JR (2007) “Biofuel, peak oil, and global warming 1977–2037” Presentation at California Polytechnic State University, San Luis Obispo, 1–18-07

  • Benemann JR (2008) Open ponds and closed photobioreactors-comparative economics. Paper presented at the 5th annual World Congress on Industrial Biotechnology and Bioprocessing, April 27–30, Chicago, IL, USA

  • Benemann JR, Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of carbon dioxide to biomass (Final Report: Grant No. DEFG22 93PC93204), Pittsburgh Energy Technology Centre, Pittsburgh, PA, US Department of Energy

  • Benemann J, Koopman B, Weismsman JC, Eisenberg DM, Oswald WJ (1977) Cultivation on sewage of microalgae harvestable by microstrainers (Contract Nos. W-74-05-ENG-48 and E-(04-3)-34), Prepared for US Energy Research and Development Administration

  • Benemann JR, Goebel RP, Weissman JC, Augenstein DC (1982) Microalgae as a source of liquid fuels, (Final Technical Report, Contract Deacos 81 ER 30014), US Department of Energy

  • Berman J (1998) Chemotherapy of leishmaniasis: recent advances in the treatment of visceral disease. Curr Opin Infect Dis 11:707–710

    Article  PubMed  CAS  Google Scholar 

  • Berzin I (2005) Photobioreactor and process for biomass production and mitigation of pollutants in flue gases, United States Patent Application, Pub. no.: US2005/0260553 A1, USA, Publication date: Nov. 24, 2005

  • Bessou C Ferchaud F, Gabrielle B, Mary B (2010) Biofuels, greenhouse gases and climate change. A review. Agron Sustain Dev 1–79, © INRA, EDP Sciences. doi:10.1051/agro/2009039

  • Bhat VB, Madyastha KM (2000) C-phycocyanin: a potent peroxyl radical scavenger in vivo and in vitro. Biochem Biophys Res Commun 275:20–25

    Article  PubMed  CAS  Google Scholar 

  • Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z (2002) Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochem 60:497–503

    Article  CAS  Google Scholar 

  • Blanchemain A, Grizeau D (1999) Increased production of eicosapentaenoic acid by Skeletonema costatum cells after decantation at low temperature. Biotechnol Tech 13(7):497–501

    Article  CAS  Google Scholar 

  • Borodyanski G, Konstantinov I (2003) Microalgae separator apparatus and method. US Patent No. US6524486B2, Sepal Technologies Ltd

  • Borowitzka LJ (1991) Development of Western Biotechnology’s algal b-carotene plant. Bioresour Technol 38:251–252

    Article  Google Scholar 

  • Borowitzka MA (1992) Algal biotechnology products and processes-matching science and economics. J Appl Phycol 4(3):267–279

    Article  Google Scholar 

  • Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401

    Article  Google Scholar 

  • Borowitzka MA (2005) Culturing microalgae in outdoor ponds. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic, New York, pp 205–218

    Chapter  Google Scholar 

  • Bosma R, van Spronsen W, Tramper J, Wijffels R (2003) Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol 15:143–153

    Article  Google Scholar 

  • Boyd MR (2001) Anti-cyanovirin antibody with an internal image of gp120, a method of use thereof, and a method of using a cyanovirin to induce an immune response to gp120, United States patent no 6193982

  • Boyd MR (2002) Methods of using cyanovirins topically to inhibit viral infection, United States patent no 6420336

  • Boyd MR (2004) Methods of using cyanovirins to inhibit viral infection, United States patent no 6743577

  • Bremus C, Herrmann U, Bringer-Meyer S, Sahm H (2006) The use of microorganisms in L-ascorbic acid production. J Biotechnol 124:196–205

    Article  PubMed  CAS  Google Scholar 

  • Bridgwater A, Maniatis K (2004) The production of biofuels by thermal chemical processing of biomass. In: Archer M, Barber J (eds) Molecular to global photosynthesis. Imperial College Press, London, pp 521–611

    Google Scholar 

  • Brzezinski MA (1985) The Si-C-N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J Phycol 21:347–357

    Article  CAS  Google Scholar 

  • Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC (2001) Marine cyanobacteria—a prolific source of natural products. Tetrahedron 57:9347–9377

    Article  CAS  Google Scholar 

  • Burja AM, Abou-Mansour BEB, Payri C, Burgess JG, Wright PC (2002) Culture of marine cyanobacterium, Lyngbya majuscule (Oscillatoriaceae), for bioprocess intensified production of cyclic and linear lipopeptides. J Microbiol Meth 48:207–219

    Article  CAS  Google Scholar 

  • Cardozo KHM, Guaratini T, Barros MP, Falcao VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, Pinto E (2007) Metabolites from algae with economical impact. Compe Biochem Physiol C Toxicol Pharmacol 146:60–78

    Article  CAS  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506. doi:10.1021/bp060065r

    PubMed  CAS  Google Scholar 

  • Centner TJ (2001) Evolving policies to regulate pollution from animal feeding operations. Environ Manag 28:599–609

    Article  CAS  Google Scholar 

  • Ceron Garcia MC, Fernandez Sevilla JM, Acien Fernandez FG, Molina Grima E, Garcia Camacho F, Ceron Garcia MC, Fernandez Sevilla JM, Acien Fernandez FG, Molina Grima E, Garcia Camacho F (2000) Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile. J Appl Phycol 12(3):239–248

    Article  Google Scholar 

  • Chae SR, Hwang EJ, Shin HS (2006) Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresour Technol 97(2):322–329

    Article  PubMed  CAS  Google Scholar 

  • Chen PH (1987) Factors influencing methane fermentation of micro-algae. PhD thesis, University of California, Berkeley, CA, USA

  • Chen GQ, Chen F (2006) Growing phototrophic cells without light. Biotechnol Lett 28(9):607–616

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008a) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Article  PubMed  CAS  Google Scholar 

  • Chen GQ, Jiang Y, Chen F (2008b) Variation of lipid class composition in Nitzschia laevis as a response to growth temperature change. Food Chem 109:88–94

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306. doi:10.1016/j.biotechadv.2007.02.001

    Article  PubMed  CAS  Google Scholar 

  • Christie WW (2003) Lipid analysis. The Oily Press, PJ Barnes and Associates: Bridgewater, NJ

