Agronomy for Sustainable Development

, Volume 31, Issue 4, pp 605–629 | Cite as

Microalgae as second generation biofuel. A review

Review Paper

Abstract

Microalgae are autotrophic microorganisms having extremely high photosynthetic efficiency and are valued as rich source of lipids, hydrocarbons, and other complex oils for biodiesel besides being an invaluable source of bioethanol, biomethane, and biohydrogen. Biodiesel produced from oilseed crops such as jatropha and soy have lower yields per unit land area and threaten food security. Indeed, microalgae have higher oil yields amounting to about 40 times more oil per unit area of land in comparison to terrestrial oilseed crops such as soy and canola. Further, microalgae production does not require arable land for cultivation. Biofuel is regarded as a proven clean energy source and several entrepreneurs are attempting to commercialize this renewable source. Technology for producing and using biofuel has been known for several years and is frequently modified and upgraded. In view of this, a review is presented on microalgae as second generation biofuel. Microalgal farming for biomass production is the biggest challenge and opportunity for the biofuel industry. These are considered to be more efficient in converting solar energy into chemical energy and are amongst the most efficient photosynthetic plants on earth. Microalgae have simple cellular structure, a lipid-rich composition, and a rapid rate of reproduction. Many microalgal strains can be grown in saltwater and other harsh conditions. Some autotrophic microalgae can also be converted to heterotrophic ones to accumulate high quality oils using organic carbon. However, there are several technical challenges that need to be addressed to make microalgal biofuel profitable. The efficiency of microalgal biomass production is highly influenced by environmental conditions, e.g., light of proper intensity and wavelength, temperature, CO2 concentration, nutrient composition, salinities and mixing conditions, and by the choice of cultivation systems: open versus closed pond systems, photobioreactors. Currently, microalgae for commercial purpose are grown mostly in open circular/elongated “raceway” ponds which generally have low yields and high production costs. However, a hybrid system combining closed photobioreactor and open pond is a better option. The biggest hurdle in commercialization of microalgal biofuel is the high cost and energy requirement for the microalgal biomass production, particularly agitation, harvesting, and drying of biomass. In order to conserve energy and reduce costs, algae are often harvested in a two-step process involving flocculation followed by centrifugation, filtration, or micro-straining to get a solid concentration. However, the major bottlenecks in algal biodiesel production within the cell can be identified and handled by adopting a system approach involving transcriptomics, proteomics, and metabolomics. Research and developments in the field of new materials and advanced designs for cultivation in closed bioreactors, use of waste water for biomass production, screening of efficient strains, high-value coproduct strategy, and cutting-edge metabolic engineering are thought to provide the biggest opportunities to substantially improve the cost effectiveness of such production systems.

Keywords

Bioactive compounds Biodiesel Bioethanol Biohydrogen Biomethane Microalgae Photobioreactors Wastewater treatment 

Notes

Acknowledgments

The authors gratefully acknowledge the assistance provided by the Department of Microbiology, C.P. College of Agriculture (SDAU, S. K. Nagar) and the Department of Microbiology, Indian Agricultural Research Institute, New Delhi for preparation of this manuscript.

