pp 1–14 | Cite as

High resistance to Sacbrood virus disease in Apis cerana (Hymenoptera: Apidae) colonies selected for superior brood viability and hygienic behavior

  • Nguyen Ngoc Vung
  • Yong Soo Choi
  • Iksoo KimEmail author
Original article


Sacbrood virus (SBV) caused significant colony collapse in Korean Apis cerana. Therefore, breeding of resistant bees to counter this viral disease is urgently needed. Considering that hygienic behavior in honey bees confers colony-level resistance against brood diseases, we utilized this trait for selecting A. cerana colonies. In addition, the brood survival rate was evaluated after colonies were SBV-inoculated. Over four selective generations, dead brood removal and brood survivorship in selected colonies were higher than those in the controls, which were not selectively bred for those traits (P < 0.01, 99.3 vs. 89.9% for removal of pin-killed pupae; P < 0.01, 99.0 vs. 63.9% for removal of SBV-killed larvae; and P < 0.01, 70.0 vs. 9.2% for brood survivorship). Following SBV inoculation, selected colonies showed an increase in the number of surviving pupae and adults, whereas control colonies collapsed mostly. Our results confirm the feasibility of selecting SBV-resistant A. cerana.


Apis cerana bee breeding Sacbrood virus instrumental insemination brood disease 


Authors contribution

NNV and YSC conceived the study, performed experiments, and analyzed data; NNV wrote the draft and participated in revisions; YSC was involved in writing an early version of the paper; IK schemed and organized the data and revised and finalized the paper. All the authors read and approved the final version of the manuscript.

Funding information

This study was supported by a research project (grant number PJ014180022019) from the National Institute of Agricultural Sciences, Rural Development Administration, Republic of Korea.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13592_2019_708_MOESM1_ESM.docx (23 kb)
Online Resource 1 (DOCX 22 kb)
13592_2019_708_MOESM2_ESM.docx (1.2 mb)
Online Resource 2 (DOCX 1215 kb)
13592_2019_708_MOESM3_ESM.docx (952 kb)
Online Resource 3 (DOCX 951 kb)
13592_2019_708_MOESM4_ESM.docx (1.4 mb)
Online Resource 4 (DOCX 1432 kb)


