, Volume 50, Issue 1, pp 104–115 | Cite as

Trophic interaction and diversity of cavity-nesting bees and wasps (Hymenoptera: Aculeata) in Atlantic forest fragments and in adjacent matrices

  • Michele Cristina Nether
  • Jessica Dudek
  • Maria Luisa Tunes BuschiniEmail author
Original article


The Brazilian Atlantic Forest is on the list of the 35 world hotspots with priority for conservation because it is home to one of the most diversified and threatened fauna and flora in the world. We studied the diversity and the food webs of cavity-nesting bees and wasps and their natural enemies (parasitoids and kleptoparasites) in three Atlantic forest fragments and adjacent matrices. Although the species composition in the forest fragments was different from the adjacent matrices, the alpha diversity stayed constant. Since the structure of the interaction networks between these species has not been altered with habitat simplification, we conclude that these relations are not shaped by recent environmental changes, but by phylogenetic relations established at a more remote time.


assembly biodiversity food web insects network trap nests 



We thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the scholarship and the Graduate Program in Evolutionary Biology of Universidade Estadualdo Centro-Oeste (UNICENTRO), Paraná state, Brazil. We also thank Dr. Bolívar Rafael Garcete Barrett of the Museu Nacional de Historia Natural do Paraguay for the identification of Eumeninae, Dr. Gabriel Augusto R. Melo of UFPR (Paraná state, Brazil) for bee identification, Dr. Eduardo Fernando dos Santos for the identification of Pompilidae, and Dra Angélica Maria Penteado Martins Dias of UFSCAR (São Paulo state, Brazil) for identifying the Ichneumonidae.