References

  1. Achitouv E, Metzger P, Rager MN (2004) C31–C34 methylated squalene from a Bolivian strain of Botryococcus braunii. Phytochem 65:3159–3165CrossRefGoogle Scholar
  2. Acien Fernandez FG, Fernandez Sevilla JM, Sanchez Perez JA, Molina GE, Chisti Y (2001) Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem Eng Sci 56(8):2721–2732CrossRefGoogle Scholar
  3. Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrogen Energy 27:1195–1208CrossRefGoogle Scholar
  4. Anderson RA (ed) (2005) Algal culturing techniques, Phycological Society of America. Elsevier Academic, USA, p 578Google Scholar
  5. Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signalling pathways modulates defense gene expression and disease resistance. Plant Cell 16:3460–3479PubMedCrossRefGoogle Scholar
  6. Angelidaki I, Ahring BK (1993) Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Appl Microbiol Biotechnol 38:560–564CrossRefGoogle Scholar
  7. Antal TK, Lindblad P (2005) Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. J Appl Microbiol 98:114–120PubMedCrossRefGoogle Scholar
  8. Antonopoulou S, Karantonis HC, Nomikos T, Oikonomou A, Fragopoulou E, Pantazidou A (2005) Bioactive polar lipids from Chroococcidiopsis sp. (Cyanobacteria). Comp Biochem Physiol B Biochem Mol Biol 142:269–282PubMedCrossRefGoogle Scholar
  9. Aoyama K, Uemura I, Miyake J, Asada Y (1997) Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium Spirulina platensis. J Ferment Bioeng 83:17–20CrossRefGoogle Scholar
  10. Apt KA, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215–226CrossRefGoogle Scholar
  11. Apt KE, Kroth-Pancic PG, Grossman AR (1996) Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet 252:572–579PubMedGoogle Scholar
  12. Asinari Di San Marzano CM, Legros A, Naveau HP, Nyns EJ (1982) Biomethanation of the marine algae Tetraselmis. Int J Sustain Energy 1:263–272CrossRefGoogle Scholar
  13. Aslan S, Kapdan I (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64–70CrossRefGoogle Scholar
  14. Ayehunie S, Belay A, Baba TW, Ruprecht RM (1998) Inhibition of HIV-1 replication by an aqueous extract of Spirulina platensis. J Aquir Immun Defic Syndr Hum Retrovirol 18:7–12CrossRefGoogle Scholar
  15. Baker ER, McLaughlin JJA, Hutner SH (1981) Water-soluble vitamins in cells and spent culture supernatants of Poteriochromonas stipitata, Euglena gracilis and Tetrahymena thermophila. Arch Microbiol 129:310–313CrossRefGoogle Scholar
  16. Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279PubMedCrossRefGoogle Scholar
  17. Barbosa B, Albrecht M, Wijffels R (2003) Hydrodynamic stress and lethal events in sparged microalgae cultures. Biotechnol Bioeng 83:112–120PubMedCrossRefGoogle Scholar
  18. Barclay WR, Terry KL, Nagle NJ, Weissman JC, Goebel RP (1985) Potential of new strains of marine and inland saline-adapted microalgae for aquaculture. J World Aquac Soc 18(40):218–228Google Scholar
  19. Barclay WR, Meager KM, Abril JR (1994) Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol 6(2):123–129CrossRefGoogle Scholar
  20. Barnwal BK, Sharma MP (2005) Prospects of biodiesel production from vegetables oils in India. Renew Sustain Energy Rev 9:363–378CrossRefGoogle Scholar
  21. Becker EW (1988) Micro-algae for human and animal consumption. In: Borowitzka MA, Borowitzka LJ (Eds.), Micro-algal technology, Cambridge University Press, pp. 222–256Google Scholar
  22. Becker EW (2007) Micro–algae as a source of protein. Biotechnol Adv 25:207–210PubMedCrossRefGoogle Scholar
  23. Behrens PW, Kyle DJ (1996) Microalgae as a source of fatty acids. J Food Lipids 3:259–272CrossRefGoogle Scholar
  24. Belarbi EH, Molina Grima E, Chisti Y (2000) A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb Technol 26(7):516–529PubMedCrossRefGoogle Scholar
  25. Ben-Amote A, Tornabene TG, Thomas WH (1985) Chemical profile of selected species of microalgae with emphasis on lipids. J Phycol 21:72–81CrossRefGoogle Scholar
  26. Ben-Amotz A, Avron M (1990) The biotechnology of cultivating the halotolerant alga Dunaliella. Trends Biotechnol 8:121–126CrossRefGoogle Scholar
  27. Benemann JR (2007) “Biofuel, peak oil, and global warming 1977–2037” Presentation at California Polytechnic State University, San Luis Obispo, 1–18-07Google Scholar
  28. Benemann JR (2008) Open ponds and closed photobioreactors-comparative economics. Paper presented at the 5th annual World Congress on Industrial Biotechnology and Bioprocessing, April 27–30, Chicago, IL, USAGoogle Scholar
  29. Benemann JR, Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of carbon dioxide to biomass (Final Report: Grant No. DEFG22 93PC93204), Pittsburgh Energy Technology Centre, Pittsburgh, PA, US Department of EnergyGoogle Scholar
  30. Benemann J, Koopman B, Weismsman JC, Eisenberg DM, Oswald WJ (1977) Cultivation on sewage of microalgae harvestable by microstrainers (Contract Nos. W-74-05-ENG-48 and E-(04-3)-34), Prepared for US Energy Research and Development AdministrationGoogle Scholar
  31. Benemann JR, Goebel RP, Weissman JC, Augenstein DC (1982) Microalgae as a source of liquid fuels, (Final Technical Report, Contract Deacos 81 ER 30014), US Department of EnergyGoogle Scholar
  32. Berman J (1998) Chemotherapy of leishmaniasis: recent advances in the treatment of visceral disease. Curr Opin Infect Dis 11:707–710PubMedCrossRefGoogle Scholar
  33. Berzin I (2005) Photobioreactor and process for biomass production and mitigation of pollutants in flue gases, United States Patent Application, Pub. no.: US2005/0260553 A1, USA, Publication date: Nov. 24, 2005Google Scholar
  34. Bessou C Ferchaud F, Gabrielle B, Mary B (2010) Biofuels, greenhouse gases and climate change. A review. Agron Sustain Dev 1–79, © INRA, EDP Sciences. doi: 10.1051/agro/2009039
  35. Bhat VB, Madyastha KM (2000) C-phycocyanin: a potent peroxyl radical scavenger in vivo and in vitro. Biochem Biophys Res Commun 275:20–25PubMedCrossRefGoogle Scholar
  36. Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z (2002) Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochem 60:497–503CrossRefGoogle Scholar
  37. Blanchemain A, Grizeau D (1999) Increased production of eicosapentaenoic acid by Skeletonema costatum cells after decantation at low temperature. Biotechnol Tech 13(7):497–501CrossRefGoogle Scholar
  38. Borodyanski G, Konstantinov I (2003) Microalgae separator apparatus and method. US Patent No. US6524486B2, Sepal Technologies LtdGoogle Scholar
  39. Borowitzka LJ (1991) Development of Western Biotechnology’s algal b-carotene plant. Bioresour Technol 38:251–252CrossRefGoogle Scholar
  40. Borowitzka MA (1992) Algal biotechnology products and processes-matching science and economics. J Appl Phycol 4(3):267–279CrossRefGoogle Scholar
  41. Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401CrossRefGoogle Scholar
  42. Borowitzka MA (2005) Culturing microalgae in outdoor ponds. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic, New York, pp 205–218CrossRefGoogle Scholar
  43. Bosma R, van Spronsen W, Tramper J, Wijffels R (2003) Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol 15:143–153CrossRefGoogle Scholar
