Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Sperm maturation process occurs in the seminal vesicle following sperm transition from testis in honey bee males

  • 105 Accesses

Abstract

In sexual reproduction, ejaculate components that males transfer into the females vary because of various factors. For male honey bees, the entirety of their sperm is stored in the seminal vesicles until the first copulation with a female and subsequent ejaculation, after which the male will die. Therefore, we can evaluate age-related ejaculate alterations by investigating internal sexual organ changes with age. This study found that seminal vesicle wet weight decreased following sperm transfer from testes to seminal vesicles, while mucus gland weight was unchanged, thus resulting in increased sperm density in the seminal vesicles. This suggests that the decrease of seminal fluid in the seminal vesicles may be the underlying cause for age-related ejaculate component alterations.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3

References

  1. Baer B (2005) Sexual selection in Apis bees. Apidologie 36:187–200.

  2. Baer B, Armitage SAO, Boomsma JJ (2006) Sperm storage induces an immunity cost in ants. Nature 441:872–875.

  3. Baer B, Heazlewood JL, Taylor NL, Eubel H, Millar AH (2009) The seminal fluid proteome of the honeybee Apis mellifera. Proteomics 9:2085–2097.

  4. Baer B, Zareie R, Paynter E, Poland V, Millar AH (2012) Seminal fluid proteins differ in abundance between genetic lineages of honeybees. J. Proteome 75:5646–5653.

  5. Bateman AJ (1948) Intra-sexual selection in Drosophila. Heredity 2:349–368.

  6. Bishop GH (1920) Fertilization in the honey-bee. I. The male sexual organs: their histological structure and physiological functioning. J. Exp. Zool. 31:224–265.

  7. Boomsma JJ, Baer B, Heinze J (2005) The evolution of male traits in social insects. Annu. Rev. Entomol. 50:395–420.

  8. Capaldi EA, Dyer FC (1999) The role of orientation flights on homing performance in honeybees. J. Exp. Biol. 202:1655–1666.

  9. Cobey SW (2007) Comparison studies of instrumentally inseminated and naturally mated honey bee queens and factors affecting their performance. Apidologie 38:390–410.

  10. Collins AM, Caperna TJ, Williams V, Garrett WM, Evans JD (2006) Proteomic analyses of male contributions to honey bee sperm storage and mating. Insect Mol. Biol. 15:541–549.

  11. Colonello NA, Hartfelder K (2003) Protein content and pattern during mucus gland maturation and its ecdysteroid control in honey bee drones. Apidologie 34:257–267.

  12. Colonello-Frattini NA, Hartfelder K (2009) Differential gene expression profiling in mucus glands of honey bee (Apis mellifera) drones during sexual maturation. Apidologie 40:481–495.

  13. Cook JM (1993) Hymenoptera: a review of models and evidence. Heredity (Edinb) 71:421–435.

  14. Czekońska K, Chuda-Mickiewicz B, Chorbiński P (2013) The influence of honey bee (Apis mellifera) drone age on volume of semen and viability of spermatozoa. J. Apic. Sci. 57:61–66.

  15. den Boer SPA, Boomsma JJ, Baer B (2009) Honey bee males and queens use glandular secretions to enhance sperm viability before and after storage. J. Insect Physiol. 55:538–543.

  16. den Boer SPA, Baer B, Boomsma JJ (2010) Seminal fluid mediates ejaculate competition in social insects. Science 327:1506–1509.

  17. Eberhard WG (1996) Female control : sexual selection by cryptic female choice. Princeton University Press, Princeton

  18. El-Niweiri MAA, Moritz RFA (2010) The impact of apiculture on the genetic structure of wild honeybee populations (Apis mellifera) in Sudan. J. Insect Conserv. 14:115–124.

  19. Fahrbach SE, Giray T, Farris SM, Robinson GE (1997) Expansion of the neuropil of the mushroom bodies in male honey bees is coincident with initiation of flight. Neurosci. Lett. 236:135–138.

