pp 1–10 | Cite as

Honey bees do not displace foraging bumble bees on nectar-rich artificial flowers

  • Jay M. IwasakiEmail author
  • Barbara I. P. Barratt
  • Jennifer M. Jandt
  • Timothy W. D. Jowett
  • Janice M. Lord
  • Alison R. Mercer
  • Katharine J. M. Dickinson
Original article


In an enclosed glasshouse with sucrose provisioned artificial flowers, we observed nectar-foraging bumble bees and honey bees under several resource conditions to determine potential for displacement. Different responses were displayed for varying resource treatments. Overall, bumble bees did not show reduced foraging in the presence of honey bees. When resources were reduced, bumble bees did not change their foraging behavior, whereas honey bees responded by decreasing their visitation rate. When a food resource of higher quality was introduced, bumble bee foragers shifted their foraging effort to the high-quality resources, whereas honey bees continued to forage on the lower quality resources they had been foraging on. We discuss these results by considering how the individual strategy of bumble bees compared with the colony-based strategy of honey bees may explain observed differences and highlight the potential advantages of each strategy in the natural environment.


honey bees bumble bees artificial flowers foraging competition 



We thank the Division of Sciences for PhD support and also the Departments of Botany and Zoology at the University of Otago and Diane Barton and Bruce Philip at AgResearch Invermay for logistical support.

Authors’ contribution

JMI, ARM, BIPB, KJMD, and JML conceived and designed experiments, interpreted results. TWDJ assisted with data analyses. JMI wrote the paper. BIPB, KJMD, JML, and JMJ participated with the final manuscript.

Funding information

This study was financially supported by the University of Otago through an Otago Research Grant.

Les abeilles mellifères ne déplacent pas les bourdons butinant sur des fleurs artificielles riches en nectar.

abeille mellifère / bourdon / fleur artificielle / butiner / compétition.

Honigbienen verdrängen keine sammelnden Hummeln auf nektarreichen Blüten.

Honigbiene / Hummel / künstliche Blüten / Sammelverhalten / Konkurrenz.

Supplementary material

13592_2019_690_MOESM1_ESM.docx (228 kb)
ESM 1. (DOCX 227 kb)