  44. Boyd MR (2001) Anti-cyanovirin antibody with an internal image of gp120, a method of use thereof, and a method of using a cyanovirin to induce an immune response to gp120, United States patent no 6193982Google Scholar
  45. Boyd MR (2002) Methods of using cyanovirins topically to inhibit viral infection, United States patent no 6420336Google Scholar
  46. Boyd MR (2004) Methods of using cyanovirins to inhibit viral infection, United States patent no 6743577Google Scholar
  47. Bremus C, Herrmann U, Bringer-Meyer S, Sahm H (2006) The use of microorganisms in L-ascorbic acid production. J Biotechnol 124:196–205PubMedCrossRefGoogle Scholar
  48. Bridgwater A, Maniatis K (2004) The production of biofuels by thermal chemical processing of biomass. In: Archer M, Barber J (eds) Molecular to global photosynthesis. Imperial College Press, London, pp 521–611Google Scholar
  49. Brzezinski MA (1985) The Si-C-N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J Phycol 21:347–357CrossRefGoogle Scholar
  50. Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC (2001) Marine cyanobacteria—a prolific source of natural products. Tetrahedron 57:9347–9377CrossRefGoogle Scholar
  51. Burja AM, Abou-Mansour BEB, Payri C, Burgess JG, Wright PC (2002) Culture of marine cyanobacterium, Lyngbya majuscule (Oscillatoriaceae), for bioprocess intensified production of cyclic and linear lipopeptides. J Microbiol Meth 48:207–219CrossRefGoogle Scholar
  52. Cardozo KHM, Guaratini T, Barros MP, Falcao VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, Pinto E (2007) Metabolites from algae with economical impact. Compe Biochem Physiol C Toxicol Pharmacol 146:60–78CrossRefGoogle Scholar
  53. Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506. doi: 10.1021/bp060065r PubMedGoogle Scholar
  54. Centner TJ (2001) Evolving policies to regulate pollution from animal feeding operations. Environ Manag 28:599–609CrossRefGoogle Scholar
  55. Ceron Garcia MC, Fernandez Sevilla JM, Acien Fernandez FG, Molina Grima E, Garcia Camacho F, Ceron Garcia MC, Fernandez Sevilla JM, Acien Fernandez FG, Molina Grima E, Garcia Camacho F (2000) Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile. J Appl Phycol 12(3):239–248CrossRefGoogle Scholar
  56. Chae SR, Hwang EJ, Shin HS (2006) Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresour Technol 97(2):322–329PubMedCrossRefGoogle Scholar
  57. Chen PH (1987) Factors influencing methane fermentation of micro-algae. PhD thesis, University of California, Berkeley, CA, USAGoogle Scholar
  58. Chen GQ, Chen F (2006) Growing phototrophic cells without light. Biotechnol Lett 28(9):607–616PubMedCrossRefGoogle Scholar
  59. Chen Y, Cheng JJ, Creamer KS (2008a) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064PubMedCrossRefGoogle Scholar
  60. Chen GQ, Jiang Y, Chen F (2008b) Variation of lipid class composition in Nitzschia laevis as a response to growth temperature change. Food Chem 109:88–94CrossRefGoogle Scholar
  61. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306. doi: 10.1016/j.biotechadv.2007.02.001 PubMedCrossRefGoogle Scholar
  62. Christie WW (2003) Lipid analysis. The Oily Press, PJ Barnes and Associates: Bridgewater, NJGoogle Scholar
  63. Cirne DG, Paloumet X, Bjornsson L, Alves MM, Mattiasson B (2007) Anaerobic digestion of lipid-rich waste—effects of lipid concentration. Renew Energy 32:965–975CrossRefGoogle Scholar
  64. Clark GJ, Langley D, Bushell ME (1995) Oxygen limitation can induce microbial secondary metabolite formation: investigations with miniature electrodes in shaker and bioreactor culture. Microbiol 141:663–669CrossRefGoogle Scholar
  65. Cohen Z (1999) Porphyridium cruentum. In: Cohen Z (ed) Chemicals from microalgae. CRC Press, Taylor and Francis, New York, pp 1–24Google Scholar
  66. Del Campo JA, Garcia-Gonzalez M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174. doi: 10.1007/s00253-007-0844-9 PubMedCrossRefGoogle Scholar
  67. Demirbas A (2005) Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog Energ Combust Sci 31(5–6):466–487CrossRefGoogle Scholar
  68. Desmorieux H, Decaen N (2006) Convective drying of Spirulina in thin layer. J Food Eng 77:64–70CrossRefGoogle Scholar
  69. Dijkstra AJ (2006) Revisiting the formation of trans-isomers during partial hydrogenation of triacylglycerol oils. Eur J Lipid Sci Technol 108(3):249–264CrossRefGoogle Scholar
  70. Dismukes GC, Damian C, Nicholas B, Gennady MA, Matthew CP (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19:235–240PubMedCrossRefGoogle Scholar
  71. Divakaran R, Pillai VNS (2002) Flocculation of algae using chitosan. J Appl Phycol 14:419–422CrossRefGoogle Scholar
  72. Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM, Kazan K (2007) AtMYC2 modulates diverse jasmonate-dependent functions by coordination of a transcriptional cascade. Plant Cell 19:2225–2245PubMedCrossRefGoogle Scholar
  73. Dong QL, Zhao XM, Ma HW, Xing XY, Sun NX (2006) Metabolic flux analysis of the two astaxanthin-producing microorganisms Haematococcus pluvialis and Phaffia rhodozyma in the pure and mixed cultures. Biotechnol J 1:1283–1292PubMedCrossRefGoogle Scholar
  74. Donia M, Hamann MT (2003) Marine natural products and their potential application as anti-infective agents. Lancet 3:338–348CrossRefGoogle Scholar
  75. Doucha J, Livansky K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a middle and southern European climate. J Appl Phycol 18:811–826CrossRefGoogle Scholar
  76. Doucha J, Straka F, Livansky K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412. doi: 10.1007/s10811-005-8701-7 CrossRefGoogle Scholar
  77. Duerr EO, Molnar A, Sato V (1998) Cultured microalgae as aquaculture feeds. J Mar Biotechnol 6(2):65–70Google Scholar
  78. Dunahay TG, Adler SA, Jarvik JW (1997) Transformation of microalgae using silicon carbide whiskers. Meth Mol Biol 62:503–509Google Scholar
  79. Metcalf and Eddy (2003) Wastewater Engineering: Treatment, Disposal, Reuse. McGraw Hill Publishing, New YorkGoogle Scholar
  80. Ekman A, Bulow L, Stymne S (2007) Elevated atmospheric CO2 concentration and diurnal cycle induce changes in lipid composition in Arabidopsis thaliana. New Phytol 174:591–599. doi: 10.1111/j.1469-8137.2007.02027.x PubMedCrossRefGoogle Scholar
  81. Fang X, Wei C, Zhao-Ling C, Fan O (2004) Effects of organic carbon sources on cell growth and eicosapentaenoic acid content of Nannochloropsis sp. J Appl Phycol 16:499–503CrossRefGoogle Scholar
  82. Fedorov AS, Tsygankov AA, Rao KK, Hall DO (2001) Production of hydrogen by an Anabaena variabilis mutant in photobioreactor under aerobic outdoor conditions. In: Miyake J, Matsunaga T, San Pietro A (eds) BioHydrogen II. Elsevier, New York, pp 223–228CrossRefGoogle Scholar
  83. Feinberg DA (1984) Fuel options from microalgae with representative chemical compositions (SERI/TP­231­2427), Solar Energy Research Institute, Golden, CO, July 2004Google Scholar
  84. Felizardo P, Correia MJN, Raposo I, Mendes JF, Berkemeier R, Bordado JM (2006) Production of biodiesel from waste frying oil. Waste Manage 26(5):487–494CrossRefGoogle Scholar
