pp 1–13 | Cite as

Recommendations for standardized oral toxicity test protocols for larvae of solitary bees, Osmia spp.

  • Maxime EeraertsEmail author
  • Matti Pisman
  • Ruben Vanderhaegen
  • Ivan Meeus
  • Guy Smagghe
Review article


Effects of pesticides have been debated as one of the causes of worldwide declines of bee populations. Improving the risk assessment of pesticides on bees is important to halt these declines. Pesticide risk assessment today mainly focuses on one bee species, the honey bee. Because of differences in life cycles among bee species, this risk assessment needs to be adapted to take these differences into account. For both the adult and larval life stages, development of test protocols for solitary bees is required. Here, we summarize the current knowledge on larval tier 1 tests based on the first test protocols for solitary bee larvae available in the literature. As the ecology and rearing of solitary bees of the genus Osmia spp. are well known, we propose this genus as a model species in a first step to develop protocols for solitary species. In addition, we discuss guidelines, relevant endpoints, and research needs for the development of a standardized oral toxicity test protocol of solitary bee larvae.


pesticides solitary bees Osmia spp. oral toxicity test ecotoxicology 



ME, MP and GS conceived the study goal. All authors contributed to writing of the manuscript and approved the final manuscript.

Funding information

The research was funded by the Research Foundation Flanders (FWO) PhD grants 1S71416N (ME) and 1S16917N (MP). The authors also thank support by the Special Research Fund of Ghent University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abbott, V. A., Nadeau, J. L., Higo, H. A., & Winston, M. L. (2008). Lethal and sublethal effects of imidacloprid on Osmia lignaria and clothianidin on Megachile rotundata (Hymenoptera: Megachilidae). J. Econ. Entomol., 101(3), 784–796. CrossRefPubMedGoogle Scholar
  2. Anderson, N. L., & Harmon-Threatt, A. N. (2019). Chronic contact with realistic soil concentrations of imidacloprid affects the mass immature development speed, and adult longevity of solitary bees. Sci. Rep., 9(3724), 1–9. CrossRefGoogle Scholar
  3. Arena, M., & Sgolastra, F. (2014). A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology, 23(3), 324–334. CrossRefPubMedGoogle Scholar
  4. Beasley, D. A. E., Bonisoli-alquati, A., & Mousseau, T. A. (2013). The use of fluctuating asymmetry as a measure of environmentally induced developmental instability: A meta-analysis. Ecol. Indic., 30, 218–226. CrossRefGoogle Scholar
  5. Becker, M.C. & Keller, A. (2015) Laboratory rearing of solitary bees and wasps. Insect Sci., 23, 1–6. CrossRefGoogle Scholar
  6. Beekman, M., Stratum, P. Van, & Lingeman, R. (1998). Diapause survival and post-diapause performance in bumblebee queens (Bombus terrestris). Entomol. Exp. Appl., 89(3), 207–214. CrossRefGoogle Scholar
  7. Biddinger, D. J., Robertson, J. L., Mullin, C., Frazier, J., Ashcraft, S. A., Rajotte, E. G., … Vaughn, M. (2013). Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski). PLoS ONE, 8(9), e72587. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Biesmeijer, J. C., Roberts, S. P. M., Reemer, M., Ohlemuller, R., Edwards, M., Peeters, T., … Kunin, W. E. (2006). Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science, 313, 351–354. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bosch, J., & Blas, M. (1994). Effect of over-wintering and incubation temperatures on adult emergence in Osmia cornuta Latr (Hymenoptera, Megachilidae). Apidologie, 25(3), 265–277. CrossRefGoogle Scholar