  1. Bailey, L., Gibbs, A.J., Woods, R.D. (1964) Sacbrood virus of the larval honey bee (Apis mellifera Linnaeus). Virology 23, 425–429.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Baker, A.C., Schroeder, D.C. (2008) The use of RNA-dependent RNA polymerase for the taxonomic assignment of Picorna-like viruses (order Picornavirales) infecting Apis mellifera L. populations. Virol. J. 5, 10.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Brutscher, L.M., Daughenbaugh, K.F., Flenniken, M.L. (2015) Antiviral defense mechanisms in honey bees. Curr. Opin. Insect Sci. 10, 71–82.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Chapman, N.C., Lim, J., Oldroyd, B.P. (2008) Population genetics of commercial and feral honey bees in Western Australia. J. Econ. Entomol. 101, 272–277.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Chen, Y.P., Siede, R. (2007) Honey bee viruses, Adv. Virus Res., Elsevier Academic Press Inc., San Diego, pp. 33–80.Google Scholar
  6. Choe, S.E., Nguyen, L.T.K., Noh, J.H., Koh, H.B., Jean, Y.H., Kweon, C.H., Kang, S.W. (2012) Prevalence and distribution of six bee viruses in Korean Apis cerana populations. J. Invertebr. Pathol. 109, 330–333.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Choi, Y.S., Lee, M.Y., Hong, I.P., Kim, N.S., Kim, H.K., Lee, K.G., Lee, M.L. (2010) Occurrence of Sacbrood virus in Korean apiaries from Apis cerana (Hymenoptera: Apidae). Korean J. Apic. 25, 187–191.Google Scholar
  8. Cobey, S.W., Tarpy, D.R., Woyke, J. (2013) Standard methods for instrumental insemination of Apis mellifera queens. J. Apic. Res. 52, 1-18.CrossRefGoogle Scholar
  9. Corlett, R.T. (2004) Flower visitors and pollination in the Oriental (Indomalayan) region. Biol. Rev. Camb. Philos. Soc. 79, 497–532.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Cremer, S., Sixt, M. (2009) Analogies in the evolution of individual and social immunity. Philos. Trans. R. Soc. B 364, 129-142.CrossRefGoogle Scholar
  11. Cremer, S., Pull, C.D., Fürst, M.A. (2018) Social immunity: Emergence and evolution of colony-level disease protection. Annu. Rev. Entomol. 63, 105–123.PubMedCrossRefPubMedCentralGoogle Scholar
  12. DeFelice, D., Ross, C., Simone-Finstrom, M., Warrit, N., Smith, D.R., Burgett, M., Sukumalanand, P., Rueppell, O. (2015) Geographic variation in polyandry of the Eastern Honey Bee, Apis cerana, in Thailand. Insect. Soc. 62, 37–42.CrossRefGoogle Scholar
  13. Evans, J.D., Spivak, M. (2010) Socialized medicine: individual and communal disease barriers in honey bees. J. Invertebr. Pathol. 103, 62–72.CrossRefGoogle Scholar
  14. Evans, J.D., Aronstein, K., Chen, Y.P., Hetru, C., Imler, J.L., Jiang, H., Hultmark, D. (2006) Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 15, 645–656.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Gilliam, M., Tarber, S., Richardson, G.V. (1983) Hygienic behavior of honey bees in relation to Chalkbrood disease. Apidologie 14, 29–39.CrossRefGoogle Scholar
  16. Gong, H.R., Chen, X.X., Chen, Y.P., Hu, F.L., Zhang, J.L., Lin, Z.G., Yu, J.W., Zheng, H.Q. (2016) Evidence of Apis cerana Sacbrood virus infection in Apis mellifera. Appl. Environ. Microbiol. 82, 2256–2262.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Gramacho, K.P., Spivak, M. (2003) Differences in olfactory sensitivity and behavioral responses among honey bees bred for hygienic behavior. Behav. Ecol. Sociobiol. 54, 472–479.CrossRefGoogle Scholar
  18. Honey Bee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443, 931–949.CrossRefGoogle Scholar
  19. Kulinčević, J.M., Rothenbuhler, W.C. (1975) Selection for resistance and susceptibility to hairless-black syndrome in the honeybee. J. Invertebr. Pathol. 25, 289–295.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Lapidge, K.L., Oldroyd, B.P., Spivak, M. (2002) Seven suggestive quantitative trait loci influence hygienic behavior of honey bees. Naturwissenschaften 89, 565–568.PubMedPubMedCentralGoogle Scholar
  21. Lin, Z., Page, P., Li, L., Qin, Y., Zhang, Y., Hu, F., Neumann, P., Zheng, H., Dietemann, V. (2016) Go east for better honey bee health: Apis cerana is faster at hygienic behavior than A. mellifera. PLoS One 11, e0162647.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Masterman, R., Ross, R., Mesce, K., Spivak, M. (2001) Olfactory and behavioral response thresholds to odors of diseased brood differ between hygienic and non-hygienic honey bees (Apis mellifera L.). J. Comp. Physiol. A. 187, 441–452.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Mattila, H.R., Seeley, T.D. (2007) Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317, 362–364.CrossRefGoogle Scholar