Author contributions

Michele Cristina Nether carried out field research, drafted the manuscript, and performed the analyses. This manuscript is part of the results of JI master’s thesis. Jessica Dudek helped collect field data and made corrections in the manuscript. Maria LuisaTunes Buschini was responsible for the direction and correction of the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Almeida-Neto, M., Guimarães, P., Guimarães, P.R., Loyola, R.D. & Ulrich, W. (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos, 117: 1227–1239.CrossRefGoogle Scholar
  2. Araujo, G.J., Fagundes, R., Antonini, Y. (2018) Trap-nesting hymenoptera and their network with parasites in recovered Riparian forests Brazil. Neotrop. Entomol., 1–11.Google Scholar
  3. Bascompte, J., Melián, C.J., Sala, E. (2005) Interaction strength combinations and the overfishing of a marine food web. Proc. Natl. Acad. Sci. U. S. A. 102, 5443–5447.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bascompte, J., Jordano, P., Olesen, J.M. (2006) Asymmetric Coevolutionary Networks Facilitate Biodiversity Maintenance. Science 312, 431–433.CrossRefPubMedGoogle Scholar
  5. Bersier, L.F., Banasek-Richter, C., Cattin, M.F. (2002) Quantitative descriptors of foodweb matrices. Ecology 83, 2394–2407.CrossRefGoogle Scholar
  6. Blüthgen, N., Menzel, F., Blüthgen N. (2006). Measuring specialization in species interaction networks. Ecology 6, 1–12.Google Scholar
  7. Blüthgen, N.; Fründ, J.; Vázquez, D.; Menzel, F. (2008) What do interaction network metrics tell us about specialization and biological traits? Ecology 89,3387–3399Google Scholar
  8. Burgos, E., Ceva, H., Perazzo, R.P., Devoto, M., Medan, D., Zimmermann, M., Maríadelbue, A. (2007) Why nestedness in mutualistic networks? J. Theor. Biol. 249, 307–313.CrossRefPubMedGoogle Scholar
  9. Buschini, M.L.T. (2006) Species diversity and community structure in trap-nesting bees in Southern Brazil. Apidologie 37, 58–66.CrossRefGoogle Scholar
  10. Buschini, Maria Luisa Tunes; Fajardo, Saul. (2010) Biology of the solitary wasp Trypoxylon (Trypargilum) agamemnon Richards 1934 (Hymenoptera: Crabronidae) in trap-nests. Acta Zool., 91 (4), 426–432.CrossRefGoogle Scholar
  11. Buschini, M.L.T., Woiski, T.D. (2008) Alpha-beta diversity in trap nesting wasps (Hymenoptera: Aculeata) in Southern Brazil. Acta Zool. (Stockholm) 89, 351–358.CrossRefGoogle Scholar
  12. Buschini, M. L. T., & Wolff, L. L. (2006). Notes on the biology of Trypoxylon (Trypargilum) opacum Brèthes (Hymenoptera; Crabronidae) in southern Brazil. Braz. J. Biol., 66(3), 907–917.CrossRefPubMedGoogle Scholar
  13. Buschini, M. L. T.; Niesing, F.; Wolff, L. L. (2006) Nesting biology of Trypoxylon (Trypargilum) lactitarse Saussure (Hymenoptera, Crabronidae) in trap-nests in southern Brazil. Braz. J. Biol., 66 (3), 919–929.CrossRefPubMedGoogle Scholar
  14. Chao, A. (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783–791.CrossRefPubMedGoogle Scholar
  15. Colwell, R. K., Mao, C. X., Chang, J. (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85, 2717–2727.CrossRefGoogle Scholar
  16. Conservation International (2017) [online] URL (accessed on November 2017)
  17. Dormann, C.F., Gruber, B., Fründ, J. (2008) Introducing the bipartite package: analysing ecological networks. interaction, 1, 0-2413793Google Scholar
  18. Ebeling, A.; Klein, A.M.; Weisser, W.W., Tscharntke, T. (2012) Multitrophic effects of experimental changes in plant diversity on cavity-nesting bees, wasps, and their parasitoids. Oecologia 169, 453–65.CrossRefGoogle Scholar
  19. Eklöf, A., Helmus, M.R., Moore, M., Allesina, S. (2012) Relevance of evolutionary history for food web structure. Proc. R. Soc. Lond. B Biol. Sci. 279, 1588–1596.CrossRefGoogle Scholar
  20. Flores, L.M.A.; Zanette, L.R.S., Araujo, F.S. (2018) Effects of habitat simplification on assemblages of cavity nesting bees and wasps in a semiarid neotropical conservation área. Biodivers. Conserv. 27, 311–328.CrossRefGoogle Scholar
  21. Godfray, H.C.J., Lewis, O.T., Memmott, J. (1999) Studying insect diversity in the tropics. Philos. Trans. R. Soc. Lond. B 354, 1811–1824.CrossRefGoogle Scholar
  22. Hawkins, B.A., Lawton, J.H. (1987) Species richness for parasitoids of British phytophagous insects. Nature 326, 788–790.CrossRefGoogle Scholar
  23. Hillebrand, H., Matthiessen, B. (2009) Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecol. Lett. 12, 1405–1419.CrossRefPubMedGoogle Scholar
  24. Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setálá, H., Symstad, A.J., Vandermeer, J., Wardle, D.A. (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35.CrossRefGoogle Scholar
  25. Iantas, J., Woitowicz, F.C.G., Buschini, M.L.T. (2017) Habitat modification and alpha-beta diversity in trap-nesting bees and wasps (Hymenoptera: Aculeata) in southern Brazil. Trop. Zool. 30, 83–96.CrossRefGoogle Scholar
  26. IAPAR - Instituto Agronômico do Paraná (2013) Histórico da Estação Agrometeorológica de Guarapuava. IAPAR, Londrina. [online] (accessed on December 2013)
  27. Ings, T.C., Montoya, J.M., Bascompte, J., Blüthgen, N., Brown, L., Dormann, C.F. et al. (2009). Ecological networks beyond food webs. J. Animal Ecology 78, 253–269.Google Scholar
  28. Klein, A., Steffan-Dewenter, I., Tscharntke, T. (2006). Rain forest promotes trophic interactions and diversity of trap-nesting Hymenoptera in adjacent agroforestry. J. Anim. Ecol. 75, 315–323.CrossRefGoogle Scholar