  20. Hayashi S, Farkhary SI, Takata M, Satoh T, Koyama S (2017) Return of drones: flight experience improves returning performance in honeybee drones. J. Insect Behav. 30:237–246.

  21. Hedrick PW, Gadau J, Page RE (2006) Genetic sex determination and extinction. Trends Ecol. Evol. 21:55–57.

  22. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge

  23. Howell DE, Usinger RL (1933) Observations on the flight and length of life of drone bees. Ann. Entomol. Soc. Am. 26:239–246.

  24. Jaycox ER (1961) The effects of various foods and temperatures on sexual maturity of the drone honey bee (Apis mellifera). Ann. Entomol. Soc. Am. 54:519–523.

  25. King M, Eubel H, Millar AH, Baer B (2011) Proteins within the seminal fluid are crucial to keep sperm viable in the honeybee Apis mellifera. J. Insect Physiol. 57:409–414.

  26. Koeniger N, Koeniger G (2000) Reproductive isolation among species of the genus Apis. Apidologie 31:313–339.

  27. Kraus FB, Neumann P, Moritz RFA (2005) Genetic variance of mating frequency in the honeybee (Apis mellifera L.). Insect. Soc. 52:1–5.

  28. Kurennoi NM (1953) When are drones sexually mature. Pchelovodstvo 30:28–32.

  29. Li-Byarlay H, Huang MH, Simone-Finstrom M, Strand MK, Tarpy DR, Rueppell O (2016) Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage. Exp. Gerontol. 83:15–21.

  30. Locke SJ, Peng YS (1993) The effects of drone age, semen storage and contamination on semen quality in the honey bee (Apis mellifera). Physiol. Entomol. 18:144–148.

  31. Mattila HR, Seeley TD (2007) Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317:362–364.

  32. Moors L, Spaas O, Koeniger G, BIllen J (2005) Morphological and ultrastructural changes in the mucus glands of Apis mellifera drones during pupal development and sexual maturation. Apidologie 36:245–254.

  33. Page REJ, Metcalf RA (1984) A population investment sex ratio for the honey bee (Apis mellifera L.). Am. Nat. 124:680–702.

  34. Parker GA (1970) Sperm competition and its evolutionary consequences in the insects. Biol. Rev. 45:525–567.

  35. Parker GA (1984) Sperm competition and the evolution of animal mating strategies. Academic Press, Orlando

  36. Pearcy M, Delescaille N, Lybaert P, Aron S (2014) Team swimming in ant spermatozoa. Biol. Lett. 10:20140308–20140308.

  37. Radwan J (2003) Male age, germline mutations and the benefits of polyandry. Ecol. Lett. 6:581–586.

  38. Rhodes JW (2008) Semen production in drone honeybees. Rural Industries Research and Development Corporation, Wagga Wagga

  39. Rhodes JW, Harden S, Spooner-Hart R, Anderson DL, Wheen G (2011) Effects of age, season and genetics on semen and sperm production in Apis mellifera drones. Apidologie 42:29–38.

  40. Rousseau A, Fournier V, Giovenazzo P (2015) Apis mellifera (Hymenoptera: Apidae) drone sperm quality in relation to age, genetic line, and time of breeding. Can. Entomol. 147:702–711.

  41. Rueppell O, Page REJ, Fondrk MK (2006) Male behavioural maturation rate responds to selection on pollen hoarding in honeybees. Anim. Behav. 71:227–234.

  42. Ruhmann H, Wensing KU, Neuhalfen N, Specker J-H, Fricke C (2016) Early reproductive success in Drosophila males is dependent on maturity of the accessory gland. Behav. Ecol. 27:1859–1868.

  43. Ruttner F (1966) The life and flight activity of drones. Bee World 47:93–100.

  44. Schlüns H, Schlüns EA, van Praagh J, Moritz RFA (2003) Sperm numbers in drone honeybees ( Apis mellifera ) depend on body size. Apidologie 34:577–584.