  10. Bosch, J. & Kemp, W.P. (2000) Development and emergence of the orchard pollinator Osmia lignaria (Hymenoptera: Megachilidae). Environ. Entomol., 29, 8–13. CrossRefGoogle Scholar
  11. Bosch, J., & Kemp, W. P. (2003). Effect of wintering duration and temperature on survival and emergence time in males of the orchard pollinator Osmia lignaria (Hymenoptera: Megachilidae). Environ. Entomol., 32(4), 711–716. CrossRefGoogle Scholar
  12. Bosch, J., & Kemp, W. P. (2004). Effect of pre-wintering and wintering temperature regimes on weight loss, survival, and emergence time in the mason bee Osmia cornuta (Hymenoptera: Megachilidae). Apidologie, 35(5), 469–479. CrossRefGoogle Scholar
  13. Bosch, J. & Vicens, N. (2002). Body size as an estimator of production costs in a solitary bee. Ecol. Entomol. 27, 129-137.CrossRefGoogle Scholar
  14. Bosch, J., & Vicens, N. (2006). Relationship between body size, provisioning rate, longevity and reproductive success in females of the solitary bee Osmia cornuta. Behav. Ecol. Sociobiol., 60(1), 26–33. CrossRefGoogle Scholar
  15. Bosch, J., Kemp, W.P. & Peterson, S.S. (2000) Management of Osmia lignaria (Hymenoptera: Megachilidae) populations for almond pollination: methods to advance bee emergence. Environ. Entomol., 29, 874–883. CrossRefGoogle Scholar
  16. Botias, C., David, A., Horwood, J., Abdul-sada, A., Nicholls, E., Hill, E., & Goulson, D. (2015). Neonicotinoid residues in wild flowers, a potential route of chronic exposure for bees. Environ. Sci. Technol., 49, 12731−12740. CrossRefPubMedGoogle Scholar
  17. Bukovinszky, T., Rikken, I., Evers, S., Wäckers, F.L., Biesmeijer, J.C., Prins, H.H.T., et al. (2017). Effects of pollen species composition on the foraging behaviour and offspring performance of the mason bee Osmia bicornis (L.). Basic Appl. Ecol., 18, 21–30. CrossRefGoogle Scholar
  18. Cabrera, A. R., Almanza, T., Cutler, G. C., Fischer, D. L., Hinarejos, S., Lewis, G., … Steen, J. Van Der. (2016). Initial recommendations for higher-tier risk assessment protocols for bumble bees, Bombus spp. (Hymenoptera: Apidae). Integr. Environ. Assess. Manag., 12(2), 222–229. CrossRefPubMedGoogle Scholar
  19. Carvalheiro, L., Gigante, S., Kunin, W. E., Keil, P., Aguirre-Gutiérrez J. … Biesmeijer, J. C. (2013). Species richness declines and biotic homogenization have slowed down for NW-European pollinators and plants. Ecol. Lett., 16(7), 870–878. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dainese, M., Riedinger, V., Holzschuh, A., Kleijn, D., Scheper, J. & Steffan-Dewenter, I. (2018) Managing trap-nesting bees as crop pollinators: Spatiotemporal effects of floral resources and antagonists. J. Appl. Ecol., 55, 195–204. CrossRefGoogle Scholar
  21. David, A., Botías, C., Abdul-sada, A., Nicholls, E., Rotheray, E. L., Hill, E. M., & Goulson, D. (2016). Widespread contamination of wild flower and bee-collected pollen with complex mixtures of neonicotinoids and fungicides commonly applied to crops. Environ. Int., 88, 169–178. CrossRefPubMedGoogle Scholar