  85. Fernie AR, Geigenberger P, Stitt M (2005) Flux an important, but neglected, component of functional genomics. Curr Opin Plant Biol 8:174–182PubMedCrossRefGoogle Scholar
  86. Fiehn O (2002) Metabolomics-the link between genotypes and phenotypes. Plant Mol Biol 48:155–171PubMedCrossRefGoogle Scholar
  87. Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92(5):405–416PubMedCrossRefGoogle Scholar
  88. Furuki T, Maeda S, Imajo S, Hiroi T, Amaya T, Hirokawa T, Ito K, Nozawa H (2003) Rapid and selective extraction of phycocyanin from Spirulina platensis with ultrasonic cell disruption. J Appl Phycol 15:319–324CrossRefGoogle Scholar
  89. Galinski E (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:273–328CrossRefGoogle Scholar
  90. Gavrilescu M, Chisti Y (2005) Biotechnology—a sustainable alternative for chemical industry. Biotechnol Adv 23:471–499PubMedCrossRefGoogle Scholar
  91. Gerwick WH, Jiang ZD, Agarwal SK, Farmer BT (1992) Total structure of hormothamnin-A, A toxic cyclic undecapeptide from the tropical marine cyanobacterium hormothamnion enteromorphoides. Tetrahedron 48:2313–2324CrossRefGoogle Scholar
  92. Goldman JC (1979) Outdoor mass algal cultures-II, photosynthetic yield limitations. Water Res 11:119–136CrossRefGoogle Scholar
  93. Golueke CG, Oswald WJ (1959) Biological conversion of light energy to the chemical energy of methane. Appl Microbiol 7:219–227PubMedGoogle Scholar
  94. Golueke CG, Oswald WJ (1965) Harvesting and processing sewage-grown planktonic algae. J Water Poll Cont Fed 37:471–498Google Scholar
  95. Golueke CG, Oswald WJ, Gottas HB (1957) Anaerobic digestion of algae. Appl Microbiol 5:47–55PubMedGoogle Scholar
  96. Grach-Pogrebinsky O, Sedmak B, Carmeli S (2003) Protease inhibitors from a Slovenian Lake Bled toxic waterbloom of the cyanobacterium Planktothrix rubescens. Tetrahedron 59:8329–8336CrossRefGoogle Scholar
  97. Green FB, Bernstone LS, Lundquist TJ, Oswald WJ (1996) Advanced integrated wastewater pond systems for nitrogen removal. Water Sci Technol 33(7):207–217CrossRefGoogle Scholar
  98. Grobbelaar JU (1994) Turbulence in mass algal cultures and the role of light/dark fluctuations. J Appl Phycol 6(3):331–335CrossRefGoogle Scholar
  99. Gudin C, Therpenier C (1986) Bioconversion of solar energy into organic chemicals by microalgae. Adv Biotechnol Process 6:73–110Google Scholar
  100. Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astajanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216PubMedCrossRefGoogle Scholar
  101. Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186PubMedCrossRefGoogle Scholar
  102. Gustafson KR, Cardellina IIJH, Fuller RW, Weislow OS, Kiser RF, Snader KM, Patterson GML, Boyd MR (1989) AIDS-antiviral sulfolipids from cyanobacteria (blue-green algae). J Nat Can Inst 81:1254–1258CrossRefGoogle Scholar
  103. Han X, Miao XL, Wu QY (2006) High quality biodiesel production from heterotrophic growth of Chlorella protothecoides in fermenters by using starch hydrolysate as organic carbon. J Biotechnol 126(4):499–507CrossRefGoogle Scholar
  104. Hankamer B, Lehr F, Rupprecht J, Mussgnug JH, Posten C, Kruse O (2007) Photosynthetic biomass and H2 production: from bioengineering to bioreactor scale up. Physiol Plant 131:10–21. doi: 10.1111/j.1399-3054.2007.00924.x PubMedCrossRefGoogle Scholar
  105. Happe T, Schutz K, Bohme H (2000) Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 182:1624–1631PubMedCrossRefGoogle Scholar
  106. Harrison PJ, Berges JA (2005) Marine culture media. In: Andersen RA (ed) Algal culturing techniques. Phycological Society of America, Elsevier, Academic Press, Amsterdam, pp 21–34CrossRefGoogle Scholar
  107. Hayashi T, Hayashi K (1996) Calcium spirulan, an inhibitor of enveloped virus replication, from a blue- green alga Spirulina platensis. J Nat Prod 59:83–87PubMedCrossRefGoogle Scholar
  108. Hayashi K, Hayashi T, Kojima I (1996) A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Res Hum Retrovir 12:1463–1471PubMedCrossRefGoogle Scholar
  109. He HZ, Li HB, Chen F (2005) Determination of vitamin B1 in seawater and microalgal fermentation media by high-performance liquid chromatography with fluorescence detection. Anal Bioanal Chem 383:875–879PubMedCrossRefGoogle Scholar
  110. Heasman M, Diemar J, O’connor W, Sushames T, Foulkes L (2000) Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs—a summary. Aquac Res 31(8–9):637–659CrossRefGoogle Scholar
  111. Heyer H, Stal LJ, Krumbein WE (1989) Simultaneous heterolatic and acetate fermentation in the marine cyanobacterium Oscillatoria limosa incubated anaerobically in the dark. Arch Microbiol 151:558–564CrossRefGoogle Scholar
  112. Hirano A, Ryohei U, Shin H, Ogushi Y (1997) CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22:137–142CrossRefGoogle Scholar
  113. Hirata T, Tanaka M, Ooike M, Tsunomura T, Sakaguchi M (2000) Antioxidant activities of phycocyanobilin prepared from S. platensis. J Appl Phycol 12:435–439CrossRefGoogle Scholar
  114. Howarth DC, Codd GA (1985) The uptake and production of molecular hydrogen by unicellular cyanobacteria. J Gen Microbiol 131:1561–1569Google Scholar
  115. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewite M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639. doi: 10.1111/j.1365-313X.2008.03492.x PubMedCrossRefGoogle Scholar
  116. Huang JC, Chen F, Sandmann G (2006) Stress-related differential expression of multiple b-carotene ketolase genes in the unicellular green alga Haematococcus pluvialis. J Biotechnol 122:176–185PubMedCrossRefGoogle Scholar
  117. Huntley ME, Redalje DG (2007) CO2 Mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strateg Glob Change 12:573–608. doi: 10.1007/s11027-006-7304-1 CrossRefGoogle Scholar
  118. Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzym Microb Technol 27:631–635CrossRefGoogle Scholar
  119. Ip PF, Chen F (2005) Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochem 40:3491–3496CrossRefGoogle Scholar
  120. Jeffries TW, Timourien H, Ward RL (1978) Hydrogen production by Anabaena cylindrica: effect of varying ammonium and ferric ions, pH and light. Appl Environ Microbiol 35:704–710PubMedGoogle Scholar
  121. Jiang FC (2000) Algae and their biotechnological potential. Kluwer Academic Publishers, DordrechtGoogle Scholar
  122. Jiang Y, Fan KW, Wong RTY, Chen F (2004) Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. J Agric Food Chem 52:1196–1200PubMedCrossRefGoogle Scholar
  123. Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582CrossRefGoogle Scholar
  124. Kerfeld CA (2004) Structure and function of the water-soluble carotenoid-binding proteins of cyanobacteria. Photosynth Res 81:215–225PubMedCrossRefGoogle Scholar
  125. Khan Z, Bhadouria P, Bisen PS (2005) Nutritional and therapeutic potential of Spirulina. Curr Pharma Biotechnol 6(5):373–379CrossRefGoogle Scholar
  126. Khozin-Goldberg I, Cohen Z, Pimenta-Leibowitz M, Nechev J, Zilberg D (2006) Feeding with arachidonic acid-rich triacylglycerols from the microalga Parietochoris incisa increased recovery of guppies from infection with Tetrahymena sp. Aquaculture 255:142–150CrossRefGoogle Scholar
