Advertisement

Apidologie

pp 1–13 | Cite as

What mechanistic factors affect thelytokous parthenogenesis in Apis mellifera caponises queens?

  • Sarah E. AamidorEmail author
  • Michael H. Allsopp
  • Rebecca J. Reid
  • Madeleine Beekman
  • Gabriele Buchmann
  • Theresa Wossler
  • Benjamin P. Oldroyd
Original article
  • 31 Downloads

Abstract

The Cape honey bee (Capensis) is unusual in that workers can produce viable female offspring via thelytokous parthenogenesis. In contrast, mated queens never reproduce thelytokously, even though they could benefit from doing so when generating daughter queens. Nonetheless, virgin Capensis queens induced to lay without mating by CO2 narcosis produce a high proportion of thelytokous eggs, and instrumentally inseminated queens produce triploid offspring as the result of the fusion of two egg pronuclei and a sperm nucleus. We show here that thelytoky/triploidy in Capensis queens is not a consequence of CO2 narcosis per se because narcosis of laying queens does not induce thelytokous or triploid progeny. We also show that in artificially inseminated queens, the frequency of thelytoky/triploidy declines with age and is absent 10 months post-insemination. We confirm that the presence of semen in the spermatheca is not the mechanism that prevents thelytoky/triploidy in mated queens.

Keywords

Apis mellifera Honey bee Triploidy Thelytoky Parthenogenesis Haplodiploidy 

Notes

Acknowledgements

We thank Chris Fransman for beekeeping assistance.

Authors’ contributions

BPO, MB and MHA designed experiments. BPO, MB, MHA and RJR performed field work. SEA, RJR and GB performed genotyping and analysed data. SEA, RJR and BPO wrote the paper. TCW provided logistical support. All authors edited drafts of the paper.

Funding information

This work was supported by Australian Research Council grant DP180101696 to B.P. Oldroyd and A. Zayed.

Supplementary material

13592_2019_719_MOESM1_ESM.xlsx (10 kb)
ESM 1 (XLSX 10 kb)
13592_2019_719_MOESM2_ESM.xlsx (164 kb)
ESM 2 (XLSX 164 kb)
13592_2019_719_MOESM3_ESM.xlsx (32 kb)
ESM 3 (XLSX 31 kb)
13592_2019_719_MOESM4_ESM.xlsx (117 kb)
ESM 4 (XLSX 117 kb)
13592_2019_719_MOESM5_ESM.xlsx (20 kb)
ESM 5 (XLSX 20 kb)

