, Volume 50, Issue 5, pp 616–631 | Cite as

Bioactivity of gallic acid–conjugated silica nanoparticles against Paenibacillus larvae and their host, Apis mellifera honeybee

  • Enzo DomínguezEmail author
  • María P. Moliné
  • María S. Churio
  • Valeria B. Arce
  • Daniel O. Mártire
  • Sara N. Mendiara
  • Brenda S. Álvarez
  • Liesel B. Gende
  • Natalia Damiani
Original article


The aim of this work was to evaluate antimicrobial activity against Paenibacillus larvae and oral toxicity against workers and larvae of Apis mellifera of gallic acid (GA) and two nanohybrids of GA and silica. Also, the physicochemical, structural, and energetic properties of GA and the nanohybrids were determined through structure–activity relationship (SAR). The minimum inhibitory concentration (MIC) against P. larvae was determined. GA showed MIC values between 62.5 and 125 μg/ml, whereas the nanoparticle functionalized through the GA carboxylic moiety (NP2) showed the best antimicrobial activity with a MIC value of 23 μg GA/ml for four of the five isolates used. SAR analysis showed that electronegativity, chemical hardness, and dipolar moment are reliable estimators of the antimicrobial activity. NP2 showed the lowest toxicity against workers and was innocuous for bee larvae. Therefore, the nanohybrid NP2 was the best antibacterial and resulted in non-toxic against workers and larvae of honeybees, becoming a potentially effective and safe agent for the treatment of American Foulbrood disease.


Apis mellifera Paenibacillus larvae gallic acid silica nanohybrid 


Author Contributions

AVB and MDO synthesized nanohybrids; MSN performed computer analyzes; ABS and MMP collaborated in antimicrobial assays; CMS read and corrected the manuscript; DN and GLB led the work.

Funding information

This work was supported by CONICET, EXA Project No. 779/16 (UNMDP) and CONICET PIP Project No. 0804 to LG.


