pp 1–14 | Cite as

Retained metabolic activity in honey bee collected pollen has implications for pollen digestion and effects on honey bee health

  • Mia McKinstry
  • Sofia R. Prado-Irwin
  • Tara Reyes Adames
  • Jonathan W. SnowEmail author
Original article


The mechanisms by which pollen is digested by honey bees are incompletely understood. Potential methods are thought to include pseudogermination, mechanical disruption, enzymatic breakdown, or osmotic shock. Understanding the role of pseudogermination in this process has been hampered by a lack of tools demonstrating retention of metabolic activity in pollen collected by honey bees. Here, we show that pollen collected by honey bees produces reactive oxygen species (ROS) at robust levels upon germination, suggesting that ROS is a suitable marker of this process in pollen. ROS can be readily found in the digestive tract of honey bees and is localized to pollen grains within the lumen. Finally, manipulating pollen levels in the midgut can change ROS levels in the digestive tract. These data provide evidence of retained metabolic activity in bee-collected pollen that lends support to pseudogermination as a mechanism for pollen digestion in honey bees, and points to novel approaches for better understanding of pollen digestion in this species and beyond.


ecology honey bee pollen pollinator digestion 



The authors acknowledge Heather Mattila for helpful comments about this study.

Authors’ contributions

MM, SRP, and JWS conceived and designed the experiments. MM, SRP, TRA, and JWS performed experiments and analyzed the data. All authors contributed to the drafting and revision of the article.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13592_2019_703_MOESM1_ESM.docx (22 kb)
ESM 1 (DOCX 22 kb)
13592_2019_703_MOESM2_ESM.docx (22 kb)
ESM 2 (DOCX 168 kb)