  22. Dietemann, V., Ellis, K. D., Neumann, P. (2013) The COLOSS BEEBOOK Volume I, Standard methods for Apis mellifera research. J. Apic. Res., 52:4, 1-4, CrossRefGoogle Scholar
  23. EFSA (2013) Guidance on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J. 11.Google Scholar
  24. Fauser, A., Sandrock, C., Neumann, P., & Sadd, B. S. (2017). Neonicotinoids override a parasite exposure impact on hibernation success of a key bumblebee pollinator. Ecol. Entomol., 42(3), 306–314. CrossRefGoogle Scholar
  25. Fogel, M. N., Ine, M., Ronco, A. E., & Desneux, N. (2013). Impact of the neonicotinoid acetamiprid on immature stages of the predator Eriopis connexa (Coleoptera: Coccinellidae). Ecotoxicology, 22(6), 1063–1071. CrossRefPubMedGoogle Scholar
  26. Forrest, J.R.K. & Thomson, J. D. (2011) An examination of synchrony between insect emergence and flowering in Rocky Mountain meadows. Ecol. Monogr., 81, 469–491. CrossRefGoogle Scholar
  27. Garibaldi, L. A., Steffan-Dewenter, I., Winfree, R., Aizen, M. A., Bommarco, R., Cunningham, S. A., … Klein, A. M. (2013). Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science, 339(6127), 1608–1611. CrossRefPubMedGoogle Scholar
  28. Gerard, M., Michez, D., Debat, V., Fullgrabe, L., Meeus, I., Piot, N., Sculfort, O., Vastrade, M., Smagghe, G. & Vanderplanck (2018). Stressful conditions reveal decrease in size, modification of shape but relatively stable asymmetry in bumblebee wings. Sci. Rep., 8, 15169. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Goulson, D., Nicholls, E., Botías, C., Rotheray, E.L., (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science (80- ). 347, 1–16. CrossRefGoogle Scholar
  30. Gradish, A. E., Scott-Dupree, C. D., Cutler, G. C. (2012). Susceptibility of Megachile rotundata to insecticides used in wild blueberry production in Atlantic Canada. J. Pest. Sci., 85(1), 133-140. CrossRefGoogle Scholar
  31. Guirguis, G. N., & Brindley, W. A. (1974). Insecticide susceptibility and response to selected pollens of larval alfalfa leafcutting bees, Megachile pacifica (Panzer) (Hymenoptera: Megachilidae). Environ. Entomol., 3(4), 691–694. CrossRefGoogle Scholar
  32. Heard, M. S., Baas, J., Dorne, J.- Lou, Lahive, E., Robinson, A. G., Rortais, A., … Hesketh, H. (2017). Comparative toxicity of pesticides and environmental contaminants in bees: Are honey bees a useful proxy for wild bee species? Sci. Total Environ., 578, 357–365. CrossRefGoogle Scholar
  33. Hendriksma, H. P., Härtel, P., & Steffan-dewenter, I. (2011) Honey bee risk assessment: new approaches for in vitro larvae rearing and data analyses. Methods Ecol. Evol., 2, 509–517. CrossRefGoogle Scholar
  34. Hodgson, E. W., Pitts-singer, T. L., & Barbour, J. D. (2011). Effects of the insect growth regulator, novaluron on immature alfalfa leafcutting bees, Megachile rotundata. J. Insect Sci., 11(43), 1–10. CrossRefGoogle Scholar
  35. Huntzinger, I. C., James, R. R., Bosch, J., & Kemp, W. P. (2008). Fungicide tests on adult alfalfa leafcutting bees (Hymenoptera: Megachilidae). J. Econ. Entomol., 101(4), 1088–1094. CrossRefPubMedGoogle Scholar
  36. Jin, N., Klein, S., Leimig, F., Bischoff, G., & Menzel, R. (2015). The neonicotinoid clothianidin interferes with navigation of the solitary bee Osmia cornuta in a laboratory test. J. Exp. Biol., 218(18), 2821–2825. CrossRefPubMedGoogle Scholar
  37. Johansen, C. A., Rincker, C. M., George, D. A., Mayer, D. F., & Kious, A. W. (1984). Effects of aldicarb and its biologically active metabolites on bees. Environ. Entomol., 13(5), 1386–1398. CrossRefGoogle Scholar