  29. Lawton, J.H. (1983) Plant architecture and the diversity of phytophagous insects. Annu. Rev. Entomol. 28, 23–39.CrossRefGoogle Scholar
  30. Lima, R., Oliveira, D. M., & Garófalo, C. A. (2018). Interaction Network and Niche Analysis of Natural Enemy Communities and their Host Bees (Hymenoptera: Apoidea) in fragments of Cerrado and Atlantic Forest. Sociobiology, 65(4), 591–602.CrossRefGoogle Scholar
  31. Luck, G.W., Daily, G.C., Ehrlich, P.R. (2003) Population diversity and ecosystem services. Trends Ecol. Evol. 18, 331–336.CrossRefGoogle Scholar
  32. Ludwig, J.A., Reynolds, J.F. (1988) Statistical ecology: a primer in methods and computing. Wiley, New York.Google Scholar
  33. Macarthur, R.H., Macarthur, J.W. (1961) On bird species diversity. Ecology 42, 594–598.CrossRefGoogle Scholar
  34. Memmott, J., Waser, N.M., Price, M.V. (2004) Tolerance of pollination networks to species extinctions. Proc. R. Soc. Lond. B Biol. Sci. 271, 2605–2611.CrossRefGoogle Scholar
  35. Montoya, J.M., Stuart, L.P., Solé, R.V. (2006) Ecological networks and their fragility. Nature 442, 259–264.CrossRefPubMedGoogle Scholar
  36. Morris, R.J., Gripenberg, S., Lewis, O.T., Roslin, T. (2014) Antagonistic interaction networks are structured independently of latitude and host guild. Ecol. Lett. 17, 340–349.CrossRefPubMedGoogle Scholar
  37. Mouillot, D., Krasnov, B.R., Shenbrot, G., Poulin, R. (2008a) Connectance and parasite diet breadth in flea-mammal webs. Ecography 31, 16–20.CrossRefGoogle Scholar
  38. Mouillot, D., Krasnov, B.R., Poulin, R. (2008b) High intervality explained by phylogenetic constraints in host-parasite webs. Ecology 89, 2043–2051.CrossRefPubMedGoogle Scholar
  39. Newman, M.E.J. & Girvan, M. (2004) Finding and evaluating community structure in networks. Phys. Rev. E, 69, 026113.CrossRefGoogle Scholar
  40. Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R. B., … Oksanen, M. J. (2013) Package ‘vegan’. Community ecology package, version, 2(9)Google Scholar
  41. Palma, S. (1975) Contribución al studio de los sifonoforos encontrados frente a la costa de Valparaiso. Aspectos ecológicos. II Simpósio Latino Americano Sobre Oceanografia Biológica, Dóriente, Venezuela.Google Scholar
  42. Palmer, M.W. (1991) Estimating Species Richness: The Second-Order Jackknife Reconsidered. Ecology 72, 1512–1513.CrossRefGoogle Scholar
  43. Polyglottus, M. (2011) Mockingbird Tales: Readings in Animal Behavior. [onine] URL (accessed on September 2017)
  44. Poulin, R., Guilhaumon, F., Randhawa, H.S., Luque, J.L., Mouillot, D. (2011) Identifying hotspots of parasite diversity from species–area relationships: host phylogeny versus host ecology. Oikos 120, 740–747.CrossRefGoogle Scholar
  45. Ricketts, T.H. (2004) Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conserv. Biol. 18, 1262–1271.CrossRefGoogle Scholar
  46. Schüepp, C., Herrmann, J.D., Herzog, F., Schmidt-Entling, M.H. (2011) Differential effects of habitat isolation and landscape composition on wasps, bees, and their enemies. Oecologia 165, 713–721.CrossRefGoogle Scholar
  47. Smith, E. P., Van Belle, G. (1984) Nonparametric estimation of species richness. Biometrics 40, 119–129.CrossRefGoogle Scholar
  48. Smith, M.D., Knapp, A.K., Collins, S.L. (2009) A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90, 3279–3289.CrossRefPubMedGoogle Scholar
  49. Steffan-Dewenter, I. (2002) Land scape context affects trap-nesting bees, wasps, and their natural enemies. Ecol. Entomol. 27, 631–637.CrossRefGoogle Scholar
  50. Steffan-Dewenter, I. (2003) Importance of Habitat Area and Landscape Context for Species Richness of Bees and Wasps in Fragmented Orchard Meadows. Conserv. Biol. 17, 1036–1044.CrossRefGoogle Scholar
  51. Stein, A., Gerstner, K., Kreft, H. (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880.CrossRefPubMedGoogle Scholar
  52. Stinson, C.S.A., Brown, V.K. (1983) Seasonal changes in the architecture of natural plant communities and its relevance to insect herbivores. Oecologia 56, 67–69.CrossRefPubMedGoogle Scholar
  53. Tscharntke, T., Rand, T.A., Bianchi, F.J.J.A. (2005) The landscape context of trophic interactions: insect spillover across the crop–non-crop interface. Ann. Zool. Fenn. 42, 421–432.Google Scholar
  54. Tylianakis, J.M., Klein, A.M., Lozada, T., Tscharntke, T. (2006) Spatial scale of observation affects α, β and γ diversity of cavity-nesting bees and wasps across a tropical land-use gradient. J. Biogeogr. 33, 1295–1304.CrossRefGoogle Scholar
  55. Tylianakis, J.M., Tscharntke, T., Lewis, O.T. (2007) Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445, 202–205.CrossRefGoogle Scholar
  56. Tylianakis, J.M., Lalibert, E., Nielsen, A., Bascompte, J. (2010) Conservation of species interaction networks. Biol. Conserv. 143, 2270.CrossRefGoogle Scholar
  57. Vacher, C., Piou, D., & Desprez-Loustau, M. L. (2008). Architecture of an antagonistic tree/fungus network: the asymmetric influence of past evolutionary history. PLoS One, 3(3), e1740.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Wilby, A., Orwin, K.H. (2013) Herbivore species richness, composition and community structure mediate predator richness effects and top-down control of herbivore biomass. Oecologia 172, 1167–1177.CrossRefPubMedGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Programa de Pós Graduação em Biologia Evolutiva da Universidade Estadual do Centro-OesteGuarapuavaBrazil

Personalised recommendations