pp 1–12 | Cite as

Low maize pollen collection and low pesticide risk to honey bees in heterogeneous agricultural landscapes

  • Christine UrbanowiczEmail author
  • Nicolas Baert
  • Sarah E. Bluher
  • Katalin Böröczky
  • Marcel Ramos
  • Scott H. McArt
Original article


Honey bees foraging on and around maize may be exposed to a number of pesticides, including neonicotinoids, but this exposure has not been well quantified in heterogeneous landscapes. Such landscapes may provide alternative foraging resources that add to or buffer pesticide risk. We assessed the influence of landscape context and maize pollen collection on pesticide levels during maize flowering. We quantified pesticides in (1) bee bread from 49 hives across New York and (2) pollen trapped weekly in one yard. Landscape composition and percent maize pollen were not related to pesticide levels. Furthermore, pesticide risk was low (< 1% contact LD50) in all but one of the pollen samples, and maize pollen was absent in the majority of samples. Our results suggest that hives near maize fields during maize flowering are not necessarily exposed to high levels of neonicotinoids and other pesticides in pollen, especially if uncontaminated pollen sources exist nearby.


maize Zea mays corn pesticides neonicotinoids pollinator Apis mellifera 



We thank Andy Card, Ashley Fersch, and Nelson Milano with assistance in the field and lab.

Authors contribution

SM, SB, and KB conceived this research and designed the field studies; SB collected the field data; NB, KB, and MR performed lab analyses; CU analyzed the data; CU and SM interpreted the data; CU wrote the first manuscript draft; SM and CU revised the manuscript. All authors read, edited, and approved the final manuscript.