  127. Kim DD (1990) Outdoor mass culture of Spirulina platensis in Vietnam. J Appl Phycol 2(2):179–181CrossRefGoogle Scholar
  128. Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87:1228–1232PubMedCrossRefGoogle Scholar
  129. Kirst G (1990) Salinity tolerance of eukaryotic marine-algae. Ann Rev Plant Physiol Plant Mol Biol 41:21–53CrossRefGoogle Scholar
  130. Knothe GH (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86(10):1059–1070. doi: 10.1016/j.fuproc.2004.11.002 CrossRefGoogle Scholar
  131. Knuckey RM, Brown MR, Robert R, Frampton DMF (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacult Eng 35:300–313. doi: 10.1016/j.aquaeng.2006.04.001 CrossRefGoogle Scholar
  132. Koehn FE, Longley RE, Reede T (1992) Microcolins A and B, new immunosuppressive peptides from the blue-green alga Lyngbya majuscule. J Nat Prod 55:613–619PubMedCrossRefGoogle Scholar
  133. Kristensen E (1990) Characterization of biogenic organic matter by stepwise thermogravimetry (STG). Biogeochem 9:135–159CrossRefGoogle Scholar
  134. Kroth PG (2007) Genetic transformation: a tool to study protein targeting in diatoms. Meth Mol Biol 390:257–268CrossRefGoogle Scholar
  135. Kruse O, Rupprecht J, Mussgnug JR, Dismukes GC, Hankamer B (2005) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 4:957–970PubMedCrossRefGoogle Scholar
  136. Kugelman IJ, McCarty PL (1965) Cation toxicity and stimulation in anaerobic waste treatment. I. Slug feed studies. J Water Pollut Control Fed 37:97–116Google Scholar
  137. Kulkarni MG, Dalai AK (2006) Waste cooking oils an economical source for biodiesel, a review. Ind Eng Chem Res 45:2901–2913CrossRefGoogle Scholar
  138. Kurat CF, Natter K, Petschnigg J, Wolinski H, Scheuringer K, Scholz H, Zimmermann R, Leber R, Zechner R, Kohlwein SD (2006) Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast. J Biol Chem 281:491–500. doi: 10.1074/jbc.M508414200 PubMedCrossRefGoogle Scholar
  139. Lai JY, Yu J, Mekonnen B, Falck JR (1996) Synthesis of curacin A, an antimitotic cyclopropane-thiazoline from the marine cyanobacterium Lyngbya majuscule. Tetrahedron Lett 37:7167–7170CrossRefGoogle Scholar
  140. Laing I, Ayala F (1990) Commercial mass culture techniques for producing microalgae. In: Akatsuka I (ed) Introduction to applied phycology. SPB, The Hague, pp 447–477Google Scholar
  141. Lambert GR, Smith GD (1977) Hydrogen formation by marine blue-green algae. FEBS Lett 83:159–162PubMedCrossRefGoogle Scholar
  142. Leach G, Oliveira G, Morais R (1998) Spray-drying of Dunaliella salina to produce a b-carotene rich powder. J Ind Microbiol Biotech 20:82–85CrossRefGoogle Scholar
  143. Lee YK (1997) Commercial production of microalgae in the Asia Pacific rim. J Appl Phycol 9(5):403–411CrossRefGoogle Scholar
  144. Lee CG (1999) Calculation of light penetration depth in photobioreactors. Biotechnol Bioprocess Eng 4:78–81CrossRefGoogle Scholar
  145. Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315CrossRefGoogle Scholar
  146. Lee YK, Low CS (1992) Productivity of outdoor algal cultures in enclosed tubular photobioreactor. Biotechnol Bioeng 40:1119–1122PubMedCrossRefGoogle Scholar
  147. Lee SJ, Jim SB, Jim JE, Kwon GS, Woon BD, Oh HM (1998) Effects of harvesting method and growth stage on the flocculation of the green alga Botryococcus braunii. Lett Appl Microbiol 27(1):14–18CrossRefGoogle Scholar
  148. Leon-Banares R, Gonzalez-Ballester D, Galvan A, Fernandez E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22:45–52. doi: 10.1016/j.tibtech.2003.11.003 PubMedCrossRefGoogle Scholar
  149. Levin GV, Clendenning JR, Gibor A, Bogar FD (1961) Harvesting of algae by froth flotation. Appl Environ Microbiol 10(2):169–175Google Scholar
  150. Li YY, Sasaki H, Yamashita K, Seki K, Kamigochi I (2002) High-rate methane fermentation of lipid-rich food wastes by a high-solids co-digestion process. Water Sci Technol 45(12):143–150PubMedGoogle Scholar
  151. Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98(4):764–771PubMedCrossRefGoogle Scholar
  152. Liang XA, Dong WB, Miao XJ, Dai CJ (2006) Production technology and influencing factors of microorganism grease. Food Res Dev 27(3):46–47Google Scholar
  153. Lindon JC, Holmes E, Nicholson JK (2004) Metabonomics and its role in drug development and disease diagnosis. Expert Rev Mol Diagn 4:189–199PubMedCrossRefGoogle Scholar
  154. Liu ZY, Wang GC, Zhou BC (2007) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722PubMedCrossRefGoogle Scholar
  155. Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167PubMedCrossRefGoogle Scholar
  156. Lu C, Vonshak A (1999) Photoinhibition in outdoor Spirulina platensis cultures assessed by polyphasic chlorophyll fluorescence transients. J Appl Phycol 11:355–359CrossRefGoogle Scholar
  157. Margheri MC, Tredici MR, Allotta G, Vagnoli L (1990) Heterotrophic metabolism and regulation of uptake hydrogenase activity in symbiotic cyanobacteria. In: Polsinelli M, Materassi R, Vincenzini M (eds) Developments in plant and soil sciences—biological nitrogen fixation. Kluwer Academic Publishers, Dordrecht, pp 481–486Google Scholar
  158. Markov SA, Bazin MJ, Hall DO (1995) Hydrogen photoproduction and carbon dioxide uptake by immobilized Anabaena variabilis in a hollow-fibre photobioreactor. Enzyme Microbial Technol 17:306–310CrossRefGoogle Scholar
  159. Masjuk NP (1973) Morphology, taxonomy, ecology, geographical distribution and utilization of Dunaliella (in Russian). Naukowa, Kiev, 244 pGoogle Scholar
  160. Masukawa H, Nakamura K, Mochimaru M, Sakurai H (2001) Photobiological hydrogen production and nitrogenase activity in some heterocystous cyanobacteria. In: Miyake J, Matsunaga T, San Pietro A (Eds.), BioHydrogen II, Elsevier, pp. 63–66.Google Scholar
  161. Matern U, Oberer L, Falchetto RA, Erhard M, Konig WA, Herdman M, Weckesser J (2001) Scyptolin A and B, cyclic depsipeptides from axenic cultures of Scytonema hofmanni PCC 7110. Phytochem 58:1087–1095CrossRefGoogle Scholar
  162. Mathew B, Sankaranarayanan R, Padmanabhan P (1995) Evaluation of chemoprevention of oral cancer with Spirulina fusiformis. Nutr Cancer 24(2):197–202PubMedCrossRefGoogle Scholar
  163. Mc Carty PL (1964) Anaerobic waste treatment fundamentals. Public Works 95(9):91–99Google Scholar
  164. McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K (2005) Repressor and activator-type ethylene response factors functioning in jasmonate signalling and disease resistance identified via a genome wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139:949–959PubMedCrossRefGoogle Scholar
  165. Meher LC, Vidya SD, Naik SN (2006) Technical aspects of biodiesel production by transesterification, a review. Renew Sustain Energy Rev 10:248–268CrossRefGoogle Scholar
  166. Metting F (1996) Biodiversity and application of microalgae. J Ind Microbiol Biotech 17:477–489CrossRefGoogle Scholar
  167. Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496PubMedCrossRefGoogle Scholar
  168. Miao XL, Wu QY (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110:85–93PubMedCrossRefGoogle Scholar
  169. Miao XL, Wu QY (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846. doi: 10.1016/j.biortech.2005.04.008 PubMedCrossRefGoogle Scholar
