Advertisement

Apidologie

, Volume 50, Issue 5, pp 595–605 | Cite as

Sublethal exposure to clothianidin during the larval stage causes long-term impairment of hygienic and foraging behaviours of honey bees

  • Nuria MorfinEmail author
  • Paul H. Goodwin
  • Adriana Correa-Benitez
  • Ernesto Guzman-Novoa
Original article

Abstract

Most studies on the effects of neonicotinoid insecticides on neural processes of honey bees are based on behaviours performed by adult bees exposed as adults. It is unclear how the developing brains of honey bee larvae are affected by sublethal doses of neonicotinoid insecticides when measuring neural processes through behavioural performance in adult bees. In this study, larvae were exposed to three sublethal doses of clothianidin and evaluated 25–36 days later for hygienic and foraging behaviours as adult bees. The medium and highest sublethal doses of clothianidin significantly reduced hygienic and foraging activity. The greatest effects were on the proportion of adult bees foraging and carrying pollen. These results show that exposure of larvae to clothianidin results in negative effects extending into the adulthood of bees, possibly compromising the colony’s fitness by impairing pathogen control mechanisms and by reducing pollen collection.

Keywords

honey bee larvae  hygienic behavior  foraging behavior  neonicotinoids neural processes 

Notes

Acknowledgements

We thank Paul Kelly, Nancy Bradbury, Dave Stotesbury, Santiago Magaña, Brook Wallace, Stephanie Otto, Patrick Boelsteri, Iván Darío Samur, Cassandra Wiesner, Catherin VanderHeyden and Wendy Shipsides for their assistance during the experiments. We also thank Greg J. Hunt and Nigel Raine for their valuable comments of earlier versions of the manuscript.

Authors’ contributions

EG project planning and design; NM field experiments and data collection; NM, EG, PHG and AC data analyses. NM, PHG and EG wrote the paper. All authors read and approved the final manuscript.

Funding information

This work was partially supported by a New Directions grant from the Ontario Ministry of Agriculture Food and Rural Affairs (OMAFRA) and by a grant from the Pinchin family to EG.