Funding information

This study was funded by the USDA (Federal Capacity Fund #1010568) and the NYS Environmental Protection Fund. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aliouane Y, el Hassani AK, Gary V, Armengaud C, Lambin M, Gauthier M (2009) Subchronic exposure of honeybees to sublethal doses of pesticides: Effects on behavior. Environ. Toxicol. Chem. 28:113–122 . CrossRefGoogle Scholar
  2. Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 86:412–431Google Scholar
  3. Anderson KE, Carroll MJ, Sheehan T, Mott BM, Maes P, Corby-Harris V (2014) Hive-stored pollen of honey bees: many lines of evidence are consistent with pollen preservation, not nutrient conversion. Mol. Ecol. 23:5904–5917. CrossRefGoogle Scholar
  4. Balbuena MS, Tison L, Hahn M-L, Greggers U, Menzel R, Farina WM (2015) Effects of sublethal doses of glyphosate on honeybee navigation. J. Exp. Biol. 218:2799–2805. CrossRefGoogle Scholar
  5. Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, Dai B, Scheipl F, Grothendieck G, and Green D (2018) The lme4 package. R package version 1.1–18-1Google Scholar
  6. Bonmatin JM, Marchand PA, Charvet R, Moineau I, Bengsch ER, Colin ME (2005) Quantification of imidacloprid uptake in maize crops. J. Agric. Food Chem. 53:5336–5341. CrossRefGoogle Scholar
  7. Botías C, David A, Horwood J, Abdul-Sada A, Nicholls E, Hill E, Goulson D (2015) Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. Environ. Sci. Technol. 49:12731–12740. CrossRefGoogle Scholar
  8. Couvillon MJ, Schürch R, Ratnieks FLW (2014) Waggle dance distances as integrative indicators of seasonal foraging challenges. PLoS One 9:e93495. CrossRefGoogle Scholar
  9. Cresswell JE (2011) A meta-analysis of experiments testing the effects of a neonicotinoid insecticide (imidacloprid) on honey bees. Ecotoxicology 20:149–157. CrossRefGoogle Scholar
  10. Danner N, Härtel S, Steffan-Dewenter I (2014) Maize pollen foraging by honey bees in relation to crop area and landscape context. Basic Appl. Ecol. 15:677–684.
  11. Douglas MR, Tooker JF (2015) Large-scale deployment of seed treatments has driven rapid increase in use of neonicotinoid insecticides and preemptive pest management in U.S. field crops. Environ. Sci. Technol. 49:5088–5097. CrossRefGoogle Scholar
  12. Fernandez-Cornejo J, Nehring RF, Osteen C, Wechsler S, Martin A, Vialou A (2014) Pesticide use in U.S. agriculture: 21 selected crops, 1960–2008. U.S. Department of Agriculture, Economic Research ServiceGoogle Scholar
  13. Frazier M, Mullin C, Frazier J, Ashcraft S (2008) What have pesticides got to do with it? Am. Bee J. 148:521–524Google Scholar
  14. Frazier MT, Mullin CA, Frazier JL, Ashcraft SA, Leslie TW, Mussen EC, Drummond FA (2015) Assessing honey bee (Hymenoptera: Apidae) foraging populations and the potential impact of pesticides on eight U.S. crops. J. Econ. Entomol. 108:2141–2152. CrossRefGoogle Scholar
  15. Gill RJ, Ramos-Rodriguez O, Raine NE (2012) Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491:105–108. CrossRefGoogle Scholar
  16. Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1255957. CrossRefGoogle Scholar
  17. Keller I, Fluri P, Imdorf A (2005) Pollen nutrition and colony development in honey bees: part 1. Bee World 86:3–10. CrossRefGoogle Scholar
  18. Klungness LM, Peng Y-S (1983) A scanning electron microscopic study of pollen loads collected and stored by honeybees. J. Apic. Res. 22:264–271. CrossRefGoogle Scholar
  19. Krupke CH, Hunt GJ, Eitzer BD, Andino G, Given K (2012) Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS One 7:e29268. CrossRefGoogle Scholar
  20. Krupke CH, Holland JD, Long EY, Eitzer BD (2017) Planting of neonicotinoid-treated maize poses risks for honey bees and other non-target organisms over a wide area without consistent crop yield benefit. J. Appl. Ecol. 54:1449–1458. CrossRefGoogle Scholar
  21. Lawrence TJ, Culbert EM, Felsot AS, Hebert VR, Sheppard WS (2016) Survey and risk assessment of Apis mellifera (Hymenoptera: Apidae) exposure to neonicotinoid pesticides in urban, rural, and agricultural settings. J. Econ. Entomol. 109:520–528. CrossRefGoogle Scholar
  22. Long EY, Krupke CH (2016) Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nat. Commun. 7:11629. CrossRefGoogle Scholar
  23. Magnusson A, Skaug HJ, Nielsen A, Berg CW, Kristensen K, Maechler M, van Bentham K, Bolker B, Brooks ME (2017) glmmTMB: Generalized linear mixed models using a template model builder. R package version 0.1 3 Google Scholar
  24. Manning R (2018) Chemical residues in beebread, honey, pollen and wax samples collected from bee hives placed on canola crops in Western Australia. J. Apic. Res. 57:696–708. CrossRefGoogle Scholar
  25. Marzaro M, Vivan L, Targa A, Mazzon L, Mori N, Greatti M, Toffolo EP, di Bernardo A, Giorio C, Marton D, Tapparo A, Girolami V (2011) Lethal aerial powdering of honey bees with neonicotinoids from fragments of maize seed coat. Bull. Insectology 64:119–126Google Scholar
  26. McArt SH, Fersch AA, Milano NJ, Truitt LL, Böröczky K (2017) High pesticide risk to honey bees despite low focal crop pollen collection during pollination of a mass blooming crop. Sci. Rep. 7:46554. CrossRefGoogle Scholar
  27. Motta EVS, Raymann K, Moran NA (2018) Glyphosate perturbs the gut microbiota of honey bees. Proc. Natl. Acad. Sci. 115:10305–10310. CrossRefGoogle Scholar
  28. Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, vanEngelsdorp D, Pettis JS (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 5:e9754. CrossRefGoogle Scholar