References

  1. Allsopp M (1993) Summarized overview of the Capensis problem. S Afr Bee J 65:127-136Google Scholar
  2. Amor F, Ortega P, Boulay R, Cerdá X (2017) Frequent colony orphaning triggers the production of replacement queens via worker thelytoky in a desert-dwelling ant. Ins Soc 64:373-378CrossRefGoogle Scholar
  3. Anderson R (1963) The laying worker in the Cape honeybee, Apis mellifera capensis. J Apic Res 2:85-92CrossRefGoogle Scholar
  4. Anderson R (1968) The effect of queen loss on colonies of Apis mellifera capensis. S Afr J Agric Sci 11:383-388Google Scholar
  5. Aron S, Darras H, Eyer P-A, Leniaud L, Pearcy M (2013) Structure génétique des sociétés et systèmes d’accouplement chez la fourmi Cataglyphis viatica (Fabricius 1787). Bulletin de l’Institut Scientifique de Rabat 35:103-109Google Scholar
  6. Beekman M, Allsopp M, Wossler T, Oldroyd B (2008) Factors affecting the dynamics of the honeybee (Apis mellifera) hybrid zone of South Africa. Heredity 100:13-18PubMedCrossRefPubMedCentralGoogle Scholar
  7. Beekman M, Allsopp MH, Jordan LA, Lim J, Oldroyd BP (2009) A quantitative study of worker reproduction in queenright colonies of the Cape honey bee, Apis mellifera capensis. Mol Ecol 18:2722-2727PubMedCrossRefPubMedCentralGoogle Scholar
  8. Beye M, Hasselmann M, Fondrk MK, Page RE, Omholt SW (2003) The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell 114:419-429PubMedCrossRefPubMedCentralGoogle Scholar
  9. Cole-Clark MP, Barton DA, Allsopp MH, Beekman M, Gloag RS, Wossler TC, Ronai I, Smith N, Reid RJ, Oldroyd BP (2017) Cytogenetic basis of thelytoky in Apis mellifera capensis. Apidologie 48:623-624CrossRefGoogle Scholar
  10. Crewe R, Allsopp M (1994) Sex and the single queen: recent experiments with capensis and scutellata queens. S Afr Bee J 66:58-62Google Scholar
  11. DeGrandi-Hoffman G, Erickson Jr E, Lusby D, Lusby E (1991) Thelytoky in a strain of US honey bees (Apis mellifera L.). Bee Sci 1:166-171Google Scholar
  12. Doums C, Cronin A, Ruel C, Fédérici P, Haussy C, Tirard C, Monnin T (2013) Facultative use of thelytokous parthenogenesis for queen production in the polyandrous ant Cataglyphis cursor. Journal of evolutionary biology 26:1431-1444PubMedCrossRefPubMedCentralGoogle Scholar
  13. Doums C, Federici P, Chifflet-Belle P, Monnin T (2018) Worker thelytoky allows requeening of orphaned colonies but increases susceptibility to reproductive cheating in an ant. Animal behaviour 135:109-119CrossRefGoogle Scholar
  14. Engels W, Gonçalves LS, Engels E (1976) Effects of carbon dioxide on vitellogenin metabolism in unmated queen honeybees. J Apic Res 15:3-10CrossRefGoogle Scholar
  15. Eyer P-A, Leniaud L, Darras H, Aron S (2013) Hybridogenesis through thelytokous parthenogenesis in two Cataglyphis desert ants. Mol Ecol 22:947-955PubMedCrossRefPubMedCentralGoogle Scholar
  16. Fournier D, Estoup A, Orivel J, Foucaud J (2005) Clonal reproduction by males and females in the little fire ant. Nature 435:1230PubMedCrossRefPubMedCentralGoogle Scholar
  17. Gloag R, Tan K, Wang Y, Song W, Luo W, Buchman G, Beekman M, Oldroyd B (2017) No evidence of queen thelytoky following interspecific crosses of the honey bees Apis cerana and Apis mellifera. Ins Soc 64:241-246CrossRefGoogle Scholar
  18. Gloag RS, Remnant EJ, Oldroyd BP (2019) The frequency of thelytokous parthenogenesis in European-derived Apis mellifera virgin queens. Apidologie In pressGoogle Scholar
  19. Goudie F, Oldroyd BP (2014) Thelytoky in the honey bee. Apidologie 45:306-326CrossRefGoogle Scholar
  20. Goudie F, Oldroyd BP (2018) The distribution of thelytoky, arrhenotoky and androgenesis among castes in the eusocial Hymenoptera. Ins Soc:1-12Google Scholar
  21. Grasso DA, Wenseleers T, Mori A, Le Moli F, Billen J (2000) Thelytokous worker reproduction and lack of Wolbachia infection in the harvesting ant Messor capitatus. Ethology Ecology & Evolution 12:309-314CrossRefGoogle Scholar
  22. Greeff JM (1996) Effects of thelytokous worker reproduction on kin-selection and conflict in the Cape honeybee, Apis mellifera capensis. Phil Trans R Soc B 351:617-625CrossRefGoogle Scholar