  1. Ahmad, I., Farrukh, A., Mohammad, O. (2006) Modern Phytomedicine, Turning Medicinal Plants Into Drugs. John Wiley & Sons, WeinheimCrossRefGoogle Scholar
  2. Akagawa, M., Shigemitsu, T., Suyama, K. (2003) Production of hydrogen peroxide by polyphenols and polyphenol-rich beverages under quasi-physiological conditions. Biosci. Biotechnol. Biochem. 67 (12), 2632–2640PubMedCrossRefPubMedCentralGoogle Scholar
  3. Al-Sehemi, A.G., Irfan, A., Alrumman, S.A., Hesham A.E. (2016) Antibacterial activities, DFT and QSAR studies of quinazolinone compounds. Bull. Chem. Soc. Ethiop. 30 (2), 307–316CrossRefGoogle Scholar
  4. Antunez, K., Harriet, J., Gende, L.B., Maggi, M., Eguaras, M., Zunino, P. (2008) Efficacy of natural propolis extract in the control of American Foulbrood. Vet. Microbiol. 131 (3–4), 324–331PubMedCrossRefPubMedCentralGoogle Scholar
  5. Arakawa, H., Maeda, M., Okubo, S., Shimamura, T. (2004) Role of hydrogen peroxide in bactericidal action of catechin. Biol. Pharm. Bull. 27 (3), 277–281PubMedCrossRefPubMedCentralGoogle Scholar
  6. Arce, V.B. (2010) Modificación y caracterización de nanopartículas de sílice. Doctoral thesis. Facultad de Ciencias Exactas, Universidad Nacional de la Plata, ArgentinaGoogle Scholar
  7. Arce, V.B., Bertolotti, S.G., Oliveira, F.J., Airoldi, C., Arques, A., Santos-Juanes, L., Gonzalez, MC., Cobos, C.J., Allegretti, P.E., Mártire, D.O. (2012) Triplet state of 4-methoxybenzyl alcohol chemisorbed on silica nanoparticles. Photochem. Photobiol. Sci. 11 (6), 1032–1040PubMedCrossRefPubMedCentralGoogle Scholar
  8. Aupinel, P., Fortini, D., Dufour, H., Tasei, J.N., Michaud, B., Odoux, J.F., Delegue, M.H.P. (2005) Improvement of artificial feeding in a standard in vitro method for rearing Apis mellifera larvae. B. Insectol. 58 (2), 107–111Google Scholar
  9. Ben Arfa, A., Combes, S., Preziosi-Belloy, L., Gontard, N., Chalier, P. (2006) Antimicrobial activity of carvacrol related to its chemical structure. Lett. Appl. Microbiol. 43 (2), 149–154PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bogdanov, S. (2006) Contaminants of bee products. Apidologie 37 (1), 1–18.CrossRefGoogle Scholar
  11. Borges, A., Ferreira, C., Saavedra, M.J., Simões, M. (2013) Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 19 (4), 256–265.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bravo, L. (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 56 (11), 317–333PubMedCrossRefPubMedCentralGoogle Scholar
  13. Carrión, S.M. (2013) Estudio Teórico de las Propiedades Estructurales, Electrónicas, y de la Reactividad. Doctoral thesis. Facultad de Ciencias Exactas– Universidad Nacional de La Plata. La Plata.Google Scholar
  14. Chang, H.J., Kim, H.J., Chun, H.S. (2007) Quantitative structure–activity relationship (QSAR) for neuroprotective activity of terpenoids. Life Sci. 80 (9), 835–841.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chanwitheesuk, A., Teerawutgulrag, A., Kilburn, J.D., Rakariyatham, N. (2007) Antimicrobial gallic acid from Caesalpinia mimosoides Lamk. Food Chem. 100 (3), 1044–1048CrossRefGoogle Scholar
  16. Cho, Y.S., Kim, S.K., Ahn, C.B., Je, J.Y. (2011) Preparation, characterization, and antioxidant properties of gallic acid-grafted-chitosans. Carbohydr. Polym. 83 (4), 1617–1622CrossRefGoogle Scholar
  17. CLSI. (2018) Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically. 11th ed. CLSI standard M07. Wayne, PA: Clinical and Laboratory Standards InstituteGoogle Scholar
  18. Damiani, N., Fernández, N.J., Porrini, M.P., Gende, L.B., Álvarez, E., Buffa, F., Brasesco, C., Maggi, M.D., Marcangeli, J.A., Eguaras, M.J. (2014) Laurel leaf extracts for honeybee pest and disease management: antimicrobial, microsporicidal, and acaricidal activity. Parasitol. Res. 113 (2), 701–709PubMedCrossRefPubMedCentralGoogle Scholar
  19. Damiani, N., Porrini, M.P., Lancia, J.P., Álvarez, E., Garrido, P.M., Domínguez, E., Gende, L.B., Eguaras, M.J. (2017) Effect of propolis oral intake on physiological condition of young worker honey bees, Apis mellifera L. J. Apicult. Sci. 61 (2), 193–202CrossRefGoogle Scholar