  38. Kemp, W. P., Bosch, J., & Dennis, D. (2004). Oxygen consumption during the life cycles of the prepupa-wintering bee Megachile rotundata and the adult-wintering bee Osmia lignaria (Hymenoptera: Megachilidae), Ann. Entomol. Soc. Am., 97(1), 161–170.[0161:OCDTLC]2.0.CO;2 CrossRefGoogle Scholar
  39. Konrad, R., Ferry, N., Gatehouse, A. M. R., & Babendreier, D. (2008). Potential effects of oilseed rape expressing oryzacystatin-1 (OC-1) and of purified insecticidal proteins on larvae of the solitary bee Osmia bicornis. PLoS ONE, 3(7), e2664. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kopit, A. M., & Pitts-singer, T. L. (2018). Routes of pesticide exposure in solitary, cavity-nesting bees. Environ. Entomol., 47(3), 499–510. CrossRefGoogle Scholar
  41. Krunić, M.D., Stanisavljević, L.Z., (2006). The biology of European orchard Bee Osmia cornuta (Latr.) (Hymenoptera: Megachilidae). Belgrade: University of Belgrade.Google Scholar
  42. Ladurner, E., Bosch, J., Kemp, W. P., & Maini, S. (2005). Original article asessing delayed and acute toxicity of five formulated fungicides to Osmia lignaria Say and Apis mellifera. Apidologie, 36(3), 449–460. CrossRefGoogle Scholar
  43. Lens, L., Dongen, S. Van, Kark, S. & Matthysen, E. (2002) Fluctuating asymmetry as an indicator of fitness: Can we bridge the gap between studies? Biol. Rev., 77, 27–38. CrossRefPubMedGoogle Scholar
  44. Michener, C. D., (2007). The nees of the world. Baltimore: The Johns Hopkins University Press.Google Scholar
  45. Nicholls, E., Fowler, R., Niven, J. E., Gilbert, J. D., & Goulson, D. (2017). Larval exposure to field-realistic concentrations of clothianidin has no effect on development rate, over-winter survival or adult metabolic rate in a solitary bee, Osmia bicornis. PeerJ, e3417. CrossRefGoogle Scholar
  46. Norden, B. B. (1984). Nesting biology of Anthophora abrupta (Hymenoptera: Anthophoridae). J. Kansas Entomol. Soc., 57(2), 243–262.Google Scholar
  47. OECD (2017a), Test No. 246: Bumblebee, acute contact toxicity test, OECD guidelines for the testing of chemicals, Section 2, OECD Publishing, Paris, CrossRefGoogle Scholar
  48. OECD (2017b), Test No. 247: Bumblebee, acute oral toxicity test, OECD guidelines for the testing of chemicals, Section 2, OECD Publishing, Paris, CrossRefGoogle Scholar
  49. Ohl, M., & Thiele, K. (2007). Estimating body size in apoid wasps: the significance of linear variables in a morphologically diverse taxon (Hymenoptera, Apoidea). Zoosystemat. Evol., 83(2), 110–124. CrossRefGoogle Scholar
  50. Ollerton, J., Winfree, R., Tarrant, S., (2011). How many flowering plants are pollinated by animals? Oikos 120, 321–326. CrossRefGoogle Scholar
  51. Ondo, N. A. Z., Alibert, P., Dousset, S., Savadogo, P. W., Savadogo, M., & Sedogo, M. (2011). Chemosphere insecticide residues in cotton soils of Burkina Faso and effects of insecticides on fluctuating asymmetry in honey bees (Apis mellifera Linnaeus). Chemosphere, 83(4), 585–592. CrossRefGoogle Scholar
  52. Peach, M. L., Alston, D. G., Tepedino, V. J. (1994). Bees and bran bait: is carbaryl bran bait lethal to alfalfa leafcutting Bbee (Hymenoptera: Megachilidae) adults or larvae? J. Econ. Entomol., 87(2), 311-317. CrossRefGoogle Scholar