  23. Harbo JR (1986) Propagation and instrumental insemination. In: Rinderer TE (ed) Bee Genetics and Breeding. Academic Press, Orlando, pp 361-389CrossRefGoogle Scholar
  24. Harris JW, Harbo JR (1990) Suppression of ovary development of worker honeybees by association with workers treated with carbon dioxide. J Apic Res 29:187-193CrossRefGoogle Scholar
  25. Harris JW, Woodring J, Harbo JR (1996) Effects of carbon dioxide on levels of biogenic amines in the brains of queenless worker and virgin queen honey bees (Apis mellifera). J Apic Res 35:69-78CrossRefGoogle Scholar
  26. Hepburn H, Crewe R (1991) Portrait of the Cape honeybee, Apis mellifera capensis. Apidologie 22:567-580CrossRefGoogle Scholar
  27. Hepburn H, Jones G, Kirby R (1994) Introgression between Apis mellifera capensis Escholtz and Apis mellifera scutellata Lepeletier: the sting pheromones. Apidologie 25:557-565CrossRefGoogle Scholar
  28. Hepburn H, Radloff S, Fuchs S (1998) Population structure and the interface between Apis mellifera capensis and Apis mellifera scutellata. Apidologie 29:333-346CrossRefGoogle Scholar
  29. Hepburn HR (2001) The enigmatic Cape honey bee, Apis mellifera capensis. Bee World 82:181-191CrossRefGoogle Scholar
  30. Holmes MJ, Oldroyd BP, Allsopp MH, Lim J, Wossler TC, Beekman M (2010) Maternity of emergency queens in the Cape honey bee, Apis mellifera capensis. Mol Ecol 19:2792-2799PubMedCrossRefGoogle Scholar
  31. Holmes MJ, Tan K, Wang Z, Oldroyd BP, Beekman M (2015) Genetic reincarnation of workers as queens in the Eastern honeybee Apis cerana. Heredity 114:65PubMedCrossRefPubMedCentralGoogle Scholar
  32. Jordan LA, Allsopp MH, Oldroyd BP, Wossler TC, Beekman M (2007) Cheating honeybee workers produce royal offspring. Proceedings of the Royal Society B: Biological Sciences 275:345-351CrossRefGoogle Scholar
  33. Jordan LA, Allsopp MH, Oldroyd BP, Wossler TC, Beekman M (2008) Cheating honeybee workers produce royal offspring. Proc R Soc Lond [Biol] 275:345-351CrossRefGoogle Scholar
  34. Kaftanoglu O, Peng Y-S (1982) Effects of insemination on the initiation of oviposition in the queen honeybee. J Apic Res 21:3-6CrossRefGoogle Scholar
  35. Kobayashi K, Hasegawa E, Ohkawara K (2008) Clonal reproduction by males of the ant Vollenhovia emeryi (Wheeler). Ent Sci 11:167-172CrossRefGoogle Scholar
  36. Koeniger G (1981) In welchem Abschnitt des Paarungsverhaltens der Bienenkönigin findet die Induktion der Eiablage statt? Apidologie 12:329-343CrossRefGoogle Scholar
  37. Koywiwattrakul P, Thompson GJ, Sitthipraneed S, Oldroyd BP, Maleszka R (2005) Effects of carbon dioxide narcosis on ovary activation and gene expression in worker honeybees, Apis mellifera. J Insect Sci 5:36PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kronauer DJ, Pierce NE, Keller L (2012) Asexual reproduction in introduced and native populations of the ant Cerapachys biroi. Mol Ecol 21:5221-5235PubMedCrossRefGoogle Scholar
  39. Lacy KD, Shoemaker D, Ross KG (2019) Joint Evolution of Asexuality and Queen Number in an Ant. Current Biology 29:1394-1400. e4PubMedCrossRefGoogle Scholar
  40. Laidlaw HH, Page RE (1997) Queen rearing and bee breedingGoogle Scholar
  41. Leniaud L, Darras H, Boulay R, Aron S (2012) Social hybridogenesis in the clonal ant Cataglyphis hispanica. Current Biology 22:1188-1193PubMedCrossRefPubMedCentralGoogle Scholar
  42. Leniaud L, Heftez A, Grumiau L, Aron S (2011) Multiple mating and supercoloniality in Cataglyphis desert ants. Biological Journal of the Linnean Society 104:866-876CrossRefGoogle Scholar
  43. Mackensen O (1943) The occurrence of parthenogenetic females in some strains of honeybees. J Econ Ent 36:465-467CrossRefGoogle Scholar
  44. Mackensen O (1947) Effect of carbon dioxide on initial oviposition of artificially inseminated and virgin queen bees. J Econ Ent 40:344-349CrossRefGoogle Scholar
  45. Moritz R, Beye M, Hepburn H (1998) Estimating the contribution of laying workers to population fitness in African honeybees (Apis mellifera) with molecular markers. Ins Soc 45:277-287CrossRefGoogle Scholar
