Advertisement

Apidologie

pp 1–12 | Cite as

Transcriptional and physiological responses of hypopharyngeal glands in honeybees (Apis mellifera L.) infected by Nosema ceranae

  • Zhiguo Li
  • Jingfang He
  • Tiantian Yu
  • Yanping Chen
  • Wei-Fone Huang
  • Jingnan Huang
  • Yazhou Zhao
  • Hongyi Nie
  • Songkun SuEmail author
Original article
  • 84 Downloads

Abstract

Nosema ceranae infection induces energetic stress, malnutrition, and precocious foraging in Apis mellifera. This study investigated effects of N. ceranae infection on the gene expression, protein content, and enzyme activity in the hypopharyngeal gland of nurse bees. The 285 differentially expressed genes were found between N. ceranae-infected and control bees using RNA-Seq, and 279 were upregulated and 6 were downregulated in infected bees. The protein level was significantly lower in infected bees than in controls, implying protein dysmetabolism and energetic stress in infected bees. The ELISA test showed that the specific activity of amylase was significantly higher in infected bees than in controls. The elevated enzymic activities were accompanied by an increased expressed level of hemolymph juvenile hormone-binding protein-encoding gene in infected bees, suggesting the possibility of Nosema-infected nurse bees to engage in behaviors that are normally performed by foragers.

Keywords

honeybees Nosema ceranae hypopharyngeal gland differentially expressed genes physiological responses 

Notes

Authors’ contribution

ZGL, JFH, and SKS conceived this research and designed experiments; ZGL, WFH, and HYN participated in the design and interpretation of the data; JFH, TTY, and JNH performed experiments and analysis; ZGL, YPC, SKS, and YZZ wrote the paper and participated in the revisions of it. All authors read and approved the final manuscript.

Funding information

This research was supported by the earmarked fund for Modern Agro-Industry Technology Research System (No. CARS-45-KXJ3) and Fujian Agriculture and Forestry University Foundation for Outstanding Youth (XJQ201606).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13592_2018_617_MOESM1_ESM.pdf (158 kb)
ESM 1. (PDF 158 kb)
13592_2018_617_MOESM2_ESM.pdf (158 kb)
ESM 2. (PDF 157 kb)
13592_2018_617_MOESM3_ESM.xls (98 kb)
ESM 3. (XLS 98 kb)
13592_2018_617_MOESM4_ESM.xls (36 kb)
ESM 4. (XLS 35 kb)
13592_2018_617_MOESM5_ESM.xls (42 kb)
ESM 5. (XLS 41 kb)