  • Cirne DG, Paloumet X, Bjornsson L, Alves MM, Mattiasson B (2007) Anaerobic digestion of lipid-rich waste—effects of lipid concentration. Renew Energy 32:965–975

    Article  CAS  Google Scholar 

  • Clark GJ, Langley D, Bushell ME (1995) Oxygen limitation can induce microbial secondary metabolite formation: investigations with miniature electrodes in shaker and bioreactor culture. Microbiol 141:663–669

    Article  CAS  Google Scholar 

  • Cohen Z (1999) Porphyridium cruentum. In: Cohen Z (ed) Chemicals from microalgae. CRC Press, Taylor and Francis, New York, pp 1–24

    Google Scholar 

  • Del Campo JA, Garcia-Gonzalez M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174. doi:10.1007/s00253-007-0844-9

    Article  PubMed  CAS  Google Scholar 

  • Demirbas A (2005) Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog Energ Combust Sci 31(5–6):466–487

    Article  CAS  Google Scholar 

  • Desmorieux H, Decaen N (2006) Convective drying of Spirulina in thin layer. J Food Eng 77:64–70

    Article  Google Scholar 

  • Dijkstra AJ (2006) Revisiting the formation of trans-isomers during partial hydrogenation of triacylglycerol oils. Eur J Lipid Sci Technol 108(3):249–264

    Article  CAS  Google Scholar 

  • Dismukes GC, Damian C, Nicholas B, Gennady MA, Matthew CP (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19:235–240

    Article  PubMed  CAS  Google Scholar 

  • Divakaran R, Pillai VNS (2002) Flocculation of algae using chitosan. J Appl Phycol 14:419–422

    Article  CAS  Google Scholar 

  • Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM, Kazan K (2007) AtMYC2 modulates diverse jasmonate-dependent functions by coordination of a transcriptional cascade. Plant Cell 19:2225–2245

    Article  PubMed  CAS  Google Scholar 

  • Dong QL, Zhao XM, Ma HW, Xing XY, Sun NX (2006) Metabolic flux analysis of the two astaxanthin-producing microorganisms Haematococcus pluvialis and Phaffia rhodozyma in the pure and mixed cultures. Biotechnol J 1:1283–1292

    Article  PubMed  CAS  Google Scholar 

  • Donia M, Hamann MT (2003) Marine natural products and their potential application as anti-infective agents. Lancet 3:338–348

    Article  CAS  Google Scholar 

  • Doucha J, Livansky K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a middle and southern European climate. J Appl Phycol 18:811–826

    Article  CAS  Google Scholar 

  • Doucha J, Straka F, Livansky K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412. doi:10.1007/s10811-005-8701-7

    Article  Google Scholar 

  • Duerr EO, Molnar A, Sato V (1998) Cultured microalgae as aquaculture feeds. J Mar Biotechnol 6(2):65–70

    Google Scholar 

  • Dunahay TG, Adler SA, Jarvik JW (1997) Transformation of microalgae using silicon carbide whiskers. Meth Mol Biol 62:503–509

    CAS  Google Scholar 

  • Metcalf and Eddy (2003) Wastewater Engineering: Treatment, Disposal, Reuse. McGraw Hill Publishing, New York

  • Ekman A, Bulow L, Stymne S (2007) Elevated atmospheric CO2 concentration and diurnal cycle induce changes in lipid composition in Arabidopsis thaliana. New Phytol 174:591–599. doi:10.1111/j.1469-8137.2007.02027.x

    Article  PubMed  CAS  Google Scholar 

  • Fang X, Wei C, Zhao-Ling C, Fan O (2004) Effects of organic carbon sources on cell growth and eicosapentaenoic acid content of Nannochloropsis sp. J Appl Phycol 16:499–503

    Article  CAS  Google Scholar 

  • Fedorov AS, Tsygankov AA, Rao KK, Hall DO (2001) Production of hydrogen by an Anabaena variabilis mutant in photobioreactor under aerobic outdoor conditions. In: Miyake J, Matsunaga T, San Pietro A (eds) BioHydrogen II. Elsevier, New York, pp 223–228

    Chapter  Google Scholar 

  • Feinberg DA (1984) Fuel options from microalgae with representative chemical compositions (SERI/TP­231­2427), Solar Energy Research Institute, Golden, CO, July 2004

  • Felizardo P, Correia MJN, Raposo I, Mendes JF, Berkemeier R, Bordado JM (2006) Production of biodiesel from waste frying oil. Waste Manage 26(5):487–494

    Article  CAS  Google Scholar 

  • Fernie AR, Geigenberger P, Stitt M (2005) Flux an important, but neglected, component of functional genomics. Curr Opin Plant Biol 8:174–182

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O (2002) Metabolomics-the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  PubMed  CAS  Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92(5):405–416

    Article  PubMed  CAS  Google Scholar 

  • Furuki T, Maeda S, Imajo S, Hiroi T, Amaya T, Hirokawa T, Ito K, Nozawa H (2003) Rapid and selective extraction of phycocyanin from Spirulina platensis with ultrasonic cell disruption. J Appl Phycol 15:319–324

    Article  CAS  Google Scholar 

  • Galinski E (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:273–328

    Article  CAS  Google Scholar 

  • Gavrilescu M, Chisti Y (2005) Biotechnology—a sustainable alternative for chemical industry. Biotechnol Adv 23:471–499

    Article  PubMed  CAS  Google Scholar 

  • Gerwick WH, Jiang ZD, Agarwal SK, Farmer BT (1992) Total structure of hormothamnin-A, A toxic cyclic undecapeptide from the tropical marine cyanobacterium hormothamnion enteromorphoides. Tetrahedron 48:2313–2324

    Article  CAS  Google Scholar 

  • Goldman JC (1979) Outdoor mass algal cultures-II, photosynthetic yield limitations. Water Res 11:119–136

    Article  Google Scholar 

  • Golueke CG, Oswald WJ (1959) Biological conversion of light energy to the chemical energy of methane. Appl Microbiol 7:219–227

    PubMed  CAS  Google Scholar 

  • Golueke CG, Oswald WJ (1965) Harvesting and processing sewage-grown planktonic algae. J Water Poll Cont Fed 37:471–498

    Google Scholar 

  • Golueke CG, Oswald WJ, Gottas HB (1957) Anaerobic digestion of algae. Appl Microbiol 5:47–55