  1. Anon (2013) R: a language and environment for statistical computing. Version 3.2.3.Google Scholar
  2. Avarguès-Weber A. & Chittka L. (2014) Observational conditioning in flower choice copying by bumblebees (Bombus terrestris): influence of observer distance and demonstrator movement. PLoS One9 , e88415.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Avarguès-Weber A., Lachlan R. & Chittka L. (2018) Bumblebee social learning can lead to suboptimal foraging choices. Anim. Behav. doi: Scholar
  4. Balfour N. J., Gandy S. & Ratnieks F. L. W. (2015) Exploitative competition alters bee foraging and flower choice. Behav. Ecol. Sociobiol.69 , 1731–1738.CrossRefGoogle Scholar
  5. Bates D., Maechler M. & Bolker B. M. (2013) lme4: Linear mixed-effects models using S4 classes. R Packag. version 0.999999-2. Google Scholar
  6. Dawson E. H. & Chittka L. (2014) Bumblebees (Bombus terrestris) use social information as an indicator of safety in dangerous environments. Proc. R. Soc. B Biol. Sci.281.Google Scholar
  7. Donovan B. J. (1980) Interactions between native and introduced bees in New Zealand. N. Z. J. Ecol.3 , 104–116.Google Scholar
  8. Dornhaus A. & Chittka L. (2001) Food alert in bumblebees (Bombus terrestris): possible mechanisms and evolutionary implications. Behav. Ecol. Sociobiol.50 , 570–576.CrossRefGoogle Scholar
  9. Dornhaus A. & Couvillon M. (2010) Small worker bumble bees (Bombus impatiens) are hardier against starvation than their larger sisters. Insectes Soc. doi: Scholar
  10. Dunlap A. S., Nielsen M. E., Dornhaus A. et al. (2016) Foraging Bumble Bees Weigh the Reliability of Personal and Social Information. Curr. Biol.26 , 1195–1199.PubMedCrossRefGoogle Scholar
  11. Dupont Y. L., Hansen D. M., Valido A. & Olesen J. M. (2004) Impact of introduced honey bees on native pollination interactions of the endemic Echium wildpretii (Boraginaceae) on Tenerife, Canary Islands. Biol. Conserv.118 , 301–311.CrossRefGoogle Scholar
  12. Eickwort G. C. & Ginsberg H. S. (1980) Foraging and mating behavior in Apoidea. Annu. Rev. Entomol.25 , 421–446.CrossRefGoogle Scholar
  13. Gardner K. E., Seeley T. D. & Calderone N. W. (2008) Do honeybees have two discrete dances to advertise food sources? Anim. Behav.75 , 1291–1300.CrossRefGoogle Scholar
  14. Garibaldi, L. A., Requier, F., Rollin, O., Andersson, G. K., (2017) Towards an integrated species and habitat management of crop pollination. Curr. Opin. Insect Sci. 21, 105–114. Scholar
  15. Goulson D. (2003a) Effects of introduced bees on native ecosystems. Annu. Rev. Ecol. Evol. Syst.34 , 1–26.CrossRefGoogle Scholar
  16. Goulson D. (2003b) Bumblebees: Their Behaviour and Ecology. Oxford University Press, Oxford.Google Scholar
  17. Goulson D. (2010) Impacts of non-native bumblebees in Western Europe and North America. Appl. Entomol. Zool.45 , 7–12.CrossRefGoogle Scholar
  18. Goulson D. & Sparrow K. (2009) Evidence for competition between honeybees and bumblebees; effects on bumblebee worker size. J. Insect Conserv.13 , 177–181.CrossRefGoogle Scholar
  19. Heinrich B. (1976) The foraging specializations of individual bumblebees. Ecol. Monogr.46 , 105–128.CrossRefGoogle Scholar
  20. Herbertsson L., Lindström S. A. M., Bommarco R. & Smith H. G. (2016) Competition between managed honeybees and wild bumblebees depends on landscape context. Basic Appl. Ecol. doi: Scholar
  21. Hingston A. B. & McQuillan P. B. (1999) Displacement of Tasmanian native megachilid bees by the recently introduced bumblebee Bombus terrestris (Linnaeus, 1758)(Hymenoptera: Apidae). Aust. J. Zool. Google Scholar
  22. Howlett B. G. & Donovan B. (2010) A review of New Zealand’s deliberately introduced bee fauna: current status and potential impacts. New Zeal. Entomol. Google Scholar
  23. Huryn V. M. B. (1997) Ecological impacts of introduced honey bees. Q. Rev. Biol.72 , 275–297.CrossRefGoogle Scholar
  24. Inoue M. N., Yokoyama J. & Washitani I. (2008) Displacement of Japanese native bumblebees by the recently introduced Bombus terrestris (L.) (Hymenoptera: Apidae). J. Insect Conserv.12 , 135–146.CrossRefGoogle Scholar
  25. Konzmann S. & Lunau K. (2014) Divergent rules for pollen and nectar foraging bumblebees--a laboratory study with artificial flowers offering diluted nectar substitute and pollen surrogate. PLoS One9 , e91900.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Lihoreau M., Chittka L. & Raine N. E. (2016) Monitoring Flower Visitation Networks and Interactions between Pairs of Bumble Bees in a Large Outdoor Flight Cage. PLoS One11 , 1–21.Google Scholar
  27. Nakamura S. & Kudo G. (2016) Foraging responses of bumble bees to rewardless floral patches: importance of within-plant variance in nectar presentation. AoB Plants doi: Scholar