  1. Ambrosino L, Bostan H, Ruggieri V, Chiusano ML (2016) Bioinformatics resources for pollen. Plant Reproduction 29:133–147. doi: CrossRefPubMedGoogle Scholar
  2. Anderson KE, Carroll MJ, Sheehan T, et al (2014) Hive-stored pollen of honey bees: many lines of evidence are consistent with pollen preservation, not nutrient conversion. Mol Ecol 23:5904–5917. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  3. Babendreier D, Kalberer N, Romeis J, et al (2004) Pollen consumption in honey bee larvae: a step forward in the risk assessment of transgenic plants. Apidologie 35:293–300. doi: CrossRefGoogle Scholar
  4. Bacsi A, Dharajiya N, Choudhury BK, et al (2005) Effect of pollen-mediated oxidative stress on immediate hypersensitivity reactions and late-phase inflammation in allergic conjunctivitis. J Allergy Clin Immunol 116:836–843. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  5. Betts AD (1935) The constancy of the pollen-collecting bee. Journal of Horticultural Science 16:111–113.Google Scholar
  6. Boldogh I, Bacsi A, Choudhury BK, et al (2005) ROS generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation. J Clin Invest 115:2169–2179. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brodschneider R, Gratzer K, Heigl H, et al. 2018 What we can (or cannot) learn from multifloral pollen pellets. Bee World 95:78–80. doi: CrossRefGoogle Scholar
  8. Buchon N, Broderick NA, Chakrabarti S, Lemaitre B (2009) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 23:2333–2344. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chatterjee M, Ip YT (2009) Pathogenic stimulation of intestinal stem cell response in drosophila. J Cell Physiol 220:664–671. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chen S, Yao H, Han J, et al (2010) Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species. PLoS ONE 5:e8613. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  11. Crailsheim K, Schneider L, Hrassnigg N, et al (1992) Pollen consumption and utilization in worker honeybees (Apis mellifera carnica): dependence on individual age and function. J Insect Physiol 38:409–419.CrossRefGoogle Scholar
  12. Crailsheim K, Hrassnigg N, Gmeinbauer R, et al (1993) Pollen Utilization in Non-Breeding Honeybees in Winter. J Insect Physiol 39:369–373. doi: CrossRefGoogle Scholar
  13. Dietz A (1969) Initiation of pollen consumption and pollen movement through the alimentary canal of newly emerged honey bees. Annals of the Entomological Society of America. 62:43–46. CrossRefGoogle Scholar
  14. Dussaubat C, Brunet J-L, Higes M, et al (2012) Gut Pathology and Responses to the Microsporidium Nosema ceranae in the Honey Bee Apis mellifera. PLoS ONE 7:e37017. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  15. Free JB, Durrant AJ (1966) The transport of pollen by honey-bees from one foraging trip to the next. Journal of Horticultural Science, 41:187–89. doi: CrossRefGoogle Scholar
  16. Gilliam M (1997) Identification and roles of non-pathogenic microflora associated with honey bees (vol 155, pg 1, 1997). FEMS Microbiology Letters 157:219–219Google Scholar
  17. Griggs WH, Vansell GH (1950) The Germinating Ability of Quick Frozen, Bee-Collected Apple Pollen Stored in a Dry Ice Container. Journal of Economic Entomology 43(4):549–549CrossRefGoogle Scholar
  18. Griggs W, Vansell G, Lwakiri B (1953) Pollen storage: High viability of pollen obtained after storage in home freezer. Calif Agr 7:12Google Scholar
  19. Hagedorn HH, Moeller FE (1967) The Rate of Pollen Consumption by Newly Emerged Honeybees. Journal of Apicultural Research 6:159–162. doi: CrossRefGoogle Scholar
  20. Hashida S-N, Kawai-Yamada M, Uchimiya H (2013) NAD (+) accumulation as a metabolic off switch for orthodox pollen. psb. doi: CrossRefGoogle Scholar
  21. Hrassnigg N, Crailsheim K (1998) The influence of brood on the pollen consumption of worker bees (Apis mellifera L.). J Insect Physiol 44:393–404.CrossRefGoogle Scholar
  22. Human H, Nicolson SW (2003) Digestion of maize and sunflower pollen by the spotted maize beetle Astylus atromaculatus (Melyridae): is there a role for osmotic shock? J Insect Physiol 49:633–643. doi: CrossRefGoogle Scholar
  23. Human H, Nicolson SW (2006) Nutritional content of fresh, bee-collected and stored pollen of Aloe greatheadii var. davyana (Asphodelaceae). Phytochemistry 67:1486–1492. doi: CrossRefPubMedGoogle Scholar
  24. Johansen C (1956) Artificial Pollination of Apples with Bee-Collected Pollen. Journal of Economic Entomology 49:825–828.CrossRefGoogle Scholar
  25. Jones GD (2012) Pollen extraction from insects. Palynology 36:86–109. doi: CrossRefGoogle Scholar
  26. Kawahara T, Quinn MT, Lambeth JD (2007) Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes. BMC Evol Biol 7:109. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  27. Keularts J, Linskens HF (1968) Influence of fatty acids on petunia pollen grains. Acta Botanica Neerlandica 17:267–272CrossRefGoogle Scholar
  28. Klungness LM, Peng YS (1983) A scanning electron microscopic study of pollen loads collected and stored by honeybees. Journal of Apicultural Research 22:264–271CrossRefGoogle Scholar
  29. Klungness M, Thorp R, Briggs D (1983) Field testing the germinability of almond pollen (Prunus dulcis). Journal of Horticultural Science 58(22):29–235CrossRefGoogle Scholar
  30. Klungness LM, Peng YS (1984a) A histochemical study of pollen digestion in the alimentary canal of honeybees ( Apis mellifera L.). J Insect Physiol Elsevier 30:511–521CrossRefGoogle Scholar