  20. de Almeida Vaucher, R., Giongo, J.L., Bolzan, L.P., Côrrea, M.S., Fausto, V.P., et al. (2015) Antimicrobial activity of nanostructured Amazonian oils against Paenibacillus species and their toxicity on larvae and adult worker bees. J. Asia Pac. Entomol. 18 (2), 205–210CrossRefGoogle Scholar
  21. Deligiannakis, Y., Sotiriou, G.A., Pratsinis, S.E. (2012) Antioxidant and antiradical SiO2 nanoparticles covalently functionalized with gallic acid. ACS Appl. Mater. Interfaces 4 (12), 6609–6617PubMedCrossRefPubMedCentralGoogle Scholar
  22. Djukic, M., Brzuszkiewicz, E., Fünfhaus, A., Voss, J., Gollnow, K., Poppinga, L., Liesegang, H., Garcia-Gonzalez, E., Genersch, E., Daniel, R. (2014) How to kill the honey bee larva: Genomic potential and virulence mechanisms of Paenibacillus larvae. PLoS ONE 9 (3), e90914PubMedPubMedCentralCrossRefGoogle Scholar
  23. Duffy, L.L., Osmond-McLeod, M.J., Judy, J., King, T. (2018) Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control 92, 293–300.CrossRefGoogle Scholar
  24. Ebert, T., Kevan, P., Bishop, B., Kevan, S., Downer, R., (2007) Oral toxicity of essential oils and organic acids fed to honey bees (Apis mellifera). J. Apicult. Res. Bee World 46 (4), 220–224Google Scholar
  25. Eguaras, M., Ruffinengo, S. (2006) Estrategia para el control de Varroa. Ed. Martin, Mar del PlataGoogle Scholar
  26. Ensuncho, A.E., Robles, J.R., Figueredo, S.F. (2017) Modelado de las relaciones cuantitativas estructura-actividad (QSAR) de los derivados 5-(Nitroheteroaril)-1,3,4-tiadiazol con actividad leishmanicida. Inf. Tecnol. 28 (2), 191–202CrossRefGoogle Scholar
  27. Eslami, A., Pasanphan, W., Wagner, B., Buettner, G., (2010) Free radicals produced by the oxidation of gallic acid: An electron paramagnetic resonance study. Chem. Cent. J. 4 (1), 15Google Scholar
  28. Evans, J.D. (2003) Diverse origins of tetracycline resistance in the honey bee bacterial pathogen Paenibacillus larvae. J. Invertebr. Pathol. 83 (1), 46–50PubMedCrossRefPubMedCentralGoogle Scholar
  29. Fernández, N.J., Porrini, M.P., Podaza, E.A., Damiani, N., Liesel, B.G., Eguaras, M.J. (2014) A scientific note on the first report of honeybee venom inhibiting Paenibacillus larvae growth. Apidologie 45 (6), 719–721CrossRefGoogle Scholar
  30. Geerlings, P., De Proft, F., Langenaeker, W. (2003) Conceptual density functional theory. Chem. Rev. 103 (5), 1793–1874PubMedCrossRefPubMedCentralGoogle Scholar
  31. Gende, L.B., Floris, I., Fritz, R., Eguaras, M.J. (2008) Antimicrobial activity of cinnamon (Cinnamomum zeylanicum) essential oil and its main components against Paenibacillus larvae from Argentine. B. Insectol. 61 (1), 1–4Google Scholar
  32. Gende, L.B., Maggi, M., Damiani, N., Fritz, R., Eguaras, M.J., Floris, I. (2009) Advances in the apiary control of the honeybee American Foulbrood with Cinnamon (Cinnamomum zeylanicum) essential oil. B. insectol. 62 (1), 93–97Google Scholar
  33. Gende, L.B., Maggi, M., Van Baren, C., Di Leo, A., Bandoni, A., Fritz, R., Eguaras, M.J. (2010) Antimicrobial and miticide activities of Eucalyptus globulus essential oils obtained from different Argentine regions. Span. J. Agric. Res. 8 (3), 642–650CrossRefGoogle Scholar
  34. Genersch, E. (2010) Honey bee pathology: current threats to honey bees and beekeeping. Appl. Microbiol. Biotechnol. 87 (1), 87–97PubMedCrossRefPubMedCentralGoogle Scholar
  35. Giannakopoulos, E., Stathi, P., Dimos, K., Gournis, D., Sanakis, Y., Deligiannakis, Y. (2006) Adsorption and radical stabilization of humic-acid analogues and Pb 2+ on restricted phyllomorphous clay. Langmuir. 22 (16), 6863–6873PubMedCrossRefPubMedCentralGoogle Scholar
  36. Hetrick, E.M., Shin, J.H., Stasko, N.A., Johnson, C.B., Wespe, D.A., Holmuhamedov, E., Schoenfisch, M.H. (2008) Bactericidal efficacy of nitric oxide-releasing silica nanoparticles. ACS Nano 2 (2), 235–246PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hinde, R.J. (2000) Quantum Chemistry, Fifth Edition (by I.N. Levine). J. Chem. Educ. 77 (12), 1564CrossRefGoogle Scholar
