, Volume 50, Issue 5, pp 720–732 | Cite as

Temporal variation in homing ability of the neotropical stingless bee Scaptotrigona aff. postica (Hymenoptera: Apidae: Meliponini)

  • Alistair John CampbellEmail author
  • Rafael Leandro Corrêa Gomes
  • Karoline Chaves da Silva
  • Felipe Andrés León Contrera
Original article


Body size is a known predictor of foraging distance in stingless bees (Apidae: Meliponini). However, effects of seasonality on foraging distances, particularly in tropical regions, are poorly understood. Here, we use translocation (‘homing’) experiments, the release of marked individuals at various distances from the nest, to investigate how homing abilities of the Neotropical stingless bee, Scaptotrigona aff. postica differ across the transition between wet and dry seasons (February–August) in a heterogenous tropical landscape in the eastern Brazilian Amazon. We also determined nectar sugar concentrations of unmanipulated returning foragers to assess temporal changes in collected resource quality. Maximum and typical homing distances (i.e. distances where 90% and 50% of released bees are lost) were estimated to be 860 and 392 m, respectively, confirming that while some individuals travel long distances, most workers must remain close to nests during foraging trips. Homing distances and collected nectar sugar concentrations showed inverse temporal patterns, as homing range declined in later months (May to August), whereas nectar sugar concentrations increased over the same period. Thus, shorter homing distances in later ‘dry season’ months probably reflected an increased availability of floral resources compared with earlier months. Together, our findings highlight the limited spatial extent of foraging activities in S. aff. postica workers, and that bee homing distances vary with environmental conditions. These results provide useful information for both stingless bee colony management and conservation in humid tropical regions.


foraging range stingless bees Amazon rainforest translocation experiment tropical pollinators 



The authors would like to thank Embrapa Amazonia Oriental, especially Dr. Daniel Santiago Pereira for logistical support during the experiments, M.Sc. Kamila Leão Leão for help with colony maintenance and advice on sampling methods, Gabriel Érik Santiago de Melo and M.Sc. Ana Carolina Martins Queiroz for their help during the experiments, and Dr. Luísa Gigante Carvalheiro for critical comments on a previous draft of this manuscript.

Authors’ contribution

AJC and FALC devised the experiment; AJC, RLCG, and KCS performed experiments; AJC analysed data and wrote initial draft; all authors contributed to subsequent drafts and approved the final manuscript.