Compliance and ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alfonsus E.C. (1933). Zum Pollenverbrauch des Bienenvolkes. Arch. Bienenkd. 14, 220–223.Google Scholar
  2. Arathi, H. S., Burns, I., Spivak, M. (2000). Ethology of hygienic behaviour in the honey bee Apis mellifera L. (Hymenoptera: Apidae): behavioural repertoire of hygienic bees. Ethology 106(4), 365–379.CrossRefGoogle Scholar
  3. Babendreier, D., Kalberer, N., Romeis, J., Fluri, P., Bigler, F. (2004). Pollen consumption in honey bee larvae: a step forward in the risk assessment of transgenic plants. Apidologie, 35(3), 293–300.CrossRefGoogle Scholar
  4. Blacquière, T., Smagghe, G., Van Gestel, C.A., Mommaerts, V. (2012). Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21(4), 973–992.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Böhme, F., Bischoff, G., Zebitz, C. P., Rosenkranz, P., Wallner, K. (2018). From field to food - will pesticide-contaminated pollen diet lead to a contamination of royal jelly? Apidologie, 49(1), 112–119CrossRefGoogle Scholar
  6. Brunet, J.L., Badiou, A., Belzunces, L.P. (2005). In vivo metabolic fate of [14C]-acetamiprid in six biological compartments of the honeybee, Apis mellifera L. Pest Manag. Sci. 61(8), 742–748.CrossRefGoogle Scholar
  7. Christen, V., Mittner, F., Fent, K. (2016). Molecular effects of neonicotinoids in honey bees (Apis mellifera). Environ. Sci. Technol. 50(7), 4071–4081.CrossRefGoogle Scholar
  8. Costa, L. G., Giordano, G., Guizzetti, M., Vitalone, A. (2008). Neurotoxicity of pesticides: a brief review. Front. Biosci. 13(4), 1240–1249.CrossRefGoogle Scholar
  9. Counotte, D.S., Goriounova, N.A., Li, K.W., Loos, M., Van Der Schors, R.C., Schetters, D., Schoffelmeer, A.N., Smit, A.B., Mansvelder, H.D., Pattij, T., Spijker, S. (2011). Lasting synaptic changes underlie attention deficits caused by nicotine exposure during adolescence. Nat. Neurosci. 14(4), 417–419.CrossRefGoogle Scholar
  10. Cutler, G. C., Scott-Dupree, C. D. (2007). Exposure to clothianidin seed-treated canola has no long-term impact on honey bees. J. Econ. Entomol. 100(3), 765–772.CrossRefGoogle Scholar
  11. Daniele, G., Giroud, B., Jabot, C., Vulliet, E. (2018). Exposure assessment of honeybees through study of hive matrices: analysis of selected pesticide residues in honeybees, beebread, and beeswax from French beehives by LC-MS/MS. Environ. Sci. Pollut. Res. 25(7), 6145–6153.CrossRefGoogle Scholar
  12. Dhuriya, Y. K., Srivastava, P., Shukla, R. K., Gupta, R., Singh, D., Parmar, D., Pant A. B., Khanna, V. K. (2017). Prenatal exposure to lambda-cyhalothrin alters brain dopaminergic signaling in developing rats. Toxicology 386, 49–59.CrossRefGoogle Scholar
  13. Dively, G. P., Embrey, M. S., Kamel, A., Hawthorne, D. J., Pettis, J. S. (2015). Assessment of chronic sublethal effects of imidacloprid on honey bee colony health. PloS One, 10(3), e0118748.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Doublet, V., Labarussias, M., de Miranda, J.R., Moritz, R.F., Paxton, R.J. (2015). Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ. Microbiol. 17(4), 969–983.CrossRefGoogle Scholar
  15. Esch, H. (2012.) Foraging honey bees: how foragers determine and transmit information about feeding site locations. In: Galizia C., Eisenhardt D., Giurfa M. (Eds), Honeybee neurobiology and behavior. Springer, Berlin, pp. 53–64.CrossRefGoogle Scholar
  16. European Food Safety Authority (EFSA). (2013). Conclusion on the peer review of the pesticide risk assessment for bees for the active substance clothianidin. EFSA, 11(1):3066.CrossRefGoogle Scholar
  17. Fischer, J., Mueller, T., Spatz, A. K., Greggers, U., Gruenewald, B., Menzel, R. (2014). Neonicotinoids interfere with specific components of navigation in honeybees. PloS One 9(3), e91364.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Food and Agriculture Organization (FAO). Specifications and evaluations for agricultural pesticides, thiacloprid. 2010. [online] http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Specs/Thiacloprid_2010.pdf (accessed 01 January 2019).
  19. Gill, R. J., Ramos-Rodriguez, O., Raine, N. E. (2012). Combined pesticide exposure severely affects individual and colony-level traits in bees. Nature, 491(7422), 105.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Grandjean, P., Landrigan, P.J. (2006). Developmental neurotoxicity of industrial chemicals. Lancet, 368(9553), 2167–2178.CrossRefGoogle Scholar
  21. Guzman-Novoa, E., Gary, N. E. (1993). Genotypic variability of components of foraging behavior in honey bees (Hymenoptera: Apidae). J. Econ. Entomol. 86(3), 715–721.CrossRefGoogle Scholar
  22. Hamiduzzaman, M.M., Sinia, A., Guzman-Novoa, E., Goodwin, P.H. (2012). Entomopathogenic fungi as potential biocontrol agents of the ecto-parasitic mite, Varroa destructor, and their effect on the immune response of honey bees (Apis mellifera L.). J. Invertebr. Pathol. 111(3), 237–243.CrossRefGoogle Scholar
  23. He, X., Gao, J., Dong, T., Chen, M., Zhou, K., Chang, C., Luo J., Wang C., Chen D., Zhou, Z., Tian Y., Xia Y., Wang X. (2016). Developmental neurotoxicity of methamidophos in the embryo larval stages of zebrafish. Int. J. Environ. Res. Public Health 14(1), 23–34.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Henry, M., Beguin, M., Requier, F., Rollin, O., Odoux, J. F., Aupinel, P., Aptel J., Tchmitchian S., Decourtye, A. (2012). A common pesticide decreases foraging success and survival in honey bees. Science 336(6079), 348–350.CrossRefGoogle Scholar
  25. Invernizzi C., Corbella E. (1999). Edad de las obreras que realizan comportamiento higiénico y otros comportamientos en las abejas Apis mellifera, Revista de Etología 2, 78–87.Google Scholar