  170. Millamena OM, Aujero EJ, Borlongan IG (1990) Techniques on algae harvesting and preservation for use in culture and as larval food. Aquac Eng 9:295–304CrossRefGoogle Scholar
  171. Mishima T, Murata J, Toyoshima M, Fujii H, Nakajima M, Hayashi T, Kato T, Saiki I (1998) Inhibition of tumor invasion and metastasis by calcium spirulan (Ca-SP), a novel sulfated polysaccharide derived from a blue-green alga, Spirulina platensis. Clin Exp Metastasis 16:541–550PubMedCrossRefGoogle Scholar
  172. Moezelaar R, Stal LJ (1994) Fermentation in the unicellular cyanobacterium Microcystis PCC7806. Arch Microbiol 162:63–69CrossRefGoogle Scholar
  173. Moezelaar R, Bijvank SM, Stal LJ (1996) Fermentation and sulfur reduction in the mat-building cyanobacterium Microcoleus chtonoplastes. Appl Environ Microbiol 62:1752–1758PubMedGoogle Scholar
  174. Molina Grima E, Camacho FG, Fernandez FGA (1999) Production of EPA from Phaeodactylum tricornutum. In: Cohen Z (ed) Chemicals from microalgae. CRC Press, Taylor and Francis, New York, pp 57–92Google Scholar
  175. Molina Grima E, Belarbi EH, Fernandez FGA, Robles M, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515. doi: 10.1016/S0734-9750(02)00050-2 PubMedCrossRefGoogle Scholar
  176. Molina GE, Fernandez FGA, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92(2):113–131PubMedCrossRefGoogle Scholar
  177. Moore J (2009) Microalgae from biodiesel to bioethanol and beyond www.http://snrecmitigation.wordpress.com/2009/03/23/
  178. Moo-Young M, Blanch HW (1987) Transport phenomena and bioreactor design. In: Bu’Lock J, Kristiansen B (eds) Basic biotechnology. Academic, New York, pp 133–172Google Scholar
  179. Muller-Feuga A, Moal J, Kaas R (2003) The microalgae for aquaculture. In: Stottrup JG, McEvoy LA (eds) Life feeds in marine aquaculture. Blackwell, Oxford, pp 206–252CrossRefGoogle Scholar
  180. Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282:25475–25486. doi: 10.1074/jbc.M701415200 PubMedCrossRefGoogle Scholar
  181. Mussgnug J, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: Impacts on improved solar energy to biomass conversion. Plant Biotech J 5:802–814. doi: 10.1111/j.1467-7652.2007.00285.x CrossRefGoogle Scholar
  182. Nagle N, Lemke P (1989) Microalgal fuel production processes: analysis of lipid extraction and conversion methods, paper presented at the aquatic species program, Solar Energy Research Institute, Golden, CO. May 3–4, 1989Google Scholar
  183. Nagle N, Lemke P (1990) Production of methyl-ester fuel from microalgae. Appl Biochem Biotechnol 24(5):355–361CrossRefGoogle Scholar
  184. Nakamura T, Senior CL, Olaizola M, Bridges T, Flores S, Sombardier L, Masutani SM (2005) Recovery and sequestration of CO2 from stationary combustion systems by photosynthesis of microalgae (Final Report, Contract No. DE­FC26­00NT 40934), US Department of Energy, pp. 220Google Scholar
  185. Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discovery 1:153–161CrossRefGoogle Scholar
  186. Nindo CI, Tang J (2007) Refractance window dehydration technology: a novel contact drying method. Drying Technol 25:37–48CrossRefGoogle Scholar
  187. Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12(3):499–506CrossRefGoogle Scholar
  188. Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20:459–466PubMedCrossRefGoogle Scholar
  189. Olguin EJ (2000) The cleaner production strategy applied to animal production. In: Olguin EJ, Sanchez G, Hernandez E (eds) Environmental biotechnology a cleaner bioprocesses. Taylor and Francis, London, pp 227–243Google Scholar
  190. Omil F, Mendez R, Lema JM (1995) Anaerobic treatment of saline wastewaters under high sulfide and ammonia content. Bioresour Technol 54:269–278CrossRefGoogle Scholar
  191. Opute FL (1974) Lipid and fatty acid composition of diatoms. J Exp Bot 25(87):823–835CrossRefGoogle Scholar
  192. Orjala J, Nagle DG, Hsu VL, Gerwick WH (1995) Antillatoxin: an exceptionally ichthyotoxic cyclic lipopeptide from the tropical cyanobacterium Lyngbya majuscule. J Am Chem Soc 117:8281–8282CrossRefGoogle Scholar
  193. Oswald WJ (1962) The coming industry of controlled photosynthesis. Am J Public Health 52:2CrossRefGoogle Scholar
  194. Oswald WJ (2003) My sixty years in applied algology. J Appl Phycol 15:99–106CrossRefGoogle Scholar
  195. Oswald WJ, Gotaas HB, Ludwig HF, Lynch V (1953) Algae symbiosis in oxidation ponds: photosynthetic oxygenation. Sew Ind Wastes 25(6):692–705Google Scholar
  196. Oswald WJ, Gotaas HB, Golueke CG, Kellen WR (1957) Algae in waste treatment. Sew Ind Wastes 29:437–455Google Scholar
  197. Otero A, Vincenzini M (2003) Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity. J Biotechnol 102:143–152PubMedCrossRefGoogle Scholar
  198. Panda D, DeLuca K, Williams D, Jordan MA, Wilson SL (1998) Antiproliferative mechanism of action of cryptophycin-52: kinetic stabilization of microtubule dynamics by high-affinity binding to microtubule ends. Proc Natl Acad Sci 95:9313–9318PubMedCrossRefGoogle Scholar
  199. Patzek T, Pimentel D (2005) Is ethanol from veggies a waste of fossil energy sources. Nat Resour Res 163(9):84–85Google Scholar
  200. Phang SM, Miah MS, Yeoh BG, Hashim MA (2000) Spirulina cultivation in digested sago starch factory wastewater. J Appl Phycol 12(3):395–400CrossRefGoogle Scholar
  201. Phlips EJ, Mitsui A (1983) Role of light intensity and temperature in the regulation of hydrogen photoproduction by the marine cyanobacterium Oscillatoria sp. Strain Miami BG7. Appl Environ Microbiol 45:1212–1220PubMedGoogle Scholar
  202. Piccardi R, Materassi R, Tredici M (1999) Algae and human affairs in the 21st century (Abstr Int Conf Appl Algol). Universita degli Studi di Firenze, FirenzeGoogle Scholar
  203. Ploutno A, Carmeli S (2005) Banyasin A and banyasides A and B, three novel modified peptides from a water bloom of the cyanobacterium Nostoc sp. Tetrahedron 61:575–583CrossRefGoogle Scholar
  204. Poelman E, De Pauw N, Jeurissen B (1997) Potential of electrolytic flocculation for recovery of micro-algae. Resour Conserv Recycl 19(1):1–10. doi: 10.1016/S0921-3449(96)01156-1 CrossRefGoogle Scholar
  205. Prakash J, Pushparaj B, Carlozzi P, Torzillo G, Montaini E, Materassi R (1997) Microalgal biomass drying by a simple solar device. Int J Sol Energy 18:303–311CrossRefGoogle Scholar
  206. Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57(3):287–293PubMedCrossRefGoogle Scholar
  207. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648. doi: 10.1007/s00253-004-1647-x PubMedCrossRefGoogle Scholar
  208. Rabinowitch EI (1951) Photosynthesis and related processes, vol. II, part I. Interscience, New York, p 966Google Scholar
  209. Radmer RJ (1996) Algal diversity and commercial algal products. Biosci 46:263–270CrossRefGoogle Scholar
  210. Ragauskas AJ, Charlotte KW, Brian HD, George B, John C, Charles AE, William JF, Jason PH, David JL, Charles LL, Jonathan RM, Richard M, Richard T, Timothy T (2006) The path forward for biofuels and biomaterials. Science 311:484–489PubMedCrossRefGoogle Scholar