References

  1. Alaux, C., Brunet, J.L., Dussaubat, C., Mondet, F., Tchamitchan, S., et al. (2010) Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ. Microbiol. 12(3), 774–782CrossRefGoogle Scholar
  2. Anders, S., Pyl, P.T., Huber, W. (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2), 166–169CrossRefGoogle Scholar
  3. Antúnez, K., Martín-Hernández, R., Prieto, L., Meana, A., Zunino, P., et al. (2009) Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ. Microbiol. 11(9), 2284–2290CrossRefGoogle Scholar
  4. Benjamini, Y., Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 289–300Google Scholar
  5. Bıliková, K., Hanes, J., Nordhoff, E., Saenger, W., Klaudiny, J., et al. (2002) Apisimin, a new serine–valine-rich peptide from honeybee (Apis mellifera L.) royal jelly: purification and molecular characterization 1. FEBS Lett. 528(1–3), 125–129CrossRefGoogle Scholar
  6. Cantwell, G. (1970) Standard methods for counting Nosema spores. Amer. Bee J. 110, 222Google Scholar
  7. Chen, Y., Higgins, J., Feldlaufer, M. (2005) Quantitative real-time reverse transcription-PCR analysis of deformed wing virus infection in the honeybee (Apis mellifera L.). Appl. Environ. Microbiol. 71(1), 436–441CrossRefGoogle Scholar
  8. Chen, Y.P., Evans, J.D., Murphy, C., Gutell, R., Zuker, M., et al. (2009) Morphological, molecular, and phylogenetic characterization of Nosema ceranae, a microsporidian parasite isolated from the European honey bee, Apis mellifera. J. Eukaryot. Microbiol. 56(2), 142–147CrossRefGoogle Scholar
  9. Copley, T., Jabaji, S. (2012) Honeybee glands as possible infection reservoirs of Nosema ceranae and Nosema apis in naturally infected forager bees. J. Appl. Microbiol. 112(1), 15–24CrossRefGoogle Scholar
  10. Corby-Harris, V., Meador, C.A., Snyder, L.A., Schwan, M.R., Maes, P., et al. (2016) Transcriptional, translational, and physiological signatures of undernourished honey bees (Apis mellifera) suggest a role for hormonal factors in hypopharyngeal gland degradation. J. Insect Physiol. 85, 65–75CrossRefGoogle Scholar
  11. DeGrandi-Hoffman, G., Chen, Y., Huang, E., Huang, M.H. (2010) The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). J. Insect Physiol. 56(9), 1184–1191CrossRefGoogle Scholar
  12. Doublet, V., Poeschl, Y., Gogol-Döring, A., Alaux, C., Annoscia, D., et al. (2017) Unity in defence: honeybee workers exhibit conserved molecular responses to diverse pathogens. BMC genomics 18(1), 207CrossRefGoogle Scholar
  13. Fries, I., Feng, F., da Silva, A., Slemenda, S.B., Pieniazek, N.J. (1996) Nosema ceranae n. sp.(Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur. J. Protistol. 32(3), 356–365CrossRefGoogle Scholar
  14. Gäde, G., Goldsworthy, G.J. (2003) Insect peptide hormones: a selective review of their physiology and potential application for pest control. Pest Manag. Sci. 59(10), 1063–1075CrossRefGoogle Scholar
  15. Goblirsch, M., Huang, Z.Y., Spivak, M. (2013) Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection. PLoS One 8(3), e58165CrossRefGoogle Scholar
  16. Goulson, D., Nicholls, E., Botías, C., Rotheray, E.L. (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347(6229), 2Google Scholar
  17. Habig, W.H., Pabst, M.J., Jakoby, W.B. (1974) Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249(22), 7130–7139PubMedGoogle Scholar
  18. Hamiduzzaman, M.M., Guzman-Novoa, E., Goodwin, P.H. (2010) A multiplex PCR assay to diagnose and quantify Nosema infections in honey bees (Apis mellifera). J. Invertebr. Pathol. 105(2), 151–155CrossRefGoogle Scholar
  19. Hammock, B., Nowock, J., Gooddman, W., Stamoudis, V., Gilbert, L.I. (1975) The influence of hemolymph-binding protein on juvenile hormone stability and distribution in Manduca sexta fat body and imaginal discs in vitro. Mol. Cell. Endocrinol. 3(3), 167–184CrossRefGoogle Scholar
  20. Haydak, M.H. (1970) Honey bee nutrition. Annu. Rev. Entomol. 15(1), 143–156CrossRefGoogle Scholar
  21. Hentze, J.L., Carlsson, M.A., Kondo, S., Nässel, D.R., Rewitz, K.F. (2015) The neuropeptide allatostatin A regulates metabolism and feeding decisions in Drosophila. Sci. Rep. 5, 11680CrossRefGoogle Scholar
  22. Hrassnigg, N., Crailsheim, K. (1998) Adaptation of hypopharyngeal gland development to the brood status of honeybee (Apis mellifera L.) colonies. J. Insect Physiol. 44(10), 929–939CrossRefGoogle Scholar
  23. Huising, M.O., Flik, G. (2005) The remarkable conservation of corticotropin-releasing hormone (CRH)-binding protein in the honeybee (Apis mellifera) dates the CRH system to a common ancestor of insects and vertebrates. Endocrinol. 146(5), 2165–2170CrossRefGoogle Scholar