  28. Paini D. R. (2004) Impact of the introduced honey bee (Apis mellifera) (Hymenoptera: Apidae) on native bees: A review. Austral Ecol.29 , 399–407.CrossRefGoogle Scholar
  29. Paini D. R. & Roberts J. D. (2005) Commercial honey bees (Apis mellifera) reduce the fecundity of an Australian native bee (Hylaeus alcyoneus). Biol. Conserv.123 , 103–112.CrossRefGoogle Scholar
  30. Pasquaretta C., Jeanson R., Pansanel J., Raine N. E., Chittka L. & Lihoreau M. (2019) A spatial network analysis of resource partitioning between bumblebees foraging on artificial flowers in a flight cage. Mov. Ecol.7 , 1–10.CrossRefGoogle Scholar
  31. Rogers S. R., Cajamarca P., Tarpy D. R. et al. (2013) Honey bees and bumble bees respond differently to inter- and intra-specific encounters. Apidologie44 , 621–629.CrossRefGoogle Scholar
  32. Roubik D. W. (1978) Competitive interactions between neotropical pollinators and Africanized honey bees. Science (80-. ).201 , 1030–1032.CrossRefGoogle Scholar
  33. Roubik D. W. & Wolda H. (2001) Do competing honey bees matter? Dynamics and abundance of native bees before and after honey bee invasion. Popul. Ecol.43 , 53–62.CrossRefGoogle Scholar
  34. Roubik D. W., Moreno J. E., Vergara C. & Wittmann D. (1986) Sporadic food competition with the African honey bee: Projected impact on neotropical social bees. J. Trop. Ecol.2 , 97–111.CrossRefGoogle Scholar
  35. Ruedenauer F. A., Spaethe J. & Leonhardt S. D. (2015) How to know which food is good for you: bumblebees use taste to discriminate between different concentrations of food differing in nutrient content. J. Exp. Biol. doi: Scholar
  36. Ruedenauer F. A., Spaethe J. & Leonhardt S. D. (2016) Hungry for quality—individual bumblebees forage flexibly to collect high-quality pollen. Behav. Ecol. Sociobiol.70 , 1209–1217.CrossRefGoogle Scholar
  37. Sabara H. A. & Winston M. L. (2003) Managing Honey Bees (Hymenoptera : Apidae) for Greenhouse Tomato Pollination. J. Econ. Entomol.96 , 547–554.PubMedCrossRefGoogle Scholar
  38. Schaffer W., Jensen D. & Hobbs D. (1979) Competition, foraging energetics, and the cost of sociality in three species of bees. Ecology60 , 976–987.CrossRefGoogle Scholar
  39. Schaffer W., Zeh D. & Buchmann S. (1983) Competition for nectar between introduced honey bees and native North American bees and ants. Ecology64 , 564–577.CrossRefGoogle Scholar
  40. Seeley T. D., Camazine S. & Sneyd J. (1991) Collective decision-making in honey bees: how colonies choose among nectar sources. Behav. Ecol. Sociobiol.28 , 277–290.CrossRefGoogle Scholar
  41. Spaethe J. & Weidenmüller A. (2002) Size variation and foraging rate in bumblebees (Bombus terrestris). Insectes Soc. Google Scholar
  42. Stöbbe J., Schramme J. & Claßen-Bockhoff R. (2015) Training experiments with Bombus terrestris and Apis mellifera on artificial ‘Salviá flowers. Flora Morphol. Distrib. Funct. Ecol. Plants doi: Scholar
  43. Thomson D. (2004) Competitive interactions between the invasive European honey bee and native bumble bees. Ecology85 , 458–470.CrossRefGoogle Scholar
  44. Thomson D. M. (2006) Detecting the effects of introduced species: a case study of competition between Apis and Bombus. Oikos114 , 407–418.CrossRefGoogle Scholar
  45. Thomson D. M. (2016) Local bumble bee decline linked to recovery of honey bees, drought effects on floral resources. Ecol. Lett. doi: Scholar
  46. von Frisch K. (1967) The dance language and orientation of bees. Heredity (Edinb).90 , 212.Google Scholar
  47. Walther-Hellwig K., Fokul G., Frankl R., Buchler R., Klemens E. & Volkmar W. (2006) Increased density of honeybee colonies affects foraging bumblebees. Apidologie37 , 517–532.CrossRefGoogle Scholar
  48. Wedderburn R. W. M. (1974) Quasi-likelihood functions, generalized linear models, and the Gauss—Newton method. Biometrika61 , 439–447.Google Scholar
  49. Westphal C., Steffan-Dewenter I. & Tscharntke T. (2006) Bumblebees experience landscapes at different spatial scales: possible implications for coexistence. Oecologia149 , 289–300.PubMedCrossRefGoogle Scholar
  50. Wood S. N. (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B.73 , 3–36.CrossRefGoogle Scholar
  51. Yokoi T. & Fujisaki K. (2011) To forage or not: Responses of bees to the presence of other bees on flowers. Ann. Entomol. Soc. Am.104 , 353–357.CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of BotanyUniversity of OtagoDunedinNew Zealand
  2. 2.Department of ZoologyUniversity of OtagoDunedinNew Zealand
  3. 3.AgResearch Limited, Invermay Agricultural CentreMosgielNew Zealand
  4. 4.Department of Mathematics and StatisticsUniversity of OtagoDunedinNew Zealand

Personalised recommendations