  211. Ramchandran S, Mitsui A (1984) Recycling of hydrogen photoproduction system using an immobilized marine blue green algae Oscillatoria sp. Miami BG7, solar energy and seawater, VII International Biotechnol Symp, pp. 183–184Google Scholar
  212. Ran CQ, Chen ZA, Zhang W, Yu XJ, Jin MF (2006) Characterization of photobiological hydrogen production by several marine green algae. Wuhan Ligong Daxue Xuebao 28(2):258–263Google Scholar
  213. Ranga RA, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98:560–564CrossRefGoogle Scholar
  214. Ratledge C (1993) Single cell oils—have they a biotechnological future? Trends Biotechnol 11:278–284PubMedCrossRefGoogle Scholar
  215. Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815PubMedCrossRefGoogle Scholar
  216. Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51PubMedCrossRefGoogle Scholar
  217. Remacle C, Cardol P, Coosemans N, Gaisne M, Bonnefoy N (2006) High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes. Proc Natl Acad Sci USA 103:4771–4776PubMedCrossRefGoogle Scholar
  218. Richmond A (1987) The challenge confronting industrial micro-agriculture: high photosynthetic efficiency in large-scale reactors. Hydrobiologia 151:17–121CrossRefGoogle Scholar
  219. Richmond A (1999) Physiological principles and modes of cultivation in mass production of photoautotrophic microalgae. In: Cohen Z (ed) Chemicals from microalgae. Taylor and Francis Group, New York, pp 353–386Google Scholar
  220. Richmond A (2000) Microalgal biotechnology at the turn of the millennium: a personal view. J Appl Phycol 12(3–5):441–451CrossRefGoogle Scholar
  221. Richmond A (2004) Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia 512:33–37CrossRefGoogle Scholar
  222. Riekhof WR, Sears BB, Benning C (2005) Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii: discovery of the betaine lipid synthase BTA1Cr. Eukaryot Cell 4:242–252PubMedCrossRefGoogle Scholar
  223. Rinzema A, van Lier J, Lettinga G (1988) Sodium inhibition of acetoclastic methanogens in granular sludge from a UASB reactor. Enzyme Microb Technol 10:24–32CrossRefGoogle Scholar
  224. Roessler PG (1990) Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J Phycol 26:393–399. doi: 10.1111/j.0022-3646.1990.00393.x CrossRefGoogle Scholar
  225. Roman RB, Alvarez-Pez JM, Acien Fernandez FG, Molina Grima E (2002) Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. J Biotechnol 93:73–85CrossRefGoogle Scholar
  226. Running JA, Severson DK, Schneider KJ (2002) Extracellular production of L- ascorbic acid by Chlorella protothecoides, Prototheca species, and mutants of P. moriformis during aerobic culturing at low pH. J Ind Microbiol Biotech 29:93–98CrossRefGoogle Scholar
  227. S and T (2003) The addition of ethanol from wheat to GHGenius, S and T Consultants, Delta, BC January, 2003.Google Scholar
  228. Samson R, LeDuy A (1986) Detailed study of anaerobic digestion of Spirulina maxima algae biomass. Biotechnol Bioeng 28:1014–1023PubMedCrossRefGoogle Scholar
  229. Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194PubMedCrossRefGoogle Scholar
  230. Sanchez MA, Contreras GA, Garcia CF, Molina GE, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large scale monoculture of microalgae. J Biotechnol 70:249–270CrossRefGoogle Scholar
  231. Sawayama S, Inoue S, Dote Y, Yokoyama SY (1995) CO2 fixation and oil production through microalga. Energy Convers Manag 36:729–731CrossRefGoogle Scholar
  232. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high–efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43. doi: 10.1007/s12155-008-9008-8 CrossRefGoogle Scholar
  233. Schmitz O, Boison G, Hilscher R, Hundeshagen B, Zimmer W, Lottspeich F, Bothe H (1995) Molecular biological analysis of a bidirectional hydrogenase from cyanobacteria. Eur J Biochem 233:266–276PubMedCrossRefGoogle Scholar
  234. Schonfeld M, Rahat M, Neumann J (1973) Photosynthetic reactions in the marine alga Codium vermilara. Plant Physiol 52:283–287PubMedCrossRefGoogle Scholar
  235. Schwartz J, Shklar G (1987) Regression of experimental hamster cancer by beta carotene and algae extracts. J Oral Maxillofac Surg 45:510–515PubMedCrossRefGoogle Scholar
  236. Schwartz JL, Sklar G, Reid S, Trickler D (1988) Prevention of experimental oral cancer by extracts of Spirulina–Dunaliella algae. Nutr Cancer 11:127–134PubMedCrossRefGoogle Scholar
  237. Serebryakova LT, Sheremetieva ME, Lindblad P (2000) H2-uptake and evolution in the unicellular cyanobacterium Chroococcidiopsis thermalis CALU 758. Plant Physiol Biochem 38:525–530CrossRefGoogle Scholar
  238. Servel MO, Claire C, Derrien A, Coiffard L, De Roeck-Holtzhauer Y (1994) Fatty acid composition of some marine microalgae. Phytochemistry 36:691–693CrossRefGoogle Scholar
  239. Sheehan J, Dunahay T, Benemann JR, Roessler P (1998) A look back at the US Department of Energy’s aquatic species program–Biodiesel from algae (Contract No. DE­AC36­83CH10093), The renewable energy laboratory, Golden, CO. Prepared for: Office of Fuels Development, US Department of EnergyGoogle Scholar
  240. Shelef G, Sukenik A, Green M (1984) Microalgae harvesting and processing: a literature review (SERI/STR­231­2396). Technion Research and Development Foundation Ltd., Haifa, pp 1–71CrossRefGoogle Scholar
  241. Shi XM, Jiang Y, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fedbatch culture. Biotechnol Prog 18:723–727PubMedCrossRefGoogle Scholar
  242. Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19:417–423CrossRefGoogle Scholar
  243. Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv. doi: 10.1016/j.biotechadv.2009.03.001 PubMedGoogle Scholar
  244. Singh NK, Dhar DW (2006) Sewage effluent: a potential nutrient source for microalgae. Pro Ind Natn Sci Acad 72:113–120Google Scholar
  245. Singh NK, Dhar DW (2007) Nitrogen and phosphorous scavenging potential in microalgae. Ind J Biotechnol 6:52–56, IPC code: Int. Cl. 8 C02F3/32Google Scholar
  246. Solovchenko AE, Khozin-Goldberg I, Cohen Z, Merzlyak MN (2009) Carotenoid-to-chlorophyll ratio as a proxy for assay of total fatty acids and arachidonic acid content in the green microalga Parietochloris incise. J Appl Phycol 29:361–366CrossRefGoogle Scholar
  247. Speece RE (1996) Anaerobic biotechnology for industrial wastewaters. Archae, NashvilleGoogle Scholar
  248. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96. doi: 10.1263/jbb.101.87 PubMedCrossRefGoogle Scholar
  249. Sukenik A, Carmeli Y (1990) Lipid synthesis and fatty acid composition in Nannochloropsis sp. (Eustigmatophyceae) grown in a light-dark cycle. J Phycol 26:463–469. doi: 10.1111/j.0022-3646.1990.00463.x CrossRefGoogle Scholar
  250. Sukenik A, Carmeli Y, Berner T (1989) Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. J Phycol 25:686–692. doi: 10.1111/j.0022-3646.1989.00686.x CrossRefGoogle Scholar
  251. Sun Y, Yang Z, Gao X, Li Q, Zhang Q, Xu Z (2005) Expression of foreign genes in Dunaliella by electroporation. Mol Biotechnol 30:185–192PubMedCrossRefGoogle Scholar
  252. Survase SA, Bajaj IB, Singhal RS (2006) Biotechnological production of vitamins. Food Technol Biotechnol 44:381–396Google Scholar
  253. Sveshnikov DA, Sveshnikova NV, Rao KK, Hall DO (1997) Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress. FEBS Microbiol Lett 147:297–301CrossRefGoogle Scholar