  24. Jack, C.J., Uppala, S.S., Lucas, H.M., Sagili, R.R. (2016) Effects of pollen dilution on infection of Nosema ceranae in honey bees. J. Insect Physiol. 87, 12–19CrossRefGoogle Scholar
  25. Jaycox, E.R., Skowronek, W., Guynn, G. (1974) Behavioral changes in worker honey bees (Apis mellifera) induced by injections of a juvenile hormone mimic. Ann. Entomol. Soc. Am. 67(4), 529–534CrossRefGoogle Scholar
  26. Kanehisa, M., Goto, S. (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28(1), 27–30CrossRefGoogle Scholar
  27. Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., et al. (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14(4), R36CrossRefGoogle Scholar
  28. Knecht, D., Kaatz, H. (1990) Patterns of larval food production by hypopharyngeal glands in adult worker honey bees. Apidologie 21(5), 457–468CrossRefGoogle Scholar
  29. Kołodziejczyk, R., Kochman, M., Bujacz, G., Dobryszycki, P., Ożyhar, A., et al. (2003) Crystallization and preliminary crystallographic studies of juvenile hormone-binding protein from Galleria mellonella haemolymph. Acta Crystallogr. D Biol. Crystallogr. 59(3), 519–521CrossRefGoogle Scholar
  30. Langmead, B., Salzberg, S.L. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods 9(4), 357CrossRefGoogle Scholar
  31. Lanzi, G., de Miranda, J.R., Boniotti, M.B., Cameron, C.E., Lavazza, A., et al. (2006) Molecular and biological characterization of deformed wing virus of honeybees (Apis mellifera L.). J. Virol. 80(10), 4998–5009CrossRefGoogle Scholar
  32. Lee, K.-S., You, K.-H., Choo, J.-K., Han, Y.-M., Yu, K. (2004) Drosophila short neuropeptide F regulates food intake and body size. J. Biol. Chem. 279(49), 50781–50789CrossRefGoogle Scholar
  33. Li, W., Chen, Y., Cook, S.C. (2018) Chronic Nosema ceranae infection inflicts comprehensive and persistent immunosuppression and accelerated lipid loss in host Apis mellifera honey bees. Int. J. Parasitol. Parasites 48(6), 433–444CrossRefGoogle Scholar
  34. Livak, K.J., Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4), 402–408CrossRefGoogle Scholar
  35. Martín-Hernández, R., Botías, C., Barrios, L., Martínez-Salvador, A., Meana, A., et al. (2011) Comparison of the energetic stress associated with experimental Nosema ceranae and Nosema apis infection of honeybees (Apis mellifera). Parasitol. Res. 109(3), 605–612CrossRefGoogle Scholar
  36. Martín-Hernández, R., Bartolomé, C., Chejanovsky, N., Le Conte, Y., Dalmon, A., et al. (2018) Nosema ceranae in Apis mellifera: a 12 years postdetection perspective. Environ. Microbiol. 20(4), 1302–1329CrossRefGoogle Scholar
  37. Mayack, C., Naug, D. (2009) Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. J. Invertebr. Pathol. 100(3), 185–188CrossRefGoogle Scholar
  38. Natsopoulou, M.E., McMahon, D.P., Paxton, R.J. (2016) Parasites modulate within-colony activity and accelerate the temporal polyethism schedule of a social insect, the honey bee. Behav. Ecol. Sociobiol. 70(7), 1019–1031CrossRefGoogle Scholar
  39. Naug, D., Gibbs, A. (2009) Behavioral changes mediated by hunger in honeybees infected with Nosema ceranae. Apidologie 40(6), 595–599CrossRefGoogle Scholar
  40. Paxton, R.J., Klee, J., Korpela, S., Fries, I. (2007) Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie 38(6), 558–565CrossRefGoogle Scholar
  41. Schoofs, L., De Loof, A., Van Hiel, M.B. (2017) Neuropeptides as regulators of behavior in insects. Annu. Rev. Entomol. 62, 35–52CrossRefGoogle Scholar
  42. Smith, P.E., Krohn, R.I., Hermanson, G., Mallia, A., Gartner, F., et al. (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150(1), 76–85Google Scholar
  43. Ueno, T., Nakaoka, T., Takeuchi, H., Kubo, T. (2009) Differential gene expression in the hypopharyngeal glands of worker honeybees (Apis mellifera L.) associated with an age-dependent role change. Zool. Sci. 26(8), 557–563CrossRefGoogle Scholar
  44. Vanengelsdorp, D., Meixner, M. (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 103, S80-S95CrossRefGoogle Scholar
  45. Wang, D.-I., Moeller, F. (1971) Ultrastructural changes in the hypopharyngeal glands of worker honey bees infected by Nosema apis. J. Invertebr. Pathol. 17(3), 308–320CrossRefGoogle Scholar
  46. Winston, M.L. (1991) The biology of the honey bee. Harvard University Press, Cambridge.Google Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Bee SciencesFujian Agriculture and Forestry UniversityFuzhouChina
  2. 2.Bee Research LaboratoryUSDA-ARSBeltsvilleUSA
  3. 3.Institute of Apiculture ResearchChinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations