pp 1–13 | Cite as

Antibiotic treatment impairs protein digestion in the honeybee, Apis mellifera

  • Esther E. du RandEmail author
  • Christian Stutzer
  • Hannelie Human
  • Christian W. W. Pirk
  • Susan W. Nicolson
Original article


Nutritional stress due to habitat transformation and loss is one of several factors contributing to current declines in global bee populations. Bees obtain protein from pollen, which in honeybees is consumed and digested by nurse bees. They then distribute the protein to the rest of the colony in the form of hypopharyngeal gland secretions. Little is known of how efficiently honeybees digest protein. Moreover, antibiotics are used by beekeepers as in-hive treatments for diseases and may interfere with microbial contributions to protein digestion. Caged, newly emerged workers of Apis mellifera scutellata were fed caseinate as protein source, to investigate the effects of protein intake and antibiotic treatment on digestive efficiency. These workers were fed protein:carbohydrate ratios of 1:120, 1:50 and 1:15 or pure sucrose for 9 days. Half the cages received dietary oxytetracycline at a concentration used by beekeepers. Antibiotic exposure did not affect survival or protein consumption. Protein digestive efficiency increased with increasing levels of protein in the diet, although a decrease would have contributed to maintaining nutrient balance. Importantly, we show that antibiotic exposure impaired protein digestive efficiency, especially on low-protein diets. This may be particularly important when colonies are restricted to a single protein deficient source of pollen.


Bee nutrition Protein digestion Digestive efficiency Antibiotic Oxytetracycline 



We thank G. Wright and Z. Apostolides for useful discussions.

Authors’ contributions

S.W.N conceived the study. All authors designed the study. E.E.dR, C.S. and H.H. performed the experiments. E.E.dR performed data analysis and wrote the first draft of the manuscript. C.W.W.P. and S.W.N. contributed to revisions and secured funding. All authors gave final approval for publication.

Funding information

This work was supported by the University of Pretoria, including a postdoctoral scholarship to E.E.dR, and by the National Research Foundation of South Africa to S.W.N. and C.W.W.P.

Un traitement antibiotique entrave la digestion des protéines chez Apis mellifera.

nutrition des abeilles / digestion des protéines / antibiotique / oxytétracycline.

Eine Antibiotikabehandlung beeinträchtigt die Eiweißverdauung bei der Honigbiene Apis mellifera .

Bienenernährung / Eiweißverdauung / Antibiotika / Oxytetracycline.

Supplementary material

13592_2019_718_MOESM1_ESM.pdf (683 kb)
ESM 1 (PDF 683 kb)


  1. Alaux, C., Ducloz, F., Crauser, D., and Le Conte, Y. (2010). Diet effects on honeybee immunocompetence. Biol. Lett.6 (4), 562–565.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Altaye, S.Z., Pirk, C.W.W., Crewe, R.M., and Nicolson, S.W. (2010). Convergence of carbohydrate-biased intake targets in caged worker honeybees fed different protein sources. J. Exp. Biol.213 (19), 3311–3318.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Amdam, G.V. and Omholt, S.W. (2002). The regulatory anatomy of honeybee lifespan. J. Theor. Biol.216 (2), 209–228.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Archer, C.R., Pirk, C.W.W., Wright, G.A., and Nicolson, S.W. (2014a). Nutrition affects survival in African honeybees exposed to interacting stressors. Funct. Ecol.28 (4), 913–923.CrossRefGoogle Scholar
  5. Archer, C.R., Köhler, A., Pirk, C.W.W., Oosthuizen, V., Apostolides, Z., and Nicolson, S.W. (2014b). Antioxidant supplementation can reduce the survival costs of excess amino acid intake in honeybees. J. Insect Physiol.71, 78–86.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Avni, D., Hendriksma, H.P., Dag, A., Uni, Z., and Shafir, S. (2014). Nutritional aspects of honey bee-collected pollen and constraints on colony development in the eastern Mediterranean. J. Insect Physiol.69, 65–73.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Behmer, S.T. (2009). Insect herbivore nutrient regulation. Annu. Rev. Entomol.54, 165–187.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Brodschneider, R. and Crailsheim, K. (2010). Nutrition and health in honey bees. Apidologie41 (3), 278–294.CrossRefGoogle Scholar
  9. Cabbri, R., Ferlizza, E., Nanetti, A., Monari, E., Andreani, G., Galuppi, R., and Isani, G. (2018). Biomarkers of nutritional status in honeybee haemolymph: effects of different biotechnical approaches for Varroa destructor treatment and wintering phase. Apidologie49 (5), 606–618.CrossRefGoogle Scholar
  10. Chopra, I. and Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev.65 (2), 232–260.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Clissold, F.J., Tedder, B.J., Conigrave, A.D., and Simpson, S.J. (2010). The gastrointestinal tract as a nutrient-balancing organ. Proc. R. Soc. B Biol. Sci.277 (1688), 1751–1759.CrossRefGoogle Scholar
  12. Clissold, F.J., Brown, Z.P., and Simpson, S.J. (2013). Protein-induced mass increase of the gastrointestinal tract of locusts improves net nutrient uptake via larger meals rather than more efficient nutrient absorption. J. Exp. Biol.216 (2), 329–337.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Crailsheim, K. (1988). Regulation of food passage in the intestine of the honeybee (Apis mellifera L.). J. Insect Physiol.34 (2), 85–90.CrossRefGoogle Scholar
  14. Crailsheim, K. and Stolberg, E. (1989).Influence of diet, age and colony condition upon intestinal proteolytic activity and size of the hypopharyngeal glands in the honeybee (Apis mellifera L.). J Insect Physiol.35 (8), 595–602.CrossRefGoogle Scholar
  15. Crailsheim, K., Schneider, L.H.W., Hrassnigg, N., Bühlmann, G., Brosch, U., Gmeinbauer, R., and Schöffmann, B. (1992). Pollen consumption and utilization in worker honeybees (Apis mellifera carnica): dependence on individual age and function. J. Insect Physiol.38 (6), 409–419.CrossRefGoogle Scholar
  16. Danty, E., Arnold, G., Burmester, T., Huet, J.-C., Huet, D., Pernollet, J.-C., and Masson, C. (1998). Identification and developmental profiles of hexamerins in antenna and hemolymph of the honeybee, Apis mellifera. Insect Biochem. Mol. Biol.28 (5–6), 387–397.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Davila, A., Blachier, F., Gotteland, M., Andriamihaja, M., Benetti, P.-H., Sanz, Y., and Tomé, D. (2013). Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol. Res.68 (1), 95–107.PubMedCrossRefPubMedCentralGoogle Scholar
  18. DeGrandi-Hoffman, G., Chen, Y., Rivera, R., Carroll, M., Chambers, M., Hidalgo, G., and de Jong, E.W. (2016). Honey bee colonies provided with natural forage have lower pathogen loads and higher overwinter survival than those fed protein supplements. Apidologie47 (2), 186–196.CrossRefGoogle Scholar
  19. Démares, F.J., Crous, K.L., Pirk, C.W.W., Nicolson, S.W., and Human, H. (2016). Sucrose sensitivity of honey bees is differently affected by dietary protein and a neonicotinoid pesticide. PLOS ONE11 (6), e0156584.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Di Pasquale, G., Alaux, C., Le Conte, Y., Odoux, J.-F., Pioz, M., Vaissiere, B.E., Belzunces, L.P., and Decourtye, A. (2016). Variations in the availability of pollen resources affect honey bee health. PLoS ONE11 (9), e0162818.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Douglas, A.E. (2009). The microbial dimension in insect nutritional ecology. Funct. Ecol.23 (1), 38–47.CrossRefGoogle Scholar
  22. Genersch, E. (2010). American Foulbrood in honeybees and its causative agent, Paenibacillus larvae. J. Invertebr. Pathol.103, S10–S19.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Goulson, D., Nicholls, E., Botias, C., and Rotheray, E.L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science347 (6229), 1255957–1255957.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Human, H., Nicolson, S.W., Strauss, K., Pirk, C.W.W., and Dietemann, V. (2007). Influence of pollen quality on ovarian development in honeybee workers (Apis mellifera scutellata). J. Insect Physiol.53 (7), 649–655.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Kakumanu, M.L., Reeves, A.M., Anderson, T.D., Rodrigues, R.R., and Williams, M.A. (2016). Honey bee gut microbiome is altered by in-hive pesticide exposures. Front. Microbiol.7, 1255.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Karasov, W.H. and Douglas, A.E. (2013). Comparative digestive physiology. Compr. Physiol.3 (2), 741–783.PubMedPubMedCentralGoogle Scholar
  27. Karasov, W.H., Martínez del Rio, C., and Caviedes-Vidal, E. (2011). Ecological physiology of diet and digestive systems. Annu. Rev. Physiol.73 (1), 69–93.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Kešnerová, L., Mars, R.A.T., Ellegaard, K.M., Troilo, M., Sauer, U., and Engel, P. (2017). Disentangling metabolic functions of bacteria in the honey bee gut. PLOS Biol.15 (12), e2003467.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Koch, H. and Schmid-Hempel, P. (2011). Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl. Acad. Sci.108 (48), 19288–19292.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Köhler, A., Pirk, C.W.W., and Nicolson, S.W. (2012). Honeybees and nectar nicotine: deterrence and reduced survival versus potential health benefits. J. Insect Physiol.58 (2), 286–292.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Kovac, H., Stabentheiner, A., Hetz, S.K., Petz, M., and Crailsheim, K. (2007). Respiration of resting honeybees. J. Insect Physiol.53 (12), 1250–1261.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kwong, W.K. and Moran, N.A. (2016). Gut microbial communities of social bees. Nat. Rev. Microbiol.14 (6), 374–384.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Lass, A. and Crailsheim, K. (1996). Influence of age and caging upon protein metabolism, hypopharyngeal glands and trophallactic behavior in the honey bee (Apis mellifera L.). Insectes Sociaux43 (4), 347–358.CrossRefGoogle Scholar
  34. Lee, F.J., Rusch, D.B., Stewart, F.J., Mattila, H.R., and Newton, I.L.G. (2015). Saccharide breakdown and fermentation by the honey bee gut microbiome: fermentation by honey bee gut microbes. Environ. Microbiol.17 (3), 796–815.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Lee, F.J., Miller, K.I., McKinlay, J.B., and Newton, I.L.G. (2018). Differential carbohydrate utilization and organic acid production by honey bee symbionts. FEMS Microbiol. Ecol.94 (8), 1–10.Google Scholar
  36. Li, J., Heerman, M.C., Evans, J.D., Rose, R., Li, W., Rodríguez-García, C., DeGrandi-Hoffman, G., Zhao, Y., Huang, S., Li, Z., Hamilton, M., and Chen, Y. (2019). Pollen reverses decreased lifespan, altered nutritional metabolism and suppressed immunity in honey bees (Apis mellifera) treated with antibiotics. J. Exp. Biol.222 (7), jeb202077.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Martins, J.R., Morais Franco Nunes, F., Luz Paulino Simões, Z., and Maria Gentile Bitondi, M. (2008). A honeybee storage protein gene, hex 70a, expressed in developing gonads and nutritionally regulated in adult fat body. J. Insect Physiol.54 (5), 867–877.PubMedCrossRefPubMedCentralGoogle Scholar
  38. McNally, J.B., McCaughey, W.F., Standifer, L.N., and Todd, F.E. (1965). Partition of excreted nitrogen from honey bees fed various proteins. J. Nutr.85 (1), 113–116.PubMedCrossRefGoogle Scholar