    PubMed  CAS  Google Scholar 

  • Grach-Pogrebinsky O, Sedmak B, Carmeli S (2003) Protease inhibitors from a Slovenian Lake Bled toxic waterbloom of the cyanobacterium Planktothrix rubescens. Tetrahedron 59:8329–8336

    Article  CAS  Google Scholar 

  • Green FB, Bernstone LS, Lundquist TJ, Oswald WJ (1996) Advanced integrated wastewater pond systems for nitrogen removal. Water Sci Technol 33(7):207–217

    Article  CAS  Google Scholar 

  • Grobbelaar JU (1994) Turbulence in mass algal cultures and the role of light/dark fluctuations. J Appl Phycol 6(3):331–335

    Article  Google Scholar 

  • Gudin C, Therpenier C (1986) Bioconversion of solar energy into organic chemicals by microalgae. Adv Biotechnol Process 6:73–110

    CAS  Google Scholar 

  • Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astajanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216

    Article  PubMed  CAS  Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  PubMed  CAS  Google Scholar 

  • Gustafson KR, Cardellina IIJH, Fuller RW, Weislow OS, Kiser RF, Snader KM, Patterson GML, Boyd MR (1989) AIDS-antiviral sulfolipids from cyanobacteria (blue-green algae). J Nat Can Inst 81:1254–1258

    Article  CAS  Google Scholar 

  • Han X, Miao XL, Wu QY (2006) High quality biodiesel production from heterotrophic growth of Chlorella protothecoides in fermenters by using starch hydrolysate as organic carbon. J Biotechnol 126(4):499–507

    Article  CAS  Google Scholar 

  • Hankamer B, Lehr F, Rupprecht J, Mussgnug JH, Posten C, Kruse O (2007) Photosynthetic biomass and H2 production: from bioengineering to bioreactor scale up. Physiol Plant 131:10–21. doi:10.1111/j.1399-3054.2007.00924.x

    Article  PubMed  CAS  Google Scholar 

  • Happe T, Schutz K, Bohme H (2000) Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 182:1624–1631

    Article  PubMed  CAS  Google Scholar 

  • Harrison PJ, Berges JA (2005) Marine culture media. In: Andersen RA (ed) Algal culturing techniques. Phycological Society of America, Elsevier, Academic Press, Amsterdam, pp 21–34

    Chapter  Google Scholar 

  • Hayashi T, Hayashi K (1996) Calcium spirulan, an inhibitor of enveloped virus replication, from a blue- green alga Spirulina platensis. J Nat Prod 59:83–87

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Hayashi T, Kojima I (1996) A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Res Hum Retrovir 12:1463–1471

    Article  PubMed  CAS  Google Scholar 

  • He HZ, Li HB, Chen F (2005) Determination of vitamin B1 in seawater and microalgal fermentation media by high-performance liquid chromatography with fluorescence detection. Anal Bioanal Chem 383:875–879

    Article  PubMed  CAS  Google Scholar 

  • Heasman M, Diemar J, O’connor W, Sushames T, Foulkes L (2000) Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs—a summary. Aquac Res 31(8–9):637–659

    Article  Google Scholar 

  • Heyer H, Stal LJ, Krumbein WE (1989) Simultaneous heterolatic and acetate fermentation in the marine cyanobacterium Oscillatoria limosa incubated anaerobically in the dark. Arch Microbiol 151:558–564

    Article  CAS  Google Scholar 

  • Hirano A, Ryohei U, Shin H, Ogushi Y (1997) CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22:137–142

    Article  CAS  Google Scholar 

  • Hirata T, Tanaka M, Ooike M, Tsunomura T, Sakaguchi M (2000) Antioxidant activities of phycocyanobilin prepared from S. platensis. J Appl Phycol 12:435–439

    Article  CAS  Google Scholar 

  • Howarth DC, Codd GA (1985) The uptake and production of molecular hydrogen by unicellular cyanobacteria. J Gen Microbiol 131:1561–1569

    CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewite M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639. doi:10.1111/j.1365-313X.2008.03492.x

    Article  PubMed  CAS  Google Scholar 

  • Huang JC, Chen F, Sandmann G (2006) Stress-related differential expression of multiple b-carotene ketolase genes in the unicellular green alga Haematococcus pluvialis. J Biotechnol 122:176–185

    Article  PubMed  CAS  Google Scholar 

  • Huntley ME, Redalje DG (2007) CO2 Mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strateg Glob Change 12:573–608. doi:10.1007/s11027-006-7304-1

    Article  Google Scholar 

  • Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzym Microb Technol 27:631–635

    Article  CAS  Google Scholar 

  • Ip PF, Chen F (2005) Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochem 40:3491–3496

    Article  CAS  Google Scholar 

  • Jeffries TW, Timourien H, Ward RL (1978) Hydrogen production by Anabaena cylindrica: effect of varying ammonium and ferric ions, pH and light. Appl Environ Microbiol 35:704–710

    PubMed  CAS  Google Scholar 

  • Jiang FC (2000) Algae and their biotechnological potential. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Jiang Y, Fan KW, Wong RTY, Chen F (2004) Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. J Agric Food Chem 52:1196–1200

    Article  PubMed  CAS  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582

    Article  CAS  Google Scholar 

  • Kerfeld CA (2004) Structure and function of the water-soluble carotenoid-binding proteins of cyanobacteria. Photosynth Res 81:215–225

    Article  PubMed  CAS  Google Scholar 

  • Khan Z, Bhadouria P, Bisen PS (2005) Nutritional and therapeutic potential of Spirulina. Curr Pharma Biotechnol 6(5):373–379

    Article  CAS  Google Scholar 

  • Khozin-Goldberg I, Cohen Z, Pimenta-Leibowitz M, Nechev J, Zilberg D (2006) Feeding with arachidonic acid-rich triacylglycerols from the microalga Parietochoris incisa increased recovery of guppies from infection with Tetrahymena sp. Aquaculture 255:142–150

    Article  CAS  Google Scholar 

  • Kim DD (1990) Outdoor mass culture of Spirulina platensis in Vietnam. J Appl Phycol 2(2):179–181

    Article  Google Scholar 

  • Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87:1228–1232

    Article  PubMed  CAS  Google Scholar 

  • Kirst G (1990) Salinity tolerance of eukaryotic marine-algae. Ann Rev Plant Physiol Plant Mol Biol 41:21–53

    Article  CAS  Google Scholar 

  • Knothe GH (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86(10):1059–1070. doi:10.1016/j.fuproc.2004.11.002

    Article  CAS  Google Scholar 

  • Knuckey RM, Brown MR, Robert R, Frampton DMF (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacult Eng 35:300–313. doi:10.1016/j.aquaeng.2006.04.001

    Article  Google Scholar 

  • Koehn FE, Longley RE, Reede T (1992) Microcolins A and B, new immunosuppressive peptides from the blue-green alga Lyngbya majuscule. J Nat Prod 55:613–619

    Article  PubMed  CAS  Google Scholar 

  • Kristensen E (1990) Characterization of biogenic organic matter by stepwise thermogravimetry (STG). Biogeochem 9:135–159

    Article  CAS  Google Scholar 

  • Kroth PG (2007) Genetic transformation: a tool to study protein targeting in diatoms. Meth Mol Biol 390:257–268

    Article  CAS  Google Scholar 

  • Kruse O, Rupprecht J, Mussgnug JR, Dismukes GC, Hankamer B (2005) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 4:957–970

    Article  PubMed  CAS  Google Scholar 

  • Kugelman IJ, McCarty PL (1965) Cation toxicity and stimulation in anaerobic waste treatment. I. Slug feed studies. J Water Pollut Control Fed 37:97–116

    CAS  Google Scholar 

  • Kulkarni MG, Dalai AK (2006) Waste cooking oils an economical source for biodiesel, a review. Ind Eng Chem Res 45:2901–2913

    Article  CAS  Google Scholar 

  • Kurat CF, Natter K, Petschnigg J, Wolinski H, Scheuringer K, Scholz H, Zimmermann R, Leber R, Zechner R, Kohlwein SD (2006) Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast. J Biol Chem 281:491–500. doi:10.1074/jbc.M508414200

    Article  PubMed  CAS  Google Scholar 

  • Lai JY, Yu J, Mekonnen B, Falck JR (1996) Synthesis of curacin A, an antimitotic cyclopropane-thiazoline from the marine cyanobacterium Lyngbya majuscule. Tetrahedron Lett 37:7167–7170

    Article  CAS  Google Scholar 

  • Laing I, Ayala F (1990) Commercial mass culture techniques for producing microalgae. In: Akatsuka I (ed) Introduction to applied phycology. SPB, The Hague, pp 447–477

    Google Scholar 

  • Lambert GR, Smith GD (1977) Hydrogen formation by marine blue-green algae. FEBS Lett 83:159–162

    Article  PubMed  CAS  Google Scholar 

  • Leach G, Oliveira G, Morais R (1998) Spray-drying of Dunaliella salina to produce a b-carotene rich powder. J Ind Microbiol Biotech 20:82–85

    Article  CAS  Google Scholar 

  • Lee YK (1997) Commercial production of microalgae in the Asia Pacific rim. J Appl Phycol 9(5):403–411

    Article  Google Scholar 

  • Lee CG (1999) Calculation of light penetration depth in photobioreactors. Biotechnol Bioprocess Eng 4:78–81

    Article  CAS  Google Scholar 

  • Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315

    Article  Google Scholar 

  • Lee YK, Low CS (1992) Productivity of outdoor algal cultures in enclosed tubular photobioreactor. Biotechnol Bioeng 40:1119–1122

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Jim SB, Jim JE, Kwon GS, Woon BD, Oh HM (1998) Effects of harvesting method and growth stage on the flocculation of the green alga Botryococcus braunii. Lett Appl Microbiol 27(1):14–18

    Article  Google Scholar 

  • Leon-Banares R, Gonzalez-Ballester D, Galvan A, Fernandez E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22:45–52. doi:10.1016/j.tibtech.2003.11.003

    Article  PubMed  CAS  Google Scholar 

  • Levin GV, Clendenning JR, Gibor A, Bogar FD (1961) Harvesting of algae by froth flotation. Appl Environ Microbiol 10(2):169–175

    Google Scholar 

  • Li YY, Sasaki H, Yamashita K, Seki K, Kamigochi I (2002) High-rate methane fermentation of lipid-rich food wastes by a high-solids co-digestion process. Water Sci Technol 45(12):143–150

    PubMed  CAS  Google Scholar 

  • Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98(4):764–771

    Article  PubMed  CAS  Google Scholar 

  • Liang XA, Dong WB, Miao XJ, Dai CJ (2006) Production technology and influencing factors of microorganism grease. Food Res Dev 27(3):46–47

    CAS  Google Scholar 

  • Lindon JC, Holmes E, Nicholson JK (2004) Metabonomics and its role in drug development and disease diagnosis. Expert Rev Mol Diagn 4:189–199

    Article  PubMed  CAS  Google Scholar 

  • Liu ZY, Wang GC, Zhou BC (2007) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722

    Article  PubMed  CAS  Google Scholar 

  • Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Vonshak A (1999) Photoinhibition in outdoor Spirulina platensis cultures assessed by polyphasic chlorophyll fluorescence transients. J Appl Phycol 11:355–359

    Article  Google Scholar 

  • Margheri MC, Tredici MR, Allotta G, Vagnoli L (1990) Heterotrophic metabolism and regulation of uptake hydrogenase activity in symbiotic cyanobacteria. In: Polsinelli M, Materassi R, Vincenzini M (eds) Developments in plant and soil sciences—biological nitrogen fixation. Kluwer Academic Publishers, Dordrecht, pp 481–486

    Google Scholar 

  • Markov SA, Bazin MJ, Hall DO (1995) Hydrogen photoproduction and carbon dioxide uptake by immobilized Anabaena variabilis in a hollow-fibre photobioreactor. Enzyme Microbial Technol 17:306–310

    Article  CAS  Google Scholar 

  • Masjuk NP (1973) Morphology, taxonomy, ecology, geographical distribution and utilization of Dunaliella (in Russian). Naukowa, Kiev, 244 p

    Google Scholar 

  • Masukawa H, Nakamura K, Mochimaru M, Sakurai H (2001) Photobiological hydrogen production and nitrogenase activity in some heterocystous cyanobacteria. In: Miyake J, Matsunaga T, San Pietro A (Eds.), BioHydrogen II, Elsevier, pp. 63–66.

  • Matern U, Oberer L, Falchetto RA, Erhard M, Konig WA, Herdman M, Weckesser J (2001) Scyptolin A and B, cyclic depsipeptides from axenic cultures of Scytonema hofmanni PCC 7110. Phytochem 58:1087–1095

    Article  CAS  Google Scholar 

  • Mathew B, Sankaranarayanan R, Padmanabhan P (1995) Evaluation of chemoprevention of oral cancer with Spirulina fusiformis. Nutr Cancer 24(2):197–202

    Article  PubMed  CAS  Google Scholar 

  • Mc Carty PL (1964) Anaerobic waste treatment fundamentals. Public Works 95(9):91–99

    CAS  Google Scholar 

  • McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K (2005) Repressor and activator-type ethylene response factors functioning in jasmonate signalling and disease resistance identified via a genome wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139:949–959

    Article  PubMed  CAS  Google Scholar 

  • Meher LC, Vidya SD, Naik SN (2006) Technical aspects of biodiesel production by transesterification, a review. Renew Sustain Energy Rev 10:248–268

    Article  CAS  Google Scholar 

  • Metting F (1996) Biodiversity and application of microalgae. J Ind Microbiol Biotech 17:477–489

    Article  CAS  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Article  PubMed  CAS  Google Scholar 

  • Miao XL, Wu QY (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110:85–93

    Article  PubMed  CAS  Google Scholar 

  • Miao XL, Wu QY (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846. doi:10.1016/j.biortech.2005.04.008

    Article  PubMed  CAS  Google Scholar 

  • Millamena OM, Aujero EJ, Borlongan IG (1990) Techniques on algae harvesting and preservation for use in culture and as larval food. Aquac Eng 9:295–304

    Article  Google Scholar 

  • Mishima T, Murata J, Toyoshima M, Fujii H, Nakajima M, Hayashi T, Kato T, Saiki I (1998) Inhibition of tumor invasion and metastasis by calcium spirulan (Ca-SP), a novel sulfated polysaccharide derived from a blue-green alga, Spirulina platensis. Clin Exp Metastasis 16:541–550

    Article  PubMed  CAS  Google Scholar 

  • Moezelaar R, Stal LJ (1994) Fermentation in the unicellular cyanobacterium Microcystis PCC7806. Arch Microbiol 162:63–69

    Article  CAS  Google Scholar 

  • Moezelaar R, Bijvank SM, Stal LJ (1996) Fermentation and sulfur reduction in the mat-building cyanobacterium Microcoleus chtonoplastes. Appl Environ Microbiol 62:1752–1758

    PubMed  CAS  Google Scholar 

  • Molina Grima E, Camacho FG, Fernandez FGA (1999) Production of EPA from Phaeodactylum tricornutum. In: Cohen Z (ed) Chemicals from microalgae. CRC Press, Taylor and Francis, New York, pp 57–92

    Google Scholar 

  • Molina Grima E, Belarbi EH, Fernandez FGA, Robles M, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515. doi:10.1016/S0734-9750(02)00050-2

    Article  PubMed  CAS  Google Scholar 

  • Molina GE, Fernandez FGA, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92(2):113–131

    Article  PubMed  CAS  Google Scholar 

  • Moore J (2009) Microalgae from biodiesel to bioethanol and beyond www.http://snrecmitigation.wordpress.com/2009/03/23/

  • Moo-Young M, Blanch HW (1987) Transport phenomena and bioreactor design. In: Bu’Lock J, Kristiansen B (eds) Basic biotechnology. Academic, New York, pp 133–172

    Google Scholar 

  • Muller-Feuga A, Moal J, Kaas R (2003) The microalgae for aquaculture. In: Stottrup JG, McEvoy LA (eds) Life feeds in marine aquaculture. Blackwell, Oxford, pp 206–252

    Chapter  Google Scholar 

  • Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282:25475–25486. doi:10.1074/jbc.M701415200

    Article  PubMed  CAS  Google Scholar 

  • Mussgnug J, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: Impacts on improved solar energy to biomass conversion. Plant Biotech J 5:802–814. doi:10.1111/j.1467-7652.2007.00285.x

    Article  CAS  Google Scholar 

  • Nagle N, Lemke P (1989) Microalgal fuel production processes: analysis of lipid extraction and conversion methods, paper presented at the aquatic species program, Solar Energy Research Institute, Golden, CO. May 3–4, 1989

  • Nagle N, Lemke P (1990) Production of methyl-ester fuel from microalgae. Appl Biochem Biotechnol 24(5):355–361

    Article  Google Scholar 

  • Nakamura T, Senior CL, Olaizola M, Bridges T, Flores S, Sombardier L, Masutani SM (2005) Recovery and sequestration of CO2 from stationary combustion systems by photosynthesis of microalgae (Final Report, Contract No. DE­FC26­00NT 40934), US Department of Energy, pp. 220

  • Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discovery 1:153–161

    Article  CAS  Google Scholar 

  • Nindo CI, Tang J (2007) Refractance window dehydration technology: a novel contact drying method. Drying Technol 25:37–48

    Article  CAS  Google Scholar 

  • Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12(3):499–506

    Article  CAS  Google Scholar 

  • Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20:459–466

    Article  PubMed  CAS  Google Scholar 

  • Olguin EJ (2000) The cleaner production strategy applied to animal production. In: Olguin EJ, Sanchez G, Hernandez E (eds) Environmental biotechnology a cleaner bioprocesses. Taylor and Francis, London, pp 227–243

    Google Scholar 

  • Omil F, Mendez R, Lema JM (1995) Anaerobic treatment of saline wastewaters under high sulfide and ammonia content. Bioresour Technol 54:269–278

    Article  CAS  Google Scholar 

  • Opute FL (1974) Lipid and fatty acid composition of diatoms. J Exp Bot 25(87):823–835

    Article  CAS  Google Scholar 

  • Orjala J, Nagle DG, Hsu VL, Gerwick WH (1995) Antillatoxin: an exceptionally ichthyotoxic cyclic lipopeptide from the tropical cyanobacterium Lyngbya majuscule. J Am Chem Soc 117:8281–8282

    Article  CAS  Google Scholar 

  • Oswald WJ (1962) The coming industry of controlled photosynthesis. Am J Public Health 52:2

    Article  Google Scholar 

  • Oswald WJ (2003) My sixty years in applied algology. J Appl Phycol 15:99–106

    Article  CAS  Google Scholar 

  • Oswald WJ, Gotaas HB, Ludwig HF, Lynch V (1953) Algae symbiosis in oxidation ponds: photosynthetic oxygenation. Sew Ind Wastes 25(6):692–705