  45. Simmons LW (2001) Sperm competition and its evolutionary consequences in the insects. Princeton University Press, Princeton

  46. Simmons LW, Beveridge M, Li L, Tan Y-F, Millar AH (2014) Ontogenetic changes in seminal fluid gene expression and the protein composition of cricket seminal fluid. Evol. Dev. 16:101–109.

  47. Stürup M, Baer-Imhoof B, Nash DR, Boomsma JJ, Baer B (2013) When every sperm counts: factors affecting male fertility in the honeybee Apis mellifera. Behav. Ecol. 24:1192–1198.

  48. Tarpy DR, Nielsen R, Nielsen DI (2004) A scientific note on the revised estimates of effective paternity frequency in Apis. Insect. Soc. 51:203–204.

  49. Trivers RL (1972) Parental investment and sexual selection. Sex. Sel. Descent Man (ed. Campbell B), London Heinemann 136–179.

  50. Verma LR, Shuel RW (1973) Respiratory metabolism of the semen of the honey-bee, Apis mellifera. J. Insect Physiol. 19:97–103.

  51. Wheeler DE, Krutzsch PH (1992) Internal reproductive system in adult males of the genusCamponotus (Hymenoptera: Formicidae: Formicinae). J. Morphol. 211:307–317.

  52. Williams JB, Roberts SP, Elekonich MM (2008) Age and natural etabolically-intensive behavior affect oxidative stress and antioxidant mechanisms. Exp. Gerontol. 43:538–549.

  53. Winston ML (1987) The biology of the honey bee. Harvard University Press, Cambridge

  54. Withrow JM, Tarpy DR (2018) Cryptic “royal” subfamilies in honey bee (Apis mellifera) colonies. PLoS One 13:e0199124.

  55. Woyke J (1983) Dynamics of entry of spermatozoa into the spermatheca of instrumentally inseminated queen honeybees. J. Apic. Res. 22:150–154.

  56. Woyke J (2008) Why the eversion of the endophallus of honey bee drone stops at the partly everted stage and significance of this. Apidologie 39:627–636.

  57. Woyke J, Jasinski Z (1978) Influence of age of drone son the results of instrumental insemination of honeybee queens. Apidologie 9:203–212.

  58. Zayed A, Packer L, Grixti JC, Ruz L, Owen RE, Toro H (2005) Increased genetic differentiation in a specialist versus a generalist bee: Implications for conservation. Conserv. Genet. 6:1017–1026.

Download references

Acknowledgements

Our thanks to Dr. Satoshi Koyama for useful advice and Prof. Ken-ichi Harano for honey bee keeping instruction. We sincerely thank Dr. Yuya Fukano for grateful advice regarding statistical analysis.

Author information

Shinya Hayashi conceived this research and designed experiments. S. Hayashi performed experiments and analysis, and wrote the paper with Toshiyuki Satoh.

Correspondence to Shinya Hayashi.

Additional information

Le processus de maturation du sperme se produit dans la vésicule séminale après la transmission du sperme par les testicules des abeilles mâles

Mâle / vol / vésicule séminale / maturation sexuelle / densité du sperme

Der Reifungsprozess der Spermien erfolgt in der Samenblase nach Spermienübertragung aus den Hoden der Drohnen

Drone / Flug / Samenblase / sexuelle Reifung / Spermiendichte

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Yves Le Conte

Electronic supplementary material

ESM 1

(DOCX 30 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hayashi, S., Satoh, T. Sperm maturation process occurs in the seminal vesicle following sperm transition from testis in honey bee males. Apidologie 50, 369–378 (2019). https://doi.org/10.1007/s13592-019-00652-5

Download citation

Keywords

  • drone
  • flight
  • seminal vesicle
  • sexual maturation
  • sperm density