  53. Pitts-Singer, T.L. & Bosch, J. (2010) Nest establishment, pollination efficiency, and reproductive success of Megachile rotundata (Hymenoptera: Megachilidae) in relation to resource availability in field enclosures. Environ. Entomol., 39, 149–158. CrossRefPubMedGoogle Scholar
  54. Powney, G.D., Carvell, C., Edwards, M., Morris, R.K.A., Roy, H.E., Woodcock, B.A., Isaac, N.J.B., (2019). Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Radmacher, S., & Strohm, E. (2010). Factors affecting offspring body size in the solitary bee Osmia bicornis (Hymenoptera, Megachilidae). Apidologie, 41(2), 169–177. CrossRefGoogle Scholar
  56. Raw, A. (1972) The biology of the solitary bee Osmia rufa (L.) (Megachilidae). Trans. R. Entomol. Soc. Lond., 124, 213–229. CrossRefGoogle Scholar
  57. Rust, R., Torchio, P., & Trostle, R. (1989). Late embryogenesis and immature development of Osmia rufa cornigera (Rossi) (Hymenoptera: Megachilidae). Apidologie, 20(4), 359–367. CrossRefGoogle Scholar
  58. Sandrock, C., Tanadini, L.G., Pettis, J.S., Biesmeijer, J.C., Potts, S.G. & Neumann, P. (2014) Sublethal neonicotinoid insecticide exposure reduces solitary bee reproductive success. Agric. For. Entomol., 16, 119–128. CrossRefGoogle Scholar
  59. Schenk, M., Krauss, J., & Holzschuh, A. (2018a). Desynchronizations in bee-plant interactions cause severe fitness losses in solitary bees. J. Anim. Ecol., 87(1), 139–149. CrossRefPubMedGoogle Scholar
  60. Schenk, M., Mitesser, O., Hovestadt, T., & Holzschuh, A. (2018b). Overwintering temperature and body condition shift emergence dates of spring-emerging solitary bees. PeerJ, 6, e4721. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Scott-dupree, C. D., Conroy, L., & Harris, C. R. (2009). Impact of currently used or potentially useful insecticides for canola agroecosystems on Bombus impatiens (Hymenoptera: Apidae), Megachile rotundata (Hymentoptera: Megachilidae), and Osmia lignaria (Hymenoptera: Megachilidae). J. Econ. Entomol., 102(1), 177–182. CrossRefPubMedGoogle Scholar
  62. Sgolastra, F., Kemp, W.P., Buckner, J.S., Pitts-Singer, T.L., Maini, S. & Bosch, J. (2011) The long summer: pre-wintering temperatures affect metabolic expenditure and winter survival in a solitary bee. J. Insect Physiol., 57, 1651–1659. CrossRefPubMedGoogle Scholar
  63. Sgolastra, F., Tosi, S., Medrzycki, P., Porrini, C., & Burgio, G. (2015). Toxicity of spirotetramat on solitary bee larvae, Osmia cornuta (Hymenoptera: Megachilidae), in laboratory conditions. J. Apicult. Sci., 59(2), 73–83. CrossRefGoogle Scholar
  64. Sgolastra, F., Medrzycki, P., Bortolotti, L., Renzi, T., Tosi, S., Bogo, G., … Bosch, J. (2017). Synergistic mortality between a neonicotinoid insecticide and an ergosterol-biosynthesis-inhibiting fungicide in three bee species. Pest Manag. Sci., 73(6), 1236–1243. CrossRefPubMedGoogle Scholar
  65. Sgolastra, F., Hinarejos, S., Pitts-singer, T. L., Boyle, N. K., Joseph, T., Johannes, L., … Bosch, J. (2018a). Pesticide exposure assessment paradigm for solitary bees. Environ. Entomol., nvy105, 1–14. CrossRefGoogle Scholar
  66. Sgolastra, F., Arnan, X., Cabbri, R., Isani, G., Medrzycki, P., Teper, D., & Bosch, J. (2018b). Combined exposure to sublethal concentrations of an insecticide and a fungicide affect feeding, ovary development and longevity in a solitary bee. Proc. R. Soc. B Biol. Sci., 285, 20180887. CrossRefGoogle Scholar