  39. Moran, N.A., Hansen, A.K., Powell, J.E., and Sabree, Z.L. (2012). Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS ONE7 (4), e36393.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Nicolson, S.W. and Human, H. (2013). Chemical composition of the ‘low quality’ pollen of sunflower (Helianthus annuus, Asteraceae). Apidologie44 (2), 144–152.CrossRefGoogle Scholar
  41. Nicolson, S.W., Da Silva Das Neves, S., Human, H., and Pirk, C.W.W. (2018). Digestibility and nutritional value of fresh and stored pollen for honey bees (Apis mellifera scutellata). J. Insect Physiol.107, 302–308.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Paoli, P.P., Donley, D., Stabler, D., Saseendranath, A., Nicolson, S.W., Simpson, S.J., and Wright, G.A. (2014). Nutritional balance of essential amino acids and carbohydrates of the adult worker honeybee depends on age. Amino Acids46 (6), 1449–1458.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Pirk, C.W.W., Boodhoo, C., Human, H., and Nicolson, S.W. (2010). The importance of protein type and protein to carbohydrate ratio for survival and ovarian activation of caged honeybees (Apis mellifera scutellata). Apidologie41 (1), 62–72.CrossRefGoogle Scholar
  44. Powell, J.E., Martinson, V.G., Urban-Mead, K., and Moran, N.A. (2014) Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl. Environ. Microbiol.80 (23), 7378-7387.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Raymann, K., Shaffer, Z., and Moran, N.A. (2017). Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol.15 (3), e2001861.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Schmehl, D.R., Teal, P.E.A., Frazier, J.L., and Grozinger, C.M. (2014). Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera). J. Insect Physiol.71, 177–190.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Schmidt, J.O. and Buchmann, S.L. (1985). Pollen digestion and nitrogen utilization by Apis mellifera L. (Hymenoptera: Apidae). Comp. Biochem. Physiol. A Physiol.82 (3), 499–503.CrossRefGoogle Scholar
  48. Scofield, H.N. and Mattila, H.R. (2015). Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults. Plos One10 (4), e0121731.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Telang, A., Buck, N.A., Chapman, R.F., and Wheeler, D.E. (2003). Sexual differences in postingestive processing of dietary protein and carbohydrate in caterpillars of two species. Physiol. Biochem. Zool.76 (2), 247–255.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Tian, B., Fadhil, N.H., Powell, J.E., Kwong, W.K., and Moran, N.A. (2012). Long-term exposure to antibiotics has caused accumulation of resistance determinants in the gut microbiota of honeybees. mBio3 (6), e00377-12.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Vanbergen, A.J. and the Insect Pollinators Initiative (2013). Threats to an ecosystem service: pressures on pollinators. Front. Ecol. Environ.11 (5), 251–259.CrossRefGoogle Scholar
  52. Wang, Y., Ma, L., Hang, X., Yang, W., Liu, F., and Xu, B. (2014). Digestion of protein of two pollen types in China by the honeybee (Apis mellifera L.). Apidologie45 (5), 590–600.CrossRefGoogle Scholar
  53. Wright, G.A., Nicolson, S.W., and Shafir, S. (2018). Nutritional physiology and ecology of honey bees. Annu. Rev. Entomol.63, 327–344.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Yang, Y. and Joern, A. (1994). Gut size changes in relation to variable food quality and body size in grasshoppers. Funct. Ecol.8 (1), 36-45.CrossRefGoogle Scholar
  55. Zanotto, F.P., Simpson, S.J., and Raubenheimer, D. (1993). The regulation of growth by locusts through post-ingestive compensation for variation in the levels of dietary protein and carbohydrate. Physiol. Entomol.18, 425–434.CrossRefGoogle Scholar
  56. Zheng, H., Nishida, A., Kwong, W.K., Koch, H., Engel, P., Steele, M.I., and Moran, N.A. (2016). Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. mBio7 (6), e01326-16.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Zheng, H., Powell, J.E., Steele, M.I, Dietrich, C., Nishida, A., and Moran, N.A. (2017). Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signalling. PNAS114 (18), 4775-4780.CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Zoology and EntomologyUniversity of PretoriaHatfieldSouth Africa
  2. 2.Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaHatfieldSouth Africa

Personalised recommendations