  38. Hu, H., Nie, L., Feng, S., Suo, J. (2013) Preparation, characterization and in vitro release study of gallic acid loaded silica nanoparticles for controlled release. Pharmazie. 68 (6), 401–405PubMedPubMedCentralGoogle Scholar
  39. Jin, Y., Li, A., Hazelton, S.G., Liang, S., John, C.L., Selid, P.D., Pierce, D.T., Zhao, J.X. (2009) Amorphous silica nanohybrids: Synthesis, properties and applications. Coord. Chem. Rev. 253 (23–24), 2998–3014CrossRefGoogle Scholar
  40. Kaplan, E.L., Meier, P. (1958) Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53 (282), 457–481CrossRefGoogle Scholar
  41. Khan, S.U., Anjum, S.I., Ansari, M.J., Khan, M.H.U., Kamal, S., et al. (2018) Antimicrobial potentials of medicinal plant’s extract and their derived silver nanoparticles: A focus on honey bee pathogen. Saudi J. Biol. Sci., doi:
  42. Klein, A.M., Vaissiere, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., Tscharntke, T. (2007) Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 274 (1608), 303–313PubMedCrossRefPubMedCentralGoogle Scholar
  43. Kurita, N., Miyaji, M., Kurane, R., Takahara, Y. (1981) Antifungal activity of components of essential oils. Agric. Biol. Chem. 45 (4), 945–952Google Scholar
  44. Lindberg, C.M., Melathopoulos, A.P., Winston, M.L. (2000) Laboratory evaluation of miticides to control Varroa jacobsoni (Acari: Varroidae), a honey bee (Hymenoptera: Apidae) parasite. J. Econ. Entomol. 93 (2), 189–198PubMedCrossRefPubMedCentralGoogle Scholar
  45. Locatelli, C., Filippin-Monteiro, F.B., Creczynski-Pasa T.B. (2013) Alkyl esters of gallic acid as anticancer agents: A review. Eur. J. Med. Chem. 60, 233–239PubMedCrossRefPubMedCentralGoogle Scholar
  46. Maggi, M.D., Ruffinengo, S.R., Gende, L.B., Sarlo, E.G., Eguaras, M.J, Bailac, P.N., Ponzi, M.I. (2010) Laboratory evaluations of Syzygium aromaticum (L.) Merr. et Perry essential oil against Varroa destructor. J. Essen. Oil Res. 22 (2), 119–122Google Scholar
  47. Maistrello, L., Lodesani, M., Costa, C., Leonardi, F., Marani, G., Caldon, M., Mutinelli, F., Granato, A. (2008) Screening of natural compounds for the control of nosema disease in honeybees (Apis mellifera). Apidologie 39 (4), 436–445CrossRefGoogle Scholar
  48. Marino, T., Galano, A., Russo, N. (2014) Radical scavenging ability of gallic acid toward OH and OOH radicals. Reaction mechanism and rate constants from the density functional theory. J. Phys. Chem. B. 118 (35), 10380–10389PubMedCrossRefPubMedCentralGoogle Scholar
  49. Martel, A.C., Zeggane, S., Aurières, C., Drajnudel, P., Faucon, J.P., Aubert, M. (2007) Acaricide residues in honey and wax after treatment of honey bee colonies with Apivar® or Asuntol® 50. Apidologie 38 (6), 534–544CrossRefGoogle Scholar
  50. Martínez, J., Simon, V., Gonzalez, B., Conget, P. (2010) A real-time PCR-based strategy for the detection of Paenibacillus larvae vegetative cells and spores to improve the diagnosis and the screening of American foulbrood. Lett. Appl. Microbiol. 50 (6), 603–610PubMedCrossRefPubMedCentralGoogle Scholar
  51. Martínez-Castañon, G.A., Niño-Martínez, N., Martínez-Gutiérrez, F., Martínez-Mendoza, J.R., Ruíz, F. (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. Nanoparticle Res. 10 (8), 1343–1348CrossRefGoogle Scholar
  52. Mohanraj, V.J., Chen, Y. (2006) Nanoparticles - A review. Trop. J. Pharm. Res. 5 (1), 561–573Google Scholar
  53. Moreno-Álvarez, S.A., Martínez-Castañón, G.A., Niño-Martínez, N., Reyes-Macías, J. F., Patiño-Marín, N., Loyola-Rodríguez, J.P., Ruiz, F. (2010) Preparation and bactericide activity of gallic acid stabilized gold nanoparticles. J. Nanoparticle Res. 12 (8), 2741–2746CrossRefGoogle Scholar
  54. Nakamura, K., Yamada, Y., Ikai, H., Kanno, T., Sasaki K., Niwano, Y. (2012) Bactericidal action of photoirradiated gallic acid via reactive oxygen species formation. J. Agric. Food Chem. 60 (40), 10048–10054PubMedCrossRefPubMedCentralGoogle Scholar
  55. Panagiota, S., Louloudi, M., Deligiannakis, Y. (2009) EPR study of phenolic radical stabilization by grafting on SiO2. Chem. Phys. Lett. 472 (1–3), 85–89CrossRefGoogle Scholar