  31. Klungness LM, Peng YS (1984b) Scanning electron microscope observations of pollen food bolus in the alimentary canal of honeybees (Apis mellifera L.). Canadian journal of zoology. NRC Research Press 62:1316–1319CrossRefGoogle Scholar
  32. Koetschan C, Forster F, Keller A, et al (2009) The ITS2 Database III--sequences and structures for phylogeny. Nucleic Acids Research 38:D275–D279. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kraai A (1962) How long do honey-bees carry germinable pollen on them? Euphytica 11:53–56CrossRefGoogle Scholar
  34. Kroon GH, van Praagh JP, Velthuis HHW (1974) Osmotic shock as a prerequisite to pollen digestion in the alimentary tract of the worker honeybee. Journal of Apicultural Research 13:177–181.CrossRefGoogle Scholar
  35. Lee K-A, Kim S-H, Kim E-K, et al (2013) Bacterial-Derived Uracil as a Modulator of Mucosal Immunity and Gut-Microbe Homeostasis in Drosophila. Cell 153:797–811. doi: CrossRefPubMedGoogle Scholar
  36. Lee J-H, Lee K-A, Lee W-J (2017) Microbiota, Gut Physiology, and Insect Immunity. Advances in Insect Physiology 52:111–138. doi: CrossRefGoogle Scholar
  37. Marshall DL, Avritt JJ, Maliakal-Witt S, et al (2010) The impact of plant and flower age on mating patterns. Ann Bot 105:7–22. doi: CrossRefPubMedGoogle Scholar
  38. Masood M, Everett CP, Chan SY, Snow JW (2016) Negligible uptake and transfer of diet-derived pollen microRNAs in adult honey bees. rnabiology 13:109–118. doi: CrossRefGoogle Scholar
  39. McInnis SM, Desikan R, Hancock JT, Hiscock SJ (2006) Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: potential signalling crosstalk? New Phytologist 172:221–228. doi: CrossRefPubMedGoogle Scholar
  40. Mesquida J, Renard M (1989) Etude de l“aptitude à germer in vitro du pollen de colza (Brassica napus L.) récolté par l”abeille domestique (Apis mellifica L.). Apidologie 20:197–205.CrossRefGoogle Scholar
  41. Moritz B, Crailsheim K (1987) Physiology of Protein Digestion in the Midgut of the Honeybee (Apis-Mellifera L). J Insect Physiol 33:923–931.CrossRefGoogle Scholar
  42. Nicolson SW, Human H (2013) Chemical composition of the “low quality” pollen of sunflower (Helianthus annuus, Asteraceae). Apidologie 44:144–152. doi: CrossRefGoogle Scholar
  43. Peng YS, Nasr ME, Marston JM (1985) The digestion of dandelion pollen by adult worker honeybees. Physiological entomology 10:75–82CrossRefGoogle Scholar
  44. Peng YS, Nasr ME, Marston JM (1986) Release of alfalfa, Medicago sativa, pollen cytoplasm in the gut of the honey bee, Apis mellifera (Hymenoptera: Apidae). Annals of the Entomological Society of America. Entomological Society of America 79:804–807CrossRefGoogle Scholar
  45. Peng YS, Dobson HEM (1997) Digestion of Pollen Components by Larvae of the Flower-Specialist Bee Chelostoma florisomne (Hymenoptera: Megachilidae). J Insect Physiol 43:89–100.CrossRefGoogle Scholar
  46. Potts SG, Imperatriz-Fonseca V, Ngo HT, et al (2016) Safeguarding pollinators and their values to human well-being. Nature 540:220–229. doi: CrossRefPubMedGoogle Scholar
  47. Rook G, Steele J, Umar S, Dockrell HM (1985) A simple method for the solubilisation of reduced NBT, and its use as a colorimetric assay for activation of human macrophages by γ-interferon. J Immunol Methods 82:161–167.CrossRefGoogle Scholar
  48. Roulston TH, Cane JH (2000) Pollen nutritional content and digestibility for animals. Plant Systematics and Evolution 222:187–209.CrossRefGoogle Scholar
  49. Singh S, Boynton D (1949) Viability of apple pollen in pollen pellets of honeybees. Proc Am Soc Hort Sc 53:148–153.Google Scholar
  50. Speranza A, Scoccianti V (2012) New insights into an old story: Pollen ROS also play a role in hay fever. psb 7:994–998.CrossRefGoogle Scholar
  51. Steinhorst L, Kudla J (2013) Calcium - a central regulator of pollen germination and tube growth. Biochim Biophys Acta 1833:1573–1581. doi: CrossRefPubMedGoogle Scholar
  52. Vaissiere BE, Malaboeuf F, Rodet G (1996) Viability of cantaloupe pollen carried by honeybeesApis mellifera varies with foraging behavior. Naturwissenschaften 83:84–86. doi: CrossRefGoogle Scholar
  53. Verhoef H, Hoekstra FA (2012) Absence of 10-hydroxy-2-decenoic acid (10-HDA) in bee-collected pollen. In: Mulcahy DL (ed) Biotechnology and Ecology of Pollen: Proceedings of the International Conference on the Biotechnology and Ecology of Pollen, 9–11 July, 1985, University of …. Springer New York, New York, pp 391–396Google Scholar
  54. Vogler F, Konrad SSA, Sprunck S (2015) Knockin“ on pollen”s door: live cell imaging of early polarization events in germinating Arabidopsis pollen. Front Plant Sci 6:1–17. doi: CrossRefGoogle Scholar
  55. Wang X-L, Takai T, Kamijo S, et al (2009) NADPH oxidase activity in allergenic pollen grains of different plant species. Biochem Biophys Res Commun 387:430–434. doi: CrossRefPubMedGoogle Scholar
  56. Waser NM, Ollerton J (eds) (2006) Plant-pollinator interactions: From specialization to generalization. Chicago, ILGoogle Scholar
  57. Winston ML (1987) The Biology of the Honey Bee. Harvard University Press, Cambridge, MAGoogle Scholar
  58. Wright GA, Nicolson SW, Shafir S (2018) Nutritional Physiology and Ecology of Honey Bees. Annual Review of Entomology 63:327–344. doi: CrossRefPubMedGoogle Scholar
  59. Yeamans RL, Roulston TH, Carr DE (2014) Pollen quality for pollinators tracks pollen quality for plants in Mimulus guttatus. Ecosphere. doi: CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Biology DepartmentBarnard CollegeNew YorkUSA

Personalised recommendations