  26. Jabot, C., Fieu, M., Giroud, B., Buleté, A., Casabianca, H., Vulliet, E. (2015). Trace-level determination of pyrethroid, neonicotinoid and carboxamide pesticides in beeswax using dispersive solid-phase extraction followed by ultra-high-performance liquid chromatography-tandem mass spectrometry. Int. J. Environ. Anal. Chem. 95(3), 240–257.CrossRefGoogle Scholar
  27. Lundin, O., Rundlöf, M., Smith, H. G., Fries, I., Bommarco, R. (2015). Neonicotinoid insecticides and their impacts on bees: a systematic review of research approaches and identification of knowledge gaps. PLoS One 10(8), e0136928.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Masterman, R., Smith, B. H., Spivak, M. (2000). Brood odor discrimination abilities in hygienic honey bees (Apis mellifera L.) using proboscis extension reflex conditioning. J. Insect Behav. 13(1), 87–101.CrossRefGoogle Scholar
  29. Page Jr, R. E. (2012). The spirit of the hive and how a superorganism evolves. In: Galizia C., Eisenhardt D., Giurfa M (Eds.), Honeybee neurobiology and behavior. Springer, Berlin, pp. 3–16.CrossRefGoogle Scholar
  30. Pilling, E., Campbell, P., Coulson, M., Ruddle, N., Tornier, I. (2013). A four-year field program investigating long-term effects of repeated exposure of honey bee colonies to flowering crops treated with thiamethoxam. PLoS One 8(10), e77193.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Pisa, L. W., Amaral-Rogers, V., Belzunces, L. P., Bonmatin, J. M., Downs, C. A., Goulson, D., Kreutzweiser D.P., Krupke C., Liess M., McField M., Morrisey C.A., Noome D.A., Settele J., Simmon-Delso N., Stark D. (2015). Effects of neonicotinoids and fipronil on non-target invertebrates. Environ. Sci. Pollut. R. 22(1), 68–102.CrossRefGoogle Scholar
  32. R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
  33. Rosov, S.A. (1944). Food consumption by bees. Bee World 25, 94–95.Google Scholar
  34. Roulston, T.H., Cane, J. H. (2000). Pollen nutritional content and digestibility for animals. Plant Syst. Evol. 222: 187–209.CrossRefGoogle Scholar
  35. Seeley, T. D., Visscher, P. K. (1985). Survival of honeybees in cold climates: the critical timing of colony growth and reproduction. Ecol. Entomol. 10(1), 81–88.CrossRefGoogle Scholar
  36. Simpson, J. (1955). The significance of the presence of pollen in the food of worker larvae of the honey-bee. J. Cell Sci. 3(33), 117–120.Google Scholar
  37. Slotkin, T.A., 2004. Cholinergic systems in brain development and disruption by neurotoxicants: nicotine, environmental tobacco smoke, organophosphates. Toxicol. Appl. Pharmacol. 198(2), 132–151.CrossRefGoogle Scholar
  38. Spivak, M. (1996). Honey bee hygienic behavior and defense against Varroa jacobsoni. Apidologie 27(4), 245–260.CrossRefGoogle Scholar
  39. Spivak, M., Reuter, G. S. (2001). Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie 32(6), 555–565.CrossRefGoogle Scholar
  40. Spivak, M., Masterman, R., Ross, R., Mesce, K. A. (2003). Hygienic behavior in the honey bee (Apis mellifera L.) and the modulatory role of octopamine. Dev. Neurobiol. 55(3), 341–354.CrossRefGoogle Scholar
  41. Tan, K., Chen, W., Dong, S., Liu, X., Wang, Y., Nieh, J.C. (2015). A neonicotinoid impairs olfactory learning in Asian honey bees (Apis cerana) exposed as larvae or as adults. Sci. Rep. 5, 10989.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Tomizawa, M., Casida, J.E. (2008). Molecular recognition of neonicotinoid insecticides: the determinants of life or death. Acc. Chem. Res. 42(2), 260–269.CrossRefGoogle Scholar
  43. Tosi, S., Burgio, G., Nieh, J. C. (2017). A common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability. Sci. Rep. 7(1), 1201.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Tsvetkov, N., Samson-Robert, O., Sood, K., Patel, H. S., Malena, D. A., Gajiwala, P. H., Maciukiewicz P., Fournier V., Zayed, A. (2017). Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science 356(6345), 1395–1397.CrossRefGoogle Scholar
  45. Uneme, H. (2010). Chemistry of clothianidin and related compounds. J. Agric.Food Chem. 59(7), 2932–2937.CrossRefGoogle Scholar
  46. Unger, P., Guzman-Novoa, E. (2010). Maternal effects on the hygienic behavior of Russian× Ontario hybrid honeybees (Apis mellifera L.). J. Hered. 101(1), 91–96.CrossRefGoogle Scholar
  47. Vidau, C., Diogon, M., Aufauvre, J., Fontbonne, R., Viguès, B., Brunet, J.L., Texier, C., Biron, D.G., Blot, N., El Alaoui, H., Belzunces, L.P. (2011). Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS One 6(6), p.e21550.Google Scholar
  48. Webb, B. (2012). Cognition in insects. Philos. Trans. Royal. Soc. B. 367(1603), 2715–2722.CrossRefGoogle Scholar
  49. Winston, M. L. (1991). The biology of the honey bee. (1st ed). Harvard University Press, Cambridge.Google Scholar
  50. Wu, Y.Y., Luo, Q.H., Hou, C.S., Wang, Q., Dai, P.L., Gao, J., Liu, Y.J., Diao, Q.Y. (2017). Sublethal effects of imidacloprid on targeting muscle and ribosomal protein related genes in the honey bee Apis mellifera L. Sci. Rep., 7(1), 15943.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wu-Smart, J., Spivak, M. (2016). Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development. Sci. Rep., 6(32108), 1–11.Google Scholar
  52. Yang, E.C., Chang, H.C., Wu, W.Y., Chen, Y.W. (2012). Impaired olfactory associative behavior of honeybee workers due to contamination of imidacloprid in the larval stage. PloS One 7(11), p.e49472.Google Scholar
  53. Zahalka, E.A., Seidler, F.J., Lappi, S.E., McCook, E.C., Yanai, J., Slotkin, T.A. (1992). Deficits in development of central cholinergic pathways caused by fetal nicotine exposure: differential effects on choline acetyltransferase activity and [3H] hemicholinium-3 binding. Neurotoxicol. Teratol. 14(6), 375–382.CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Environmental SciencesUniversity of GuelphGuelphCanada
  2. 2.Departamento de Abejas, Conejos y Organismos AcuáticosFMVZ, UNAMMexico CityMexico

Personalised recommendations