  56. Pearson, R.G. (1986) Absolute electronegativity and hardness correlated with molecular orbital theory. Proc. Natl. Acad. Sci. U.S.A. 83 (22), 8440–8441PubMedPubMedCentralCrossRefGoogle Scholar
  57. Porrini, M.P., Garrido, P.M., Gende, L.B., Rossini, C., Hermida, L., Marcángeli, J.A., Eguaras, M.J. (2017) Oral administration of essential oils and main components: Study on honey bee survival and Nosema ceranae development. J. Apicult. Res. 56 (5), 616–624CrossRefGoogle Scholar
  58. Pyrzynska, K., Biesaga, M. (2009) Analysis of phenolic acids and flavonoids in honey. Trends Analyt. Chem. 28 (7), 893–902Google Scholar
  59. Sánchez-Maldonado, A.F., Schieber, A., Gänzle, M.G. (2011) Structure-function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria: Antibacterial phenolic acids. J. Appl. Microbiol. 111 (5), 1176–1184PubMedCrossRefPubMedCentralGoogle Scholar
  60. Shimanuki, H. (1997) Bacteria. In: Flottum, K. (Ed.) Honey Bee Pests, Predators, and Disease, third ed. pp. 33–54, Medina, OhioGoogle Scholar
  61. Shukla, Y.N., Srivastava, A., Kumar, S., Kumar, S. (1999) Phytotoxic and antimicrobial constituents of Argyreia speciosa and Oenothera biennis. J. Ethnopharmacol. 67 (2), 241–245PubMedCrossRefPubMedCentralGoogle Scholar
  62. Taguri, T., Tanaka, T., Kouno, I. (2006) Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure. Biol. Pharm. Bull. 29 (11), 2226–2235PubMedCrossRefPubMedCentralGoogle Scholar
  63. Versalovic, J., Schneider, M., De Bruijn, F.J., Lupski, J.R. (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol. Cell. Biol. 5 (1), 25–40Google Scholar
  64. Vianna Santos, R.C., Lopes, L.Q.S, dos Santos Alves, C.F., Fausto, V.P., Pizzutti, K., et al. (2014) Antimicrobial activity of tea tree oil nanoparticles against American and European foulbrood diseases agents. J. Asia Pac. Entomol. 17 (3), 343–347Google Scholar
  65. Vico, T.A., Arce, V.B., Fangio, M.F., Gende, L.B., Bertran, C.A., Mártire, D.O., Churio, M.S. (2016) Two choices for the functionalization of silica nanoparticles with gallic acid: characterization of the nanomaterials and their antimicrobial activity against Paenibacillus larvae. J. Nanopart. Res. 18 (11), 348–360CrossRefGoogle Scholar
  66. Yah, C.S., Simate, G.S. (2015) Nanoparticles as potential new generation broad spectrum antimicrobial agents. DARU 23, 43 doi: CrossRefPubMedPubMedCentralGoogle Scholar
  67. Yang, F.L., Li, X.G., Zhu, F., Lei, C.L. (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Agric. Food. Chem. 57 (21), 10156–10162PubMedCrossRefPubMedCentralGoogle Scholar
  68. Yilmaz, Y., Toledo, R.T. (2004) Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. J. Agric. Food. Chem. 52 (2), 255–260PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  • Enzo Domínguez
    • 1
    • 2
    Email author
  • María P. Moliné
    • 1
    • 2
    • 3
  • María S. Churio
    • 3
    • 2
  • Valeria B. Arce
    • 4
    • 2
  • Daniel O. Mártire
    • 5
    • 2
  • Sara N. Mendiara
    • 6
  • Brenda S. Álvarez
    • 1
    • 2
  • Liesel B. Gende
    • 1
    • 2
  • Natalia Damiani
    • 1
    • 2
  1. 1.Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión de Investigaciones Científicas de la provincia de Buenos Aires (CIC), Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del PlataMar del Plata, Buenos AiresArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)CABAArgentina
  3. 3.Departamento de Química, Facultad de Ciencias Exactas y Naturales (FCEyN). Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), CONICETUniversidad Nacional de Mar del PlataMar del Plata, Buenos AiresArgentina
  4. 4.Centro de Investigaciones Ópticas (CIOp)CONICET - CIC - Universidad Nacional de La Plata (UNLP)Manuel B. Gonnet, Buenos AiresArgentina
  5. 5.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICETUniversidad Nacional de La Plata (UNLP)La Plata, Buenos AiresArgentina
  6. 6.Departamento de Química, Facultad de Ciencias Exactas y Naturales (FCEyN)Universidad Nacional de Mar del Plata (UNMdP)Mar del Plata, Buenos AiresArgentina

Personalised recommendations