Advertisement

Apidologie

, Volume 49, Issue 6, pp 852–861 | Cite as

Dominant-subordinate social interactions and subordinate behavioral responses in the primitively eusocial sweat bee Augochlora phoemonoe (Hymenoptera: Halictidae)

  • Milagros Dalmazzo
  • Arturo Roig-Alsina
Original article
  • 71 Downloads

Abstract

Social interactions are studied in colonies of eusocial Augochlora phoemonoe, reared in artificial nests in the laboratory. Three kinds of behavioral interactions are distinguished between foundresses and daughter bees: antennation-tarsation (the most frequent), passing, and tandem-running following. Most interactions were started by the foundresses towards daughter bees. First-brood daughter bees displayed high frequencies of specific responses, indicating that these interactions function as behavioral mechanisms of colony integration in this eusocial augochlorine. Antennation-tarsation stimulated daughter females to collect pollen in a high percentage of cases and to get involved in construction activities in a lower percentage. After passing, daughter bees began nest construction activities in a high percentage of cases, and after tandem-running following, they were induced to guard the nest in a high percentage of cases. Locomotion had no specific relationship with any interaction. The behavioral responses were not related to the age of daughter females.

Keywords

Social interactions Colony integration Dominance behavior Augochlora phoemonoe 

Notes

Acknowledgments

The authors thank Rocío Gonzalez-Vaquero for her invaluable help in bee rearing, Leticia Zumoffen and Marcelo Signorini for helping in data analysis, and Lina Horovitz for providing comments on language style. The authors also thank two anonymous reviewers for their comments on the manuscript.

Author contribution

Both authors have contributed equally to the work.

Funding

This study was supported by grants ANPCyT, Argentina, 2007-1238, and CONICET, Argentina, PIP 2011-0288.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

13592_2018_609_MOESM1_ESM.mpg (16.6 mb)
ESM 1 (MPG 16.5 mb)
13592_2018_609_MOESM2_ESM.pdf (431 kb)
ESM 2. (PDF 430 kb)