    CAS  Google Scholar 

  • Oswald WJ, Gotaas HB, Golueke CG, Kellen WR (1957) Algae in waste treatment. Sew Ind Wastes 29:437–455

    Google Scholar 

  • Otero A, Vincenzini M (2003) Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity. J Biotechnol 102:143–152

    Article  PubMed  CAS  Google Scholar 

  • Panda D, DeLuca K, Williams D, Jordan MA, Wilson SL (1998) Antiproliferative mechanism of action of cryptophycin-52: kinetic stabilization of microtubule dynamics by high-affinity binding to microtubule ends. Proc Natl Acad Sci 95:9313–9318

    Article  PubMed  CAS  Google Scholar 

  • Patzek T, Pimentel D (2005) Is ethanol from veggies a waste of fossil energy sources. Nat Resour Res 163(9):84–85

    Google Scholar 

  • Phang SM, Miah MS, Yeoh BG, Hashim MA (2000) Spirulina cultivation in digested sago starch factory wastewater. J Appl Phycol 12(3):395–400

    Article  Google Scholar 

  • Phlips EJ, Mitsui A (1983) Role of light intensity and temperature in the regulation of hydrogen photoproduction by the marine cyanobacterium Oscillatoria sp. Strain Miami BG7. Appl Environ Microbiol 45:1212–1220

    PubMed  CAS  Google Scholar 

  • Piccardi R, Materassi R, Tredici M (1999) Algae and human affairs in the 21st century (Abstr Int Conf Appl Algol). Universita degli Studi di Firenze, Firenze

    Google Scholar 

  • Ploutno A, Carmeli S (2005) Banyasin A and banyasides A and B, three novel modified peptides from a water bloom of the cyanobacterium Nostoc sp. Tetrahedron 61:575–583

    Article  CAS  Google Scholar 

  • Poelman E, De Pauw N, Jeurissen B (1997) Potential of electrolytic flocculation for recovery of micro-algae. Resour Conserv Recycl 19(1):1–10. doi:10.1016/S0921-3449(96)01156-1

    Article  Google Scholar 

  • Prakash J, Pushparaj B, Carlozzi P, Torzillo G, Montaini E, Materassi R (1997) Microalgal biomass drying by a simple solar device. Int J Sol Energy 18:303–311

    Article  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57(3):287–293

    Article  PubMed  CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648. doi:10.1007/s00253-004-1647-x

    Article  PubMed  CAS  Google Scholar 

  • Rabinowitch EI (1951) Photosynthesis and related processes, vol. II, part I. Interscience, New York, p 966

    Google Scholar 

  • Radmer RJ (1996) Algal diversity and commercial algal products. Biosci 46:263–270

    Article  Google Scholar 

  • Ragauskas AJ, Charlotte KW, Brian HD, George B, John C, Charles AE, William JF, Jason PH, David JL, Charles LL, Jonathan RM, Richard M, Richard T, Timothy T (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  PubMed  CAS  Google Scholar 

  • Ramchandran S, Mitsui A (1984) Recycling of hydrogen photoproduction system using an immobilized marine blue green algae Oscillatoria sp. Miami BG7, solar energy and seawater, VII International Biotechnol Symp, pp. 183–184

  • Ran CQ, Chen ZA, Zhang W, Yu XJ, Jin MF (2006) Characterization of photobiological hydrogen production by several marine green algae. Wuhan Ligong Daxue Xuebao 28(2):258–263

    Google Scholar 

  • Ranga RA, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98:560–564

    Article  CAS  Google Scholar 

  • Ratledge C (1993) Single cell oils—have they a biotechnological future? Trends Biotechnol 11:278–284

    Article  PubMed  CAS  Google Scholar 

  • Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815

    Article  PubMed  CAS  Google Scholar 

  • Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51

    Article  PubMed  CAS  Google Scholar 

  • Remacle C, Cardol P, Coosemans N, Gaisne M, Bonnefoy N (2006) High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes. Proc Natl Acad Sci USA 103:4771–4776

    Article  PubMed  CAS  Google Scholar 

  • Richmond A (1987) The challenge confronting industrial micro-agriculture: high photosynthetic efficiency in large-scale reactors. Hydrobiologia 151:17–121

    Article  Google Scholar 

  • Richmond A (1999) Physiological principles and modes of cultivation in mass production of photoautotrophic microalgae. In: Cohen Z (ed) Chemicals from microalgae. Taylor and Francis Group, New York, pp 353–386

    Google Scholar 

  • Richmond A (2000) Microalgal biotechnology at the turn of the millennium: a personal view. J Appl Phycol 12(3–5):441–451

    Article  Google Scholar 

  • Richmond A (2004) Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia 512:33–37

    Article  Google Scholar 

  • Riekhof WR, Sears BB, Benning C (2005) Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii: discovery of the betaine lipid synthase BTA1Cr. Eukaryot Cell 4:242–252

    Article  PubMed  CAS  Google Scholar 

  • Rinzema A, van Lier J, Lettinga G (1988) Sodium inhibition of acetoclastic methanogens in granular sludge from a UASB reactor. Enzyme Microb Technol 10:24–32

    Article  CAS  Google Scholar 

  • Roessler PG (1990) Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J Phycol 26:393–399. doi:10.1111/j.0022-3646.1990.00393.x

    Article  CAS  Google Scholar 

  • Roman RB, Alvarez-Pez JM, Acien Fernandez FG, Molina Grima E (2002) Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. J Biotechnol 93:73–85

    Article  Google Scholar 

  • Running JA, Severson DK, Schneider KJ (2002) Extracellular production of L- ascorbic acid by Chlorella protothecoides, Prototheca species, and mutants of P. moriformis during aerobic culturing at low pH. J Ind Microbiol Biotech 29:93–98

    Article  CAS  Google Scholar 

  • S and T (2003) The addition of ethanol from wheat to GHGenius, S and T Consultants, Delta, BC January, 2003.