  67. Staab, M., Pufal, G., Tscharntke, T. & Klein, A.M. (2018) Trap nests for bees and wasps to analyse trophic interactions in changing environments - A systematic overview and user guide. Methods Ecol. Evol., 9, 2226–2239. CrossRefGoogle Scholar
  68. Stoner, K. A. (2016). Current pesticide risk assessment protocols do not adequately address differences between honey bees (Apis mellifera) and bumble bees (Bombus spp.). Front. Environ. Sci., 4(December), 1–8. CrossRefGoogle Scholar
  69. Straub, L., Williams, G. R., Pettis, J., Fries, I., & Neumann, P. (2015). Superorganism resilience: eusociality and susceptibility of ecosystem service providing insects to stressors. Curr. Opin. Insect Sci. 12, 109–112. CrossRefGoogle Scholar
  70. Szentgyörgyi, H., Moron, D., Nawrocka, A., Tofilski, A., & Woyciechowski, M. (2017). Forewing structure of the solitary bee Osmia bicornis developing on heavy metal pollution gradient. Ecotoxicology, 26(8), 1031–1040. CrossRefPubMedPubMedCentralGoogle Scholar
  71. Tesoriero, D., Maccagnani, B., Santi, F., & Celli, G. (2003). Toxicity of three pesticides on larval instars of Osmia cornuta: preliminary results. Bull. Insectol., 56(1), 169–171.Google Scholar
  72. Thompson, H. (2016). Extrapolation of acute toxicity across bee species. Integr. Environ. Assess. Manag., 12(4), 622–626. CrossRefPubMedGoogle Scholar
  73. Thompson, H., Pamminger, T. (2019). Perspective: Are honeybees suitable surrogates for use in pesticide risk assessment for non-Apis bees? Pest Manag. Sci., accepted online. CrossRefGoogle Scholar
  74. Torchio, P. F. (1989). In-nest biologies and development of immature stages of three Osmia species (Hymenoptera: Megachilidae). Ann. Entomol. Soc. Am., 82(5), 599–615. CrossRefGoogle Scholar
  75. Uhl, P., Franke, L. A., Re, C., Wollmann, C., Peter, S., Jeker, L., & Brühl, C. A. (2016). Interspecific sensitivity of bees towards dimethoate and implications for environmental risk assessment. Sci. Rep., 6(34439), 1–7. CrossRefGoogle Scholar
  76. Vázquez, D.E., Ilina, N., Pagano, E.A., Zavala, J.A., Farina, W.M., 2018. Glyphosate affects the larval development of honey bees depending on the susceptibility of colonies. PLoS One 13, e0205074. CrossRefPubMedPubMedCentralGoogle Scholar
  77. Weissel, N., Mitesser, O., Poethke, H.J. & Strohm, E. (2012) Availability and depletion of fat reserves in Halictid foundress queens with a focus on solitary nest founding. Insect. Soc., 59, 67–74. CrossRefGoogle Scholar
  78. Wood, T. J., & Goulson, D. (2017). The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environ. Sci. Pollut. Res., 24(21), 17285–17325. CrossRefGoogle Scholar
  79. Woodcock, B. A., Bullock, J. M., Shore, R. F., Heard, M. S., Pereira, M. G., Redhead, J., … Pywell, R. F. (2017). Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science, 356(6345), 1393–1395. CrossRefPubMedGoogle Scholar
  80. Wu, J.Y., Anelli, C.M., Sheppard, W.S., (2011). Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PLoS One 6, e14720. CrossRefPubMedPubMedCentralGoogle Scholar
  81. Youn, Y. N., Seo, M. J., Shin, J. G., Jang, C., & Yu, Y. M. (2003). Toxicity of greenhouse pesticides to multicolored Asian lady beetles, Harmonia axyridis (Coleoptera: Coccinellidae). Biol. Control, 28(2), 164–170. CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Plant and Crops, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium

Personalised recommendations