Funding information

AJC was supported by postdoctoral grants from CAPES/Embrapa (15/2014) and CNPq (300037/2018-0) in completing this research. RLCG was supported by a Ph.D grant from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior)-Brazil-Finance Code 001. CNPq/MCTIC/IBAMA/Associação ABELHA No 32/2017 (400585/2018-9) provided financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aleixo, K.P., Menezes, C., Imperatriz Fonseca, V.L. & da Silva, C.I. (2017) Seasonal availability of floral resources and ambient temperature shape stingless bee foraging behavior (Scaptotrigona aff. depilis). Apidologie. 48, 117–127.CrossRefGoogle Scholar
  2. Araújo, E.D., Costa, M., Chaud-Netto, J. & Fowler, H.G. (2004) Body size and flight distance in stingless bees (Hymenoptera: Meliponini): inference of flight range and possible ecological implications. Braz. J. Biol. 64, 563–568.CrossRefGoogle Scholar
  3. Archer, C.R., Pirk, C.W.W., Carvalheiro, L.G. & Nicolson, S.W. (2014) Economic and ecological implications of geographic bias in pollinator ecology in the light of pollinator declines. Oikos. 123, 401–407.CrossRefGoogle Scholar
  4. Ballantyne, G., Baldock, K.C.R., Rendell, L. & Willmer, P.G. (2017) Pollinator importance networks illustrate the crucial value of bees in a highly speciose plant community. Sci. Rep. 7, 8389.CrossRefGoogle Scholar
  5. Barton, K. (2015) MuMIn: Multi-model inference. R package version 1.9.13. Version, 1, 18.Google Scholar
  6. Bates, D., Mächler, M., Bolker, B.M. & Walker, S.C. (2015) Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48.CrossRefGoogle Scholar
  7. Bawa, K.S. (1990) Plant-pollinator interactions in tropical rain forests. Annu. Rev. Ecol. Syst. 21.Google Scholar
  8. Brown, J.C. & De Oliveira, M.L. (2014) The impact of agricultural colonization and deforestation on stingless bee (Apidae: Meliponini) composition and richness in Rondônia, Brazil. Apidologie. 45, 172–188.CrossRefGoogle Scholar
  9. Camargo, J.M.F. & Pedro, S.R.M. (2013). Meliponini Lepeletier, 1836. In Moure, J.S., Urban, D. & Melo, G.A.R. (Orgs). Catalogue of Bees (Hymenoptera. Apoidea) in the Neotropical Region [online] Accessed 3 July 2019.
  10. Cane, J.H. (1987) Estimation of Bee Size Using Intertegular Span (Apoidea). J. Kansas Entomol. Soc. 60, 145–147.Google Scholar
  11. Charnov, E.L. (1976) Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 9, 129–136.CrossRefGoogle Scholar
  12. Cortopassi-Laurino, M., Imperatriz-Fonseca, V.L., Roubik, D.W., Dollin, A., Heard, T., Aguilar, I., Venturieri, G., Eardley, C. & Nogueira-Neto, P. (2006) Global meliponiculture : challenges and opportunities. Apidologie. 37, 275–292.CrossRefGoogle Scholar
  13. Couvillon, M.J., Schürch, R. & Ratnieks, F.L.W. (2014) Waggle Dance Distances as Integrative Indicators of Seasonal Foraging Challenges. PLoS One. 9, e93495.CrossRefGoogle Scholar
  14. Gathmann, A. & Tscharntke, T. (2002) Foraging ranges of solitary bees. J. Anim. Ecol. 71, 757–764.CrossRefGoogle Scholar
  15. Giannini, T.C., Boff, S., Cordeiro, G.D., Cartolano Jr., E.A., Veiga, A.K., Imperatriz-Fonseca, V.L. & Saraiva, A.M. (2015) Crop pollinators in Brazil: a review of reported interactions. Apidologie. 46, 209–223.CrossRefGoogle Scholar
  16. Gomes, R.L.C., Menezes, C. & Contrera, F.A.L. (2015) Worker longevity in an Amazonian Melipona (Apidae, Meliponini) species: effects of season and age at foraging onset. Apidologie.Google Scholar
  17. Greenleaf, S.S., Williams, N.M., Winfree, R. & Kremen, C. (2007) Bee foraging ranges and their relationship to body size. Oecologia. 153, 589–596.CrossRefGoogle Scholar
  18. Hrncir, M. & Maia-Silva, C. (2013) On the Diversity of Foraging-Related Traits in Stingless Bees, in: Vit, P., Pedro, S.R.M., & Roubik, D. (eds), Pot-Honey: A legacy of stingless bees. Springer New York, New York, NY, pp. 201–215CrossRefGoogle Scholar
  19. Instituto Nacional de Meteorologia - INMET (2019) [online] (accessed on 03 July 2019).
  20. Jaffé, R., Pope, N., Carvalho, A.T., Maia, U.M., Blochtein, B., de Carvalho, C.A.L., Carvalho-Zilse, G.A., Freitas, B.M., Menezes, C., de Fátima Ribeiro, M., Venturieri, G.C. & Imperatriz-Fonseca, V.L. (2015) Bees for Development: Brazilian Survey Reveals How to Optimize Stingless Beekeeping. PLoS One. 10, e0121157.CrossRefGoogle Scholar
  21. Jarau, S. (2009) Chemical communication during food exploitation instingless bees, in: Jarau, S. & Hrncir, M. (eds), Food Exploitation bysocial insects: ecological, behavioral, and theoretical approaches. CRC University Press, Taylor and Francis Group Boca Raton, pp. 233–244CrossRefGoogle Scholar
  22. Kerr, W.E., Ferreira, A. & de Mattos, N.S. (1963) Communication among Stingless Bees-Additional Data (Hymenoptera: Apidae). J. New York Entomol. Soc. 71, 80–90.Google Scholar
  23. Klein, A.-M., Vaissière, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C. & Tscharntke, T. (2007) Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. R. Soc. 274, 303–313.CrossRefGoogle Scholar