  29. Mullen E, Wheeler MK, Mcart S, Cappy P (2017) NYS Beekeeper Tech Team Report. Accessed 1 Oct 2018
  30. Munkvold GP (2009) Seed pathology progress in academia and industry. Annu. Rev. Phytopathol. 47:285–311. CrossRefGoogle Scholar
  31. Odoux J-F, Feuillet D, Aupinel P, Loublier Y, Tasei J-N, Mateescu C (2012) Territorial biodiversity and consequences on physico-chemical characteristics of pollen collected by honey bee colonies. Apidologie 43:561–575. CrossRefGoogle Scholar
  32. Park MG, Blitzer EJ, Gibbs J, Losey JE, Danforth BN (2015) Negative effects of pesticides on wild bee communities can be buffered by landscape context. Proc. R. Soc. B 282:20150299. CrossRefGoogle Scholar
  33. Pettis JS, Lichtenberg EM, Andree M, Stitzinger J, Rose R, vanEngelsdorp D (2013) Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS One 8:e70182. CrossRefGoogle Scholar
  34. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25:345–353. CrossRefGoogle Scholar
  35. Prisco GD, Cavaliere V, Annoscia D, Varricchio P, Caprio E, Nazzi F, Gargiulo G, Pennacchio F (2013) Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc. Natl. Acad. Sci. 110:18466–18471. CrossRefGoogle Scholar
  36. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  37. Rundlöf M, Andersson GKS, Bommarco R, Fries I, Hederström V, Herbertsson L, Jonsson O, Klatt BK, Pedersen TR, Yourstone J, Smith HG (2015) Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521:77–80. CrossRefGoogle Scholar
  38. Samson-Robert O, Labrie G, Chagnon M, Fournier V (2017) Planting of neonicotinoid-coated corn raises honey bee mortality and sets back colony development. PeerJ 5.
  39. Sanchez-Bayo F, Goka K (2014) Pesticide residues and bees – A risk assessment. PLoS One 9:e94482. CrossRefGoogle Scholar
  40. Sandrock C, Tanadini M, Tanadini LG, Fauser-Misslin A, Potts SG, Neumann P (2014) Impact of chronic neonicotinoid exposure on honeybee colony performance and queen supersedure. PLoS One 9:e103592. CrossRefGoogle Scholar
  41. Sgolastra F, Arnan X, Cabbri R, Isani G, Medrzycki P, Teper D, Bosch J (2018) Combined exposure to sublethal concentrations of an insecticide and a fungicide affect feeding, ovary development and longevity in a solitary bee. Proc. R. Soc. B 285:20180887. CrossRefGoogle Scholar
  42. Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke CH, Liess M, Long E, McField M, Mineau P, Mitchell EAD, Morrissey CA, Noome DA, Pisa L, Settele J, Stark JD, Tapparo A, Van Dyck H, Van Praagh J, Van der Sluijs JP, Whitehorn PR, Wiemers M (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 22:5–34. CrossRefGoogle Scholar
  43. Smart MD, Pettis JS, Euliss N, Spivak MS (2016) Land use in the Northern Great Plains region of the U.S. influences the survival and productivity of honey bee colonies. Agric. Ecosyst. Environ. 230:139–149. CrossRefGoogle Scholar
  44. Steffan-Dewenter I, Kuhn A (2003) Honeybee foraging in differentially structured landscapes. Proc. R. Soc. Lond. B Biol. Sci. 270:569–575. CrossRefGoogle Scholar
  45. Stoner KA, Eitzer BD (2012) Movement of soil-applied imidacloprid and thiamethoxam into nectar and pollen of squash (Cucurbita pepo). PLoS One 7:e39114. CrossRefGoogle Scholar
  46. Stoner KA, Eitzer BD (2013) Using a hazard quotient to evaluate pesticide residues detected in pollen trapped from honey bees (Apis mellifera) in Connecticut. PLoS One 8:e77550. CrossRefGoogle Scholar
  47. Tomlin CD (2013) The pesticide manual: A world compendium (16th edition). British Crop Production CouncilGoogle Scholar
  48. Tosi S, Costa C, Vesco U, Quaglia G, Guido G (2018) A 3-year survey of Italian honey bee-collected pollen reveals widespread contamination by agricultural pesticides. Sci. Total Environ. 615:208–218.
  49. Tsvetkov N, Samson-Robert O, Sood K, Patel HS, Malena DA, Gajiwala PH, Maciukiewicz P, Fournier V, Zayed A (2017) Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science 356:1395–1397. CrossRefGoogle Scholar
  50. Ucar T, Hall FR (2001) Windbreaks as a pesticide drift mitigation strategy: a review. Pest Manag. Sci. 57:663–675. CrossRefGoogle Scholar
  51. USDA-NASS Cropland Data Layer (2014) Published crop-specific data layer. Accessed 1 Sept 2018
  52. USDA-NASS (2017) USDA-National Agricultural Statistics Service Quick Stats. Accessed 15 Jan 2019
  53. Visscher PK, Seeley TD (1982) Foraging strategy of honeybee colonies in a temperate deciduous forest. Ecology 63:1790–1801. CrossRefGoogle Scholar
  54. Williams GR, Troxler A, Retschnig G, Roth K, Yañez O, Shutler D, Neumann P, Gauthier L (2015) Neonicotinoid pesticides severely affect honey bee queens. Sci. Rep. 5:14621. CrossRefGoogle Scholar
  55. Woodcock BA, Bullock JM, Shore RF, Heard MS, Pereira MG, Redhead J, Ridding L, Dean H, Sleep D, Henrys P, Peyton J, Hulmes S, Hulmes L, Sárospataki M, Saure C, Edwards M, Genersch E, Knäbe S, Pywell RF (2017) Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356:1393–1395. CrossRefGoogle Scholar
  56. Wu JY, Anelli CM, Sheppard WS (2011) Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PLoS One 6:e14720. CrossRefGoogle Scholar
  57. Wu JY, Smart MD, Anelli CM, Sheppard WS (2012) Honey bees (Apis mellifera) reared in brood combs containing high levels of pesticide residues exhibit increased susceptibility to Nosema (Microsporidia) infection. J. Invertebr. Pathol. 109:326–329. CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of EntomologyCornell UniversityIthacaUSA
  2. 2.Comstock HallCornell UniversityIthacaUSA

Personalised recommendations