  • Samson R, LeDuy A (1986) Detailed study of anaerobic digestion of Spirulina maxima algae biomass. Biotechnol Bioeng 28:1014–1023

    Article  PubMed  CAS  Google Scholar 

  • Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  PubMed  CAS  Google Scholar 

  • Sanchez MA, Contreras GA, Garcia CF, Molina GE, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large scale monoculture of microalgae. J Biotechnol 70:249–270

    Article  Google Scholar 

  • Sawayama S, Inoue S, Dote Y, Yokoyama SY (1995) CO2 fixation and oil production through microalga. Energy Convers Manag 36:729–731

    Article  CAS  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high–efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43. doi:10.1007/s12155-008-9008-8

    Article  Google Scholar 

  • Schmitz O, Boison G, Hilscher R, Hundeshagen B, Zimmer W, Lottspeich F, Bothe H (1995) Molecular biological analysis of a bidirectional hydrogenase from cyanobacteria. Eur J Biochem 233:266–276

    Article  PubMed  CAS  Google Scholar 

  • Schonfeld M, Rahat M, Neumann J (1973) Photosynthetic reactions in the marine alga Codium vermilara. Plant Physiol 52:283–287

    Article  PubMed  CAS  Google Scholar 

  • Schwartz J, Shklar G (1987) Regression of experimental hamster cancer by beta carotene and algae extracts. J Oral Maxillofac Surg 45:510–515

    Article  PubMed  CAS  Google Scholar 

  • Schwartz JL, Sklar G, Reid S, Trickler D (1988) Prevention of experimental oral cancer by extracts of Spirulina–Dunaliella algae. Nutr Cancer 11:127–134

    Article  PubMed  CAS  Google Scholar 

  • Serebryakova LT, Sheremetieva ME, Lindblad P (2000) H2-uptake and evolution in the unicellular cyanobacterium Chroococcidiopsis thermalis CALU 758. Plant Physiol Biochem 38:525–530

    Article  CAS  Google Scholar 

  • Servel MO, Claire C, Derrien A, Coiffard L, De Roeck-Holtzhauer Y (1994) Fatty acid composition of some marine microalgae. Phytochemistry 36:691–693

    Article  Google Scholar 

  • Sheehan J, Dunahay T, Benemann JR, Roessler P (1998) A look back at the US Department of Energy’s aquatic species program–Biodiesel from algae (Contract No. DE­AC36­83CH10093), The renewable energy laboratory, Golden, CO. Prepared for: Office of Fuels Development, US Department of Energy

  • Shelef G, Sukenik A, Green M (1984) Microalgae harvesting and processing: a literature review (SERI/STR­231­2396). Technion Research and Development Foundation Ltd., Haifa, pp 1–71

    Book  Google Scholar 

  • Shi XM, Jiang Y, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fedbatch culture. Biotechnol Prog 18:723–727

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19:417–423

    Article  CAS  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv. doi:10.1016/j.biotechadv.2009.03.001

    PubMed  Google Scholar 

  • Singh NK, Dhar DW (2006) Sewage effluent: a potential nutrient source for microalgae. Pro Ind Natn Sci Acad 72:113–120

    CAS  Google Scholar 

  • Singh NK, Dhar DW (2007) Nitrogen and phosphorous scavenging potential in microalgae. Ind J Biotechnol 6:52–56, IPC code: Int. Cl. 8 C02F3/32

    CAS  Google Scholar 

  • Solovchenko AE, Khozin-Goldberg I, Cohen Z, Merzlyak MN (2009) Carotenoid-to-chlorophyll ratio as a proxy for assay of total fatty acids and arachidonic acid content in the green microalga Parietochloris incise. J Appl Phycol 29:361–366

    Article  CAS  Google Scholar 

  • Speece RE (1996) Anaerobic biotechnology for industrial wastewaters. Archae, Nashville

    Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96. doi:10.1263/jbb.101.87

    Article  PubMed  CAS  Google Scholar 

  • Sukenik A, Carmeli Y (1990) Lipid synthesis and fatty acid composition in Nannochloropsis sp. (Eustigmatophyceae) grown in a light-dark cycle. J Phycol 26:463–469. doi:10.1111/j.0022-3646.1990.00463.x

    Article  CAS  Google Scholar 

  • Sukenik A, Carmeli Y, Berner T (1989) Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. J Phycol 25:686–692. doi:10.1111/j.0022-3646.1989.00686.x

    Article  CAS  Google Scholar 

  • Sun Y, Yang Z, Gao X, Li Q, Zhang Q, Xu Z (2005) Expression of foreign genes in Dunaliella by electroporation. Mol Biotechnol 30:185–192

    Article  PubMed  CAS  Google Scholar 

  • Survase SA, Bajaj IB, Singhal RS (2006) Biotechnological production of vitamins. Food Technol Biotechnol 44:381–396

    CAS  Google Scholar 

  • Sveshnikov DA, Sveshnikova NV, Rao KK, Hall DO (1997) Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress. FEBS Microbiol Lett 147:297–301

    Article  CAS  Google Scholar 

  • Takagi M, Karseno YT (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226

    Article  PubMed  CAS  Google Scholar 

  • Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wunschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66:1–20. doi:10.1128/MMBR.66.1.1-20.2002

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Suda Y, Ikeda K, Ono M, Miyasaka H, Watanabe M, Sasaki K, Hirata K (2007) A novel gene with antisalt and anticadmium stress activities from a halotolerant marine green alga Chlamydomonas sp. W80. FEMS Microbiol Lett 271:48–52

    Article  PubMed  CAS  Google Scholar 

  • Tilton RC, Murphy J, Dixon JK (1972) The flocculation of algae with synthetic polymeric flocculants. Water Res 6:155–164

    Article  CAS  Google Scholar 

  • Tokuda H, Nishino H, Shirahashi H, Murakami N, Nagatsu A, Sakakibara J (1996) Inhibition of 12-O-tetradecanoylphorbol-13- acetate promoted mouse skin papilloma by digalactosyl diacylglycerols from the freshwater cyanobacterium Phormidium tenue. Cancer Lett 104:91–96

    Article  PubMed  CAS  Google Scholar 

  • Toreillo G, Pushparaj B, Masojidek J, Vonshak A (2003) Biological constraints in algal biotechnology. Biotechnol Bioprocess Eng 8:338–348

    Article  Google Scholar 

  • Tredici MR, Zittelli GC (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57(2):187–197

    Article  PubMed  CAS  Google Scholar 

  • Tsygankov AA, Serebryakova LT, Rao KK, Hall DO (1998) Acetylene reduction and hydrogen photoproduction by wild type and mutant strains of Anabaena at different CO2 and O2 concentrations. FEMS Microbiol Lett 167:13–17

    Article  CAS  Google Scholar 

  • Ugwu CU, Ogbonna JC, Tanaka H (2005) Characterization of light utilization and biomass yields of Chlorella sorokiniana in inclined outdoor tubular photobioreactors equipped with static mixers. Process Biochem 40(11):3406–3411

    Article  CAS  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2007) Influence of irradiance, dissolved oxygen concentration, and temperature on the growth of Chlorella sorokiniana. Photosynthetica 45(2):309–311

    Article  Google Scholar 

  • Vadiraja BB, Gaikwad NW, Madyastha KM (1998) Hepatoprotective effect of C-phycocyanin: protection for carbon tetrachloride and R-(+)-polygene-mediated hepatotoxicity in rats. Biochem Biophys Res Commun 249(2):428–431

    Article  PubMed  CAS  Google Scholar 

  • Valencia I, Ansorena D, Astiasaran I (2007) Development of dry fermented sausages rich in dicosahexanoic acid with oil from the microalgae Schizochytrium sp.: influence on nutritional properties, sensorial quality and oxidation stability. Food Chem 104:1087–1096

    Article  CAS  Google Scholar 

  • Van der Oost J, Bulthuis BA, Feitz S, Krab K, Kraayenhof R (1989) Fermentation metabolism of the unicellular cyanobacterium Cyanothece PCC 7822. Arch Microbiol 152:415–419

    Article  Google Scholar 

  • Van Gerpen J (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107

    Article  CAS  Google Scholar 

  • Vandenbroucke M, Largeau C (2007) Kerogen origin, evolution and structure. Org Geochem 38:719–833

    Article  CAS  Google Scholar 

  • Vazquez-Duhalt R, Arredondo-Vega B (1991a) Halo-adaptation of the green alga Botryococcus braunii. Phytochem 30:2919–2925

    Article  CAS  Google Scholar 

  • Vazquez-Duhalt R, Arredondo-Vega B (1991b) Oil production from microalgae under saline stress, biomass for energy and industry, 5th EC Conference, Vol.1: Policy, Environment, Production and Harvesting

  • VDI (2004) Vergarung organischer Stoffe, In: Verein Deutscher Ingenieure Guidelines 2004, Guideline VDI 4630, Dusseldorf, Germany

  • Vlad M, Bordas E, Caseanu E, Uza G, Creteanu E, Polinicenco C (1995) Effect of cuprofilin on experimental athero-sclerosis. Biol Trace Elem Res 48(1):99–109

    Article  PubMed  CAS  Google Scholar 

  • Vonshak A, Torzillo G, Masojidek J, Boussiba S (2001) Sub-optimal morning temperature induces photoinhibition in dense outdoor cultures of the alga Monodus subterraneus (Eustigmatophyta). Plant Cell Environ 24(10):1113–1118

    Article  Google Scholar 

  • Walker TL, Purton S, Becker DK, Collet C (2005) Microalgae as bioreactors. Plant Cell Rep 24:629–641

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Pan Y, Dong T, Zhu X, Kan T, Yuan L, Torimoto Y, Sadakata M, Li Q (2007) Production of hydrogen from catalytic steam reforming of bio-oil using C12A7-O-based catalysts. Appl Catal A 320:24–34

    Article  CAS  Google Scholar 

  • Weissman JC, Goebel RP (1985) Production of liquid fuels and chemicals by microalgae (Report SERI/STR­231­2649, Subcontract No. XK­3­03136, Contract No. DE­AC02­83CH10093), Solar Energy Research Institute, Golden, CO. Prepared for US Department of Energy, pp. 116

  • Weissman JC, Goebel RP (1987) Design and analysis of microalgal open pond systems for the purpose of producing fuels (Report SERI/STR­231­2840) (Contract No. DE­AC02­83CH10093, subcontract No. XK­3­03153­1). Solar Energy Research Institute, Golden CO. Prepared for US Department of Energy, pp. 214

  • Weissman JC, Tillett DM (1992) Aquatic Species Project Report; NREL/MP-232-4174, Brown LM, Sprague S (Eds.) National renewable energy laboratory, Golden CO, pp. 41–58.

  • Wen ZY, Chen F (2000) Production potential of eicosapentaenoic acid by the diatom Nitzschia laevis. Biotechnol Lett 22(9):727–733

    Article  CAS  Google Scholar 

  • Wen WG, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Lee E, Kim H (1997) Spirulina platensis inhibits anaphylactic reaction. Life Sci 61:1237–1244

    Article  PubMed  CAS  Google Scholar 

  • Yang XW, Wynder C, Doughty ML, Heintz N (1999) BAC-mediated gene-dosage analysis reveals a role for Zipro1 (Ru49/Zfp38) in progenitor cell proliferation in cerebellum and skin. Nat Genet 22:327–335

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Hua Q, Shimizu K (2000) Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem Eng J 6:87–102

    Article  PubMed  CAS  Google Scholar 

  • Yen HW, Brune DE (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98:130–134

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Jia S, Dai Y (2009) Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. J Appl Phycol 21(1):127–133. doi:10.1007/s10811-008-9341-5

    Article  CAS  Google Scholar 

  • Zeiler KG, Heacox DA, Toon S, Kadam K, Brown LM (1995) The use of microalgae for assimilation and utilization of carbon dioxide from fossil fuel-fired power plant flue gas. Energy Convers Manag 36:707–712

    Article  CAS  Google Scholar 

  • Zhu Y, Lee YY, Elander RT (2007) Conversion of aqueous ammonia-treated corn stover to lactic acid by simultaneous saccharification and cofermentation. Appl Biochem Biotechnol 137–140(1–12):721–738. doi:10.1007/s12010-007-9092-9

    Article  PubMed  Google Scholar 

  • Zittelli CG, Rodolfi L, Biondi N, Tredici MR (2006) Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture 261:932–943

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the assistance provided by the Department of Microbiology, C.P. College of Agriculture (SDAU, S. K. Nagar) and the Department of Microbiology, Indian Agricultural Research Institute, New Delhi for preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirbhay Kumar Singh.

About this article

Cite this article

Singh, N.K., Dhar, D.W. Microalgae as second generation biofuel. A review. Agron. Sustain. Dev. 31, 605–629 (2011). https://doi.org/10.1007/s13593-011-0018-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-011-0018-0

Keywords

Navigation