  24. Kuhn-Neto, B., Contrera, F.A.L., Castro, M.S., Nieh, J.C., Silva, A.G., Pinto, R.S., Contrera, F.A.L., Albuquerque, P.M.C. & Rêgo, M.M.C. (2009) Long distance foraging and recruitment by a stingless bee, Melipona mandacaia. Apidologie. 40, 472–480.CrossRefGoogle Scholar
  25. Leão, K.L., Queiroz, A.C.M., Veiga, J.C., Contrera, F.A.L., & Venturieri, G.C. (2016) Colony Development and Management of the Stingless Bee Scaptotrigona aff. postica (Apidae: Meliponini) Using Different Hive Models. Sociobiology. 63, 1038–1045.Google Scholar
  26. Leonhardt, S.D. (2017) Chemical Ecology of Stingless Bees. J. Chem. Ecol. 43, 385–402.CrossRefGoogle Scholar
  27. Leonhardt, S.D., Kaluza, B.F., Wallace, H. & Heard, T.A. (2016) Resources or landmarks: which factors drive homing success in Tetragonula carbonaria foraging in natural and disturbed landscapes? J. Comp. Physiol. A: Neuroethol. Sens. Neural Behav. Physiol. 202, 701–708.CrossRefGoogle Scholar
  28. Marques-Souza, A.C., De Oliveira Moura, C. & Nelson, B.W. (1996) Pollen collected by Trigona williana (Hymenoptera: Apidae) in Central Amazonia. Rev. Biol. Trop. 44, 567–573.Google Scholar
  29. Marques-Souza, A.C., Absy, M.L. & Kerr, W.E. (2007) Pollen harvest features of the Central Amazonian bee Scaptotrigona fulvicutis Moure 1964 (Apidae: Meliponinae), in Brazil . Acta Bot. Bras. 21, 11–20.CrossRefGoogle Scholar
  30. Michener, C. (2007) The Bees of the World, 2nd edition. Johns Hopkins University Press. Baltimore and London.Google Scholar
  31. Nieh, J.C. (2004) Recruitment communication in stingless bees (Hymenoptera, Apidae, Meliponini). Apidologie. 35, 159–182.CrossRefGoogle Scholar
  32. Pahl, M., Zhu, H., Tautz, J. & Zhang, S. (2011) Large scale homing in honeybees. PLoS One. 6.Google Scholar
  33. Pasquet, R.S., Peltier, A., Hufford, M.B., Oudin, E., Saulnier, J., Paul, L., Knudsen, J.T., Herren, H.R. & Gepts, P. (2008) Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. Proc. Natl. Acad. Sci. 105, 13456–13461.CrossRefGoogle Scholar
  34. Peel, M.C., Finlayson, B.L. & McMahon, T.A. (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644.CrossRefGoogle Scholar
  35. Pedro, S.R.M. (2014) The Stingless Bee Fauna In Brazil (Hymenoptera: Apidae). Sociobiology. 61, 348–354.Google Scholar
  36. Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. (2016) nlme: Linear and Nonlinear Mixed Effects Models. R package version, R package, 1–86Google Scholar
  37. R Core Team (2017) R. R Core TeamGoogle Scholar
  38. Rader, R., Bartomeus, I., Garibaldi, L.A., Garratt, M.P.D., Howlett, B.G., Winfree, R., Cunningham, S.A., et al. (2016) Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. 113, 146–151.CrossRefGoogle Scholar
  39. Roubik, D.W. & Aluja, M. (1983) Flight Ranges of Melipona and Trigona in Tropical Forest. J. Kansas Entomol. Soc. 56, 217–222.Google Scholar
  40. Silva, A.G., Pinto, R.S., Contrera, F.A.L., Albuquerque, P.M.C. & Rêgo, M.M.C. (2014) Foraging distance of Melipona subnitida Ducke (Hymenoptera: Apidae). Sociobiology. 61, 494–501.Google Scholar
  41. Slaa, E.J., Chaves, L.A.S., Malagodi-Braga, K.S. & Hofstede, F.E. (2006) Stingless bees in applied pollination: practice and perspectives. Apidologie. 37, 293–315.CrossRefGoogle Scholar
  42. Smith, J.P., Heard, T.A., Beekman, M. & Gloag, R. (2017) Flight range of the Australian stingless bee Tetragonula carbonaria (Hymenoptera: Apidae). Austral Entomol. 56, 50–53.CrossRefGoogle Scholar
  43. Steffan-Dewenter, I. & Kuhn, A. (2003) Honeybee foraging in differentially structured landscapes. Proc. R. Soc. B: Biol. Sci. 270, 569–575.CrossRefGoogle Scholar
  44. van Nieuwstadt, G.L.M. & Ruano Iraheta, E.C. (1996) Relation between size and foraging range in stingless bees (Apidae, Meliponinae). Apidologie. 27, 219–228.CrossRefGoogle Scholar
  45. Vanbergen, A.J. (2013) Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 11, 251–259.CrossRefGoogle Scholar
  46. Veiga, J.C., Menezes, C., Venturieri, G.C. & Contrera, F.A.L. (2013) The bigger, the smaller: relationship between body size and food stores in the stingless bee Melipona flavolineata. Apidologie 44, 324–333.CrossRefGoogle Scholar
  47. Westphal, C., Steffan-Dewenter, I. & Tscharntke, T. (2006) Foraging trip duration of bumblebees in relation to landscape-wide resource availability. Ecol. Entomol. 31, 389–394.CrossRefGoogle Scholar
  48. Wiens, J.A., Stenseth, N.C., Van Horne, B. & Ims, R.A. (1993) Ecological Mechanisms and Landscape Ecology. Oikos. 66, 369–380.CrossRefGoogle Scholar
  49. Zurbuchen, A., Landert, L., Klaiber, J., Müller, A., Hein, S. & Dorn, S. (2010) Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biol. Conserv. 143, 669–676.CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratório de Biologia e Ecologia de Abelhas, Universidade Federal do ParáInstituto de Ciências BiológicasBelémBrazil
  2. 2.Departamento de EntomologiaEmbrapa Amazônia OrientalBelémBrazil

Personalised recommendations