References

  1. Arneson, L., Wcislo, W. T. (2003) Dominant-subordinate relationship in a facultatively social, nocturnal bee, Megalopta genalis (Hymenoptera: Halictidae). J. Kans. Entomol. Soc. 76, 183–193Google Scholar
  2. Bell, W. J. (1974) Recognition of resident and non-resident individuals in intraspecific nest defense of a primitively eusocial halictine bee. J. Comp. Physiol. 93, 195–202CrossRefGoogle Scholar
  3. Bell, W. J., Hawkins, W. A. (1974) Patterns of intraspecific agonistic interactions involved in nest defense of a primitively eusocial Halictine bee. J. Comp. Physiol. 93, 183–193CrossRefGoogle Scholar
  4. Breed, M. D. (1977) Interactions among individuals and queen replacement in a eusocial halictine bee. Proc. 8th Internat. Cong., Internat, Union Stud. Soc. Insect (Wageningen)Google Scholar
  5. Breed, M. D., Gamboa, G. J. (1977) Behavioral control of workers by queens in primitively eusocial bees. Science 195, 694–696CrossRefGoogle Scholar
  6. Breed, M. D., Silverman, J. M., Bell, W. J. (1978) Agonistic behavior, social interactions and behavioral specialization in a primitively eusocial bee. Ins. Soc. 25, 351–364CrossRefGoogle Scholar
  7. Brothers, D. J., Michener, C. D. (1974) Interactions in colonies of primitively social bees. III Ethometry of division of labor in Lasioglossum zephyrum (Hymenoptera: Halictidae). J. Comp. Physiol. 90, 129–168CrossRefGoogle Scholar
  8. Buckle, G. R. (1982a) Differentiation of queens and nesmate interactions in newly established colonies of Lasioglossum zephyrum (Hymenoptera: Halictidae). Sociobiology 7, 8–18Google Scholar
  9. Buckle, G. R. (1982b) Queen-worker behavior and nesmates interactions in young colonies of Lasioglossum zephyrum. Ins. Soc. 29, 125–137CrossRefGoogle Scholar
  10. Buckle, G. R. (1984) A second look at queen-forager interactions in the primitively eusocial halictid, Lasioglossum zephyrum. J. Kans. Entomol. Soc. 57, 1–6Google Scholar
  11. Dalmazzo, M., Roig-Alsina, A. (2011) Revision of the species of the New World genus Augochlora (Hymenoptera, Halictidae) occurring in the southern temperate areas of its range. Zootaxa 2750, 15–32Google Scholar
  12. Dalmazzo, M., Roig-Alsina, A. (2015) Social biology of Augochlora (Augochlora) phoemonoe (Hymenoptera: Halictidae) reared in laboratory nests. Ins. Soc. 62, 315–323CrossRefGoogle Scholar
  13. Ferreira-Caliman, M. J., Nascimento, F. S., Turatti, I. C., Mateus, S., Lopes, N. P., Zucchi, R. (2010) The cuticular hydrocarbons profiles in the stingless bees Melipona marginata reflect task-related differences. J. Insect. Physiol. 56, 800–804CrossRefGoogle Scholar
  14. Greenberg, L. (1988) Kin recognition in the sweat bee Lasioglossum zephyrum. Behav. Genet. 18, 425–438CrossRefGoogle Scholar
  15. Greenberg, L., Buckle, G. R. (1981) Inhibition of worker mating by queens in a sweat bee, Lasioglossum zephyrum. Ins. Soc. 28, 347–352CrossRefGoogle Scholar
  16. Hoover, S. E., Keeling, C. I., Winston, M. L., Slessor, K. N. (2003) The effect of queen pheromones on worker honey bee ovary development. Naturwissenschaften 90, 477–80CrossRefGoogle Scholar
  17. Jeanson, R., Kukuk, P. F., Fewell, J. H. (2005) Emergence of division of labour in halictine bees: contributions of social interactions and behavioural variance. Anim. Behav. 70, 1183–1193CrossRefGoogle Scholar
  18. Kapheim, K. M., Chan, T. Y., Smith, A. R., Wcislo, W. T., Nonacs, P. (2016) Ontogeny of division of labor in a facultatively eusocial sweat bee Megalopta genalis. Ins. Soc. 63, 185–191CrossRefGoogle Scholar
  19. Kukuk, P. F. (1980) Diurnal activity of a primitively eusocial bee, Lasioglossum zephirum, within the nest. J. Kans. Entomol. Soc. 53, 149–156Google Scholar
  20. Kukuk, P. F., Breed, M. D., Bobti, A., Bell, W. (1977) The contribution of kinship and conditioning to nest recognition and colony member recognition in a primitively eusocial bee, Lasioglossum zephyrum. Behav. Ecol. Sociobiol. 2, 319–327CrossRefGoogle Scholar
  21. Michener, C. D. (1990) Reproduction and castes in social halictine bees, in: Engels W (Ed.) Social insects: an evolutionary approach to castes and reproduction. Springer, Berlin, pp. 77–121CrossRefGoogle Scholar
  22. Michener CD (2007) The bees of the world. 2nd Ed. Johns Hopkins University Press, Baltimore Londres.Google Scholar
  23. Michener, C. D., Brothers, D. J. (1971) A simplified observation nest for burrowing bees. J. Kans. Entomol. Soc. 44, 236–239Google Scholar
  24. Michener, C. D., Brothers, D. J. (1974) Were worker of eusocial Hymenoptera initially altruistic or oppressed? Proc. Natl. Acad. Sci. U. S. A. 71, 671–674CrossRefGoogle Scholar
  25. Nunes, T. M., Morgan, E. D., Drijfhout, F. P., Zucchi, R. (2010) Caste-specific cuticular lipids in the stingless bee Friesella schrottkyi . Apidologie 41, 579–588CrossRefGoogle Scholar
  26. Pabalan, N., Davey, K. G., Packer, L. (2000) Escalation of aggressive interactions during staged encounters in Halictus ligatus say (Hymenoptera: Halictidae), with a comparison of circle tube behaviors with other halictine species. J. Insect. Behav. 13, 627–650CrossRefGoogle Scholar
  27. Packer, L. (2006) Use of artificial arenas to predict the social organization of halictine bees: data for fourteen species from Chile. Ins. Soc. 53, 307–315CrossRefGoogle Scholar
  28. Polidori, C., Borruso, L. (2012) Socially peaceful: foragers of the eusocial bee Lasioglossum malachurum are not aggressive against non-nestmates in circle-tube arenas. Acta. Ethol. 15, 15–23CrossRefGoogle Scholar
  29. Rehan, S. M., Richards, M. H. (2013) Reproductive aggression and nestmate recognition in a subsocial bee. Anim. Behav. 85, 733–741CrossRefGoogle Scholar
  30. Shimoji, H., Aonuma, H., Miura, T., Tsuji, K., Sasaki, K., Okada, Y. (2017) Queen contact and among-worker interaction dually suppress worker brain dopamine as a potential regulation of reproduction in ant. Behav. Ecol. Sociobiol. 71, 35CrossRefGoogle Scholar
  31. Slessor, K. N., Winston, M. L., Le Conte, Y. (2005) Pheromone communication in the honeybee (Apis mellifera L.). J. Chem. Ecol. 31, 2731–2745CrossRefGoogle Scholar
  32. Smith, B. H., Weller, C. (1989) Social competition among gynes in halictine bees: the influence of bee size and pheromones on behavior. J. Insect. Behav. 2, 397–411CrossRefGoogle Scholar
  33. Smith, A. R., Kaphein, K. M., O’Donnell, S., Wcislo, W. T. (2009) Social competition but not subfertility leads to a division of labour in the facultatively social sweat bee Megalopta genalis (Hymenoptera: Halictidae). Anim. Behav. 78, 1043–1050CrossRefGoogle Scholar
  34. Stockhammer, K. A. (1966) Nesting habit and life cycle of a sweet bee, Augochlora pura. J. Kans. Entomol. Soc. 39, 157–192.Google Scholar
  35. Wcislo, W. T., Gonzalez, V. H. (2006) Social and ecological contexts of trophallaxis in facultatively social sweat bees, Megalopta genalis and M. ecuadoria (Hymenoptera: Halictidae). Ins. Soc. 53, 220–225CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CONICET, División EntomologíaMuseo Argentino de Ciencias Naturales “Bernardino Rivadavia”Buenos AiresArgentina
  2. 2.CONICET, Departamento de Ciencias Naturales, Entomología, Facultad de Humanidades y CienciasUniversidad Nacional del LitoralSanta FeArgentina

Personalised recommendations