  24. McMenamin, A.J., Daughenbaugh, K.F., Parekh, F., Pizzorno, M.C., Flenniken, M.L. (2018) Honey bee and bumble bee antiviral defense. Viruses 10, 395.PubMedCentralCrossRefGoogle Scholar
  25. Milne Jr, C.P. (1985) Estimates of the heritabilities of and genetic correlation between two components of honey bee (Hymenoptera: Apidae) hygienic behavior: uncapping and removing. Ann. Entomol. Soc. Am. 78, 841–844.CrossRefGoogle Scholar
  26. Moritz, R.F.A. (1984) Selection in small populations of the honeybee (Apis mellifera L.). J. Anim. Breed. Genet. 101, 394–400.Google Scholar
  27. Newton, D.C., Ostasiewski, N.J. (1986) A simplified bioassay for behavioral resistance to American foulbrood in honey bees (Apis mellifera L). Am. Bee J. 126, 278–281.Google Scholar
  28. Oldroyd, B.P., Clifton, M.J., Parker, K., Wongsiri, S., Rinderer, T.E., Crozier, R.H. (1998) Evolution of mating behavior in the genus Apis and an estimate of mating frequency in Apis cerana (Hymenoptera: Apidae). Ann. Entomol. Soc. Am. 91, 700–709.CrossRefGoogle Scholar
  29. Palacio, M.A., Figini, E.E., Ruffinengo, S.R., Rodriguez, E.M., del Hoyo, M.L., Bedascarrasbure, E.L. (2000) Changes in a population of Apis mellifera L. selected for hygienic behaviour and its relation to brood disease tolerance. Apidologie 31, 471–478.CrossRefGoogle Scholar
  30. Palacio, M.A., Rodriguez, E., Goncalves, L., Bedascarrasbure, E., Spivak, M. (2010) Hygienic behaviors of honey bees in response to brood experimentally pin-killed or infected with Ascosphaera apis. Apidologie 41, 602–612.CrossRefGoogle Scholar
  31. Rath, W. (1999) Co-adaptation of Apis cerana Fabr. and Varroa jacobsoni Oud. Apidologie 30, 97–110.CrossRefGoogle Scholar
  32. Rosenkranz, P., Tewarson, N.C., Singh, A., Engels, W. (1993) Differential hygienic behaviour towards Varroa jacobsoni in capped worker brood of Apis cerana depends on alien scent adhering to the mites. J. Apic. Res. 32, 89–93.CrossRefGoogle Scholar
  33. Shan, L., Liuhao, W., Jun, G., Yujie, T., Yanping, C., Jie, W., Jilian, L. (2017) Chinese Sacbrood virus infection in Asian honey bees (Apis cerana cerana) and host immune responses to the virus infection. J. Invertebr. Pathol. 150, 63–69.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Siva-Jothy, M.T., Moret, Y., Rolff, J. (2005) Insect immunity: an evolutionary ecology perspective. Adv. Insect Phys. 32, 1–48.CrossRefGoogle Scholar
  35. Spivak, M., Reuter, G.S. (2001) Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie 32, 555–565.CrossRefGoogle Scholar
  36. Swanson, J.A., Torto, B., Kells, S.A., Mesce, K.A., Tumlinson, J.H., Spivak, M. (2009) Odorants that induce hygienic behavior in honeybees: identification of volatile compounds in Chalkbrood-infected honeybee larvae. J. Chem. Ecol. 35, 1108–1116.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Tarpy, D.R. (2003) Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proc. Biol. Sci. 270, 99–103.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Theisen-Jones, H., Bienefeld, K. (2016) The Asian honey bee (Apis cerana) is significantly in decline. Bee World 93, 90–97.CrossRefGoogle Scholar
  39. Wilson-Rich, N., Spivak, M., Fefferman, N.H., Starks, P.T. (2009) Genetic, individual, and group facilitation of disease resistance in insect societies. Annu. Rev. Entomol. 54, 405–423.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Wu, Y., Dong, X., Kadowaki, T. (2017) Characterization of the copy number and variants of Deformed Wing Virus (DWV) in the pairs of honey bee pupa and infesting varroa destructor or Tropilaelaps mercedesae. Front. Microbiol. 8, 1558.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Zayed, A. (2004) Effective population size in Hymenoptera with a complementary sex determination. Heredity 93, 627–630.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Agricultural Biology, National Institute of Agricultural SciencesRural Development AdministrationJeonjuRepublic of Korea
  2. 2.Department of Applied Biology, College of Agriculture & Life SciencesChonnam National UniversityGwangjuRepublic of Korea

Personalised recommendations