  254. Takagi M, Karseno YT (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226PubMedCrossRefGoogle Scholar
  255. Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wunschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66:1–20. doi: 10.1128/MMBR.66.1.1-20.2002 PubMedCrossRefGoogle Scholar
  256. Tanaka S, Suda Y, Ikeda K, Ono M, Miyasaka H, Watanabe M, Sasaki K, Hirata K (2007) A novel gene with antisalt and anticadmium stress activities from a halotolerant marine green alga Chlamydomonas sp. W80. FEMS Microbiol Lett 271:48–52PubMedCrossRefGoogle Scholar
  257. Tilton RC, Murphy J, Dixon JK (1972) The flocculation of algae with synthetic polymeric flocculants. Water Res 6:155–164CrossRefGoogle Scholar
  258. Tokuda H, Nishino H, Shirahashi H, Murakami N, Nagatsu A, Sakakibara J (1996) Inhibition of 12-O-tetradecanoylphorbol-13- acetate promoted mouse skin papilloma by digalactosyl diacylglycerols from the freshwater cyanobacterium Phormidium tenue. Cancer Lett 104:91–96PubMedCrossRefGoogle Scholar
  259. Toreillo G, Pushparaj B, Masojidek J, Vonshak A (2003) Biological constraints in algal biotechnology. Biotechnol Bioprocess Eng 8:338–348CrossRefGoogle Scholar
  260. Tredici MR, Zittelli GC (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57(2):187–197PubMedCrossRefGoogle Scholar
  261. Tsygankov AA, Serebryakova LT, Rao KK, Hall DO (1998) Acetylene reduction and hydrogen photoproduction by wild type and mutant strains of Anabaena at different CO2 and O2 concentrations. FEMS Microbiol Lett 167:13–17CrossRefGoogle Scholar
  262. Ugwu CU, Ogbonna JC, Tanaka H (2005) Characterization of light utilization and biomass yields of Chlorella sorokiniana in inclined outdoor tubular photobioreactors equipped with static mixers. Process Biochem 40(11):3406–3411CrossRefGoogle Scholar
  263. Ugwu CU, Aoyagi H, Uchiyama H (2007) Influence of irradiance, dissolved oxygen concentration, and temperature on the growth of Chlorella sorokiniana. Photosynthetica 45(2):309–311CrossRefGoogle Scholar
  264. Vadiraja BB, Gaikwad NW, Madyastha KM (1998) Hepatoprotective effect of C-phycocyanin: protection for carbon tetrachloride and R-(+)-polygene-mediated hepatotoxicity in rats. Biochem Biophys Res Commun 249(2):428–431PubMedCrossRefGoogle Scholar
  265. Valencia I, Ansorena D, Astiasaran I (2007) Development of dry fermented sausages rich in dicosahexanoic acid with oil from the microalgae Schizochytrium sp.: influence on nutritional properties, sensorial quality and oxidation stability. Food Chem 104:1087–1096CrossRefGoogle Scholar
  266. Van der Oost J, Bulthuis BA, Feitz S, Krab K, Kraayenhof R (1989) Fermentation metabolism of the unicellular cyanobacterium Cyanothece PCC 7822. Arch Microbiol 152:415–419CrossRefGoogle Scholar
  267. Van Gerpen J (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107CrossRefGoogle Scholar
  268. Vandenbroucke M, Largeau C (2007) Kerogen origin, evolution and structure. Org Geochem 38:719–833CrossRefGoogle Scholar
  269. Vazquez-Duhalt R, Arredondo-Vega B (1991a) Halo-adaptation of the green alga Botryococcus braunii. Phytochem 30:2919–2925CrossRefGoogle Scholar
  270. Vazquez-Duhalt R, Arredondo-Vega B (1991b) Oil production from microalgae under saline stress, biomass for energy and industry, 5th EC Conference, Vol.1: Policy, Environment, Production and HarvestingGoogle Scholar
  271. VDI (2004) Vergarung organischer Stoffe, In: Verein Deutscher Ingenieure Guidelines 2004, Guideline VDI 4630, Dusseldorf, GermanyGoogle Scholar
  272. Vlad M, Bordas E, Caseanu E, Uza G, Creteanu E, Polinicenco C (1995) Effect of cuprofilin on experimental athero-sclerosis. Biol Trace Elem Res 48(1):99–109PubMedCrossRefGoogle Scholar
  273. Vonshak A, Torzillo G, Masojidek J, Boussiba S (2001) Sub-optimal morning temperature induces photoinhibition in dense outdoor cultures of the alga Monodus subterraneus (Eustigmatophyta). Plant Cell Environ 24(10):1113–1118CrossRefGoogle Scholar
  274. Walker TL, Purton S, Becker DK, Collet C (2005) Microalgae as bioreactors. Plant Cell Rep 24:629–641PubMedCrossRefGoogle Scholar
  275. Wang Z, Pan Y, Dong T, Zhu X, Kan T, Yuan L, Torimoto Y, Sadakata M, Li Q (2007) Production of hydrogen from catalytic steam reforming of bio-oil using C12A7-O-based catalysts. Appl Catal A 320:24–34CrossRefGoogle Scholar
  276. Weissman JC, Goebel RP (1985) Production of liquid fuels and chemicals by microalgae (Report SERI/STR­231­2649, Subcontract No. XK­3­03136, Contract No. DE­AC02­83CH10093), Solar Energy Research Institute, Golden, CO. Prepared for US Department of Energy, pp. 116Google Scholar
  277. Weissman JC, Goebel RP (1987) Design and analysis of microalgal open pond systems for the purpose of producing fuels (Report SERI/STR­231­2840) (Contract No. DE­AC02­83CH10093, subcontract No. XK­3­03153­1). Solar Energy Research Institute, Golden CO. Prepared for US Department of Energy, pp. 214Google Scholar
  278. Weissman JC, Tillett DM (1992) Aquatic Species Project Report; NREL/MP-232-4174, Brown LM, Sprague S (Eds.) National renewable energy laboratory, Golden CO, pp. 41–58.Google Scholar
  279. Wen ZY, Chen F (2000) Production potential of eicosapentaenoic acid by the diatom Nitzschia laevis. Biotechnol Lett 22(9):727–733CrossRefGoogle Scholar
  280. Wen WG, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294PubMedCrossRefGoogle Scholar
  281. Yang H, Lee E, Kim H (1997) Spirulina platensis inhibits anaphylactic reaction. Life Sci 61:1237–1244PubMedCrossRefGoogle Scholar
  282. Yang XW, Wynder C, Doughty ML, Heintz N (1999) BAC-mediated gene-dosage analysis reveals a role for Zipro1 (Ru49/Zfp38) in progenitor cell proliferation in cerebellum and skin. Nat Genet 22:327–335PubMedCrossRefGoogle Scholar
  283. Yang C, Hua Q, Shimizu K (2000) Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem Eng J 6:87–102PubMedCrossRefGoogle Scholar
  284. Yen HW, Brune DE (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98:130–134PubMedCrossRefGoogle Scholar
  285. Yu H, Jia S, Dai Y (2009) Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. J Appl Phycol 21(1):127–133. doi: 10.1007/s10811-008-9341-5 CrossRefGoogle Scholar
  286. Zeiler KG, Heacox DA, Toon S, Kadam K, Brown LM (1995) The use of microalgae for assimilation and utilization of carbon dioxide from fossil fuel-fired power plant flue gas. Energy Convers Manag 36:707–712CrossRefGoogle Scholar
  287. Zhu Y, Lee YY, Elander RT (2007) Conversion of aqueous ammonia-treated corn stover to lactic acid by simultaneous saccharification and cofermentation. Appl Biochem Biotechnol 137–140(1–12):721–738. doi: 10.1007/s12010-007-9092-9 PubMedCrossRefGoogle Scholar
  288. Zittelli CG, Rodolfi L, Biondi N, Tredici MR (2006) Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture 261:932–943CrossRefGoogle Scholar

Copyright information

© INRA and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of MicrobiologyC.P. College of Agriculture, S.D.A.U.S.K. NagarIndia
  2. 2.Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), IARINew DelhiIndia

Personalised recommendations