  46. Moritz RF, Kryger P, Allsopp MH (1996) Competition for royalty in bees. Nature 384:31CrossRefGoogle Scholar
  47. Moritz RF, Lattorff HMG, Crous KL, Hepburn RH (2011) Social parasitism of queens and workers in the Cape honeybee (Apis mellifera capensis). Behav Ecol Sociobiol 65:735-740CrossRefGoogle Scholar
  48. Neumann P, Radloff SE, Moritz RF, Hepburn HR, Reece SL (2001) Social parasitism by honeybee workers (Apis mellifera capensis Escholtz): host finding and resistance of hybrid host colonies. Behav Ecol 12:419-428CrossRefGoogle Scholar
  49. Nicolas G, Sillans D (1989) Immediate and latent effects of carbon dioxide on insects. Annu Rev Entomol 34:97-116CrossRefGoogle Scholar
  50. Okita I, Tsuchida K (2016) Clonal reproduction with androgenesis and somatic recombination: the case of the ant Cardiocondyla kagutsuchi. Sci Nat 103:22CrossRefGoogle Scholar
  51. Oldroyd BP, Aamidor SE, Buchmann G, Allsopp MH, Remnant EJ, Kao FF, Reid RJ, Beekman M (2018) Viable Triploid Honey Bees (Apis mellifera capensis) Are Reliably Produced in the Progeny of CO2 Narcotised Queens. G3-Genes, Genom, Genet 8:3357-3366Google Scholar
  52. Oldroyd BP, Allsopp MH, Gloag RS, Lim J, Jordan LA, Beekman M (2008) Thelytokous parthenogenesis in unmated queen honeybees (Apis mellifera capensis): central fusion and high recombination rates. Genetics 180:359-366PubMedPubMedCentralCrossRefGoogle Scholar
  53. Oldroyd BP, Fewell JH (2007) Genetic diversity promotes homeostasis in insect colonies. Trends Ecol Evol 22:408-413PubMedCrossRefPubMedCentralGoogle Scholar
  54. Pearcy M, Aron S, Doums C, Keller L (2004) Conditional use of sex and parthenogenesis for worker and queen production in ants. Science 306:1780-1783PubMedCrossRefPubMedCentralGoogle Scholar
  55. Pearcy M, Hardy O, Aron S (2006) Thelytokous parthenogenesis and its consequences on inbreeding in an ant. Heredity 96:377PubMedCrossRefPubMedCentralGoogle Scholar
  56. Pirk C, Neumann P, Ratnieks F (2003) Cape honeybees, Apis mellifera capensis, police worker-laid eggs despite the absence of relatedness benefits. Behav Ecol 14:347-352CrossRefGoogle Scholar
  57. Rabeling C, Kronauer DJ (2013) Thelytokous parthenogenesis in eusocial Hymenoptera. Annu Rev Entomol 58:273-292PubMedCrossRefPubMedCentralGoogle Scholar
  58. Shaibi T, Lattorff H, Moritz R (2008) A microsatellite DNA toolkit for studying population structure in Apis mellifera. Mol Ecol Res 8:1034-1036CrossRefGoogle Scholar
  59. Solignac M, Vautrin D, Loiseau A, Mougel F, Baudry E, Estoup A, Garnery L, Haberl M, Cornuet JM (2003) Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera L.) genome. Mol Ecol Notes 3:307-311CrossRefGoogle Scholar
  60. Timmermans I, Hefetz A, Fournier D, Aron S (2008) Population genetic structure, worker reproduction and thelytokous parthenogenesis in the desert ant Cataglyphis sabulosa. Heredity 101:490PubMedCrossRefPubMedCentralGoogle Scholar
  61. Tucker KW (1958) Automictic parthenogenesis in the honey bee. Genetics 43:299PubMedPubMedCentralGoogle Scholar
  62. Verma S, Ruttner F (1983) Cytological analysis of the thelytokous parthenogenesis in the Cape honeybee (Apis mellifera capensis Escholtz). Apidologie 14:41-57CrossRefGoogle Scholar
  63. Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506-513PubMedPubMedCentralGoogle Scholar
  64. Woyke J, Fliszkiewicz C, Jasiñski Z (2001) Prevention of natural mating of instrumentally inseminated queen honeybees by proper method of instrumental insemination. J Apic Sci 45:101-114Google Scholar
  65. Zar JH (1996) Biostatistical Analysis. Prentice-Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Behaviour and Genetics of Social Insects Laboratory, Ecology and EvolutionUniversity of SydneySydneyAustralia
  2. 2.Honeybee Research SectionARC Plant Protection Research InstituteStellenboschSouth Africa
  3. 3.Department of Botany and ZoologyStellenbosch UniversityMatielandSouth Africa

Personalised recommendations