Advertisement

Apidologie

, Volume 49, Issue 6, pp 759–772 | Cite as

Low trophic niche overlap among trap-nesting bee species (Hymenoptera: Anthophila) in a semideciduous forest fragment

  • Léo Correia da Rocha Filho
  • Diego Moure-Oliveira
  • Carlos Alberto Garófalo
Original article
  • 68 Downloads

Abstract

Bees are important components of mutualistic interactions with plants, playing a key role as pollinators of both wild and crop plants. In this context, studies on the plants visited by bees are important to determining conservation strategies. We investigated the use of floral resources by the trap-nesting bee species sampled in a semideciduous forest fragment. Trap nests were set in the forest fragment in three different zones: forest edge, 250 m away from the edge and 500 m away from the forest edge. Pollen analysis of the residual pollen content removed from the nests of 12 bee species revealed a total of 63 pollen types from 16 botanical families. The bee community showed specialized populations with no overlap in diet. Within the community, the diet overlap was higher in closely related species, the two Tetrapedia species and the two Centris (Heterocentris) species, than in the other sampled species. Although the studied bee community is composed of widespread bee species, our data showed a low niche overlap among them, suggesting the occurrence of food niche partitioning at our study site. The asymmetry in the period of nesting activities and floral preferences among the bee species are factors that might have contributed to the low niche overlap observed.

Keywords

cavity-nesting bees diet breadth floral oil nectar pollen specialized populations 

Notes

Acknowledgements

The authors are grateful to “Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP” and to “Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq” for providing scholarships to the first (10/52531-1) and second authors (140159/2014-2), respectively, and to Gabriel Melo (UFPR) for identifying part of the bees. We also would like to thank Thomas Onuferko (York University) and the two anonymous reviewers for the critical reading and valuable comments that improved the manuscript.

Authors’ contributions

All authors participated in the design and interpretation of the data. LCRF wrote the manuscript, collected bee nests and analyzed pollen samples. LCRF and DMO participated in the data analysis. DMO and CAG participated in the writing. All authors read and approved the final manuscript. Faible chevauchement de niche trophique entre espèces d’abeilles dans des nichoirs (Hymenoptera: Anthophila) dans un fragment de forêt semi-caduque.

Supplementary material

13592_2018_599_MOESM1_ESM.doc (80 kb)
Table S1 (DOC 80 kb)
13592_2018_599_MOESM2_ESM.doc (37 kb)
Table S2 (DOC 37 kb)
13592_2018_599_Fig3_ESM.png (55 kb)
Figure S1

Full weighted multilayer networks of the interaction between bee species and their floral sources at the Caetetus Ecological Station, SP, Brazil. Line thickness (interaction) represents the relative proportion of each pollen type collected be each bee species. Pollen types’ codes are displayed in Table S1 (Appendix). (PNG 54 kb)

13592_2018_599_MOESM3_ESM.tif (2.5 mb)
High resolution image (TIF 2572 kb)

References

  1. Aguiar, C.M.L., Caramés, J., França, F., Melo, E. (2017). Exploitation of floral resources and niche overlap within an oil-collecting bee guild (Hymenoptera: Apidae) in a Neotropical savannah. Sociobiology 64 (1), 78–84.CrossRefGoogle Scholar
  2. Aguiar, C.M.L., Santos, G.M.M., Martins, C.F., Presley, S.J. (2013). Trophic niche breadth and niche overlap in a guild of flower-visiting bees in a Brazilian dry forest. Apidologie 44 (2), 153–162.CrossRefGoogle Scholar
  3. Aidar, I.F., Bartelli, B.F., Nogueira-Ferreira, F.H. (2015). Network of bee-plant interactions and recognition of key species in Semideciduous Forest. Sociobiology 62 (4), 583–592.CrossRefGoogle Scholar
  4. Alarcón, R., Waser, N., Ollerton, J. (2008). Year-to-year variation in the topology of a plant–pollinator interaction network. Oikos 117 (12), 1796–1807.CrossRefGoogle Scholar
  5. Almeida-Neto, M., Guimarães, P., Guimarães, P.R., Lodola, R.D., Ulrich, W. (2008). A consistent metric for nestedness analysis in ecological systems: Reconciling concept and measurement. Oikos 117 (8), 1227–1239.CrossRefGoogle Scholar
  6. Almeida-Neto, M., Ulrich, W. (2010). A straightforward computational approach for quantifying nestedness using abundance data. Environ. Model. Softw. 26 (2), 173–178.CrossRefGoogle Scholar
  7. Andena, S.R., Santos, E.F., Noll, F.B. (2012). Taxonomic diversity, niche width and similarity in the use of plant resources by bees (Hymenoptera: Anthophila) in a cerrado area. J. Nat. Hist. 46 (27–28), 1663–1687.CrossRefGoogle Scholar
  8. Ballantyne, G., Baldock, K.C.R., Rendell, L., Willmer, P.G. (2017). Pollinator importance networks illustrate the crucial value of bees in a highly speciose plant community. Sci. Rep. 7, 8389.CrossRefGoogle Scholar
  9. Bartomeus, I., Bosch, J., Vilà, M. (2008). High invasive pollen transfer, yet low deposition on native stigmas in a Carpobrotus-invaded community. Ann. Bot. 102 (3), 417–424.CrossRefGoogle Scholar
  10. Bascompte, J., Jordano, P., Melián, C.J., Olesen, J.M. (2003). The nested assembly of plant-animal mutualistic networks. Proc. Natl Acad. Sci. USA. 100 (16), 9383–9387.CrossRefGoogle Scholar
  11. Bawa, K.S. (1990). Plant-pollinator interactions in tropical rain forests. Annu. Rev. Ecol. Syst. 21, 399–422.CrossRefGoogle Scholar
  12. Beckerman, A.P., Petchey, O.L., Warren, P.H. (2006). Foraging biology predicts food web complexity. PNAS 103 (37), 13745–13749.CrossRefGoogle Scholar
  13. Blüthgen, N., Menzel, F., Blüthgen, N. (2006). Measuring specialization in species interaction networks. BMC Ecol. 6, 1–12.CrossRefGoogle Scholar
  14. Bommarco, R., Biesmeijer, J.C., Meyer, B., Potts, S.G., Pöyry, J., Roberts, S.P.M., Steffan-Dewenter, I., Öckinger, E. (2010). Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proc. R. Soc. B 277, 2075–2082.CrossRefGoogle Scholar
  15. Bosch, J., Martín González, A.M., Rodrigo, A., Navarro, D. (2009). Plant–pollinator networks: adding the pollinator’s perspective. Ecol. Lett. 12 (5), 409–419.CrossRefGoogle Scholar
  16. Brassaloti, R.A., Rossa-Feres, D.C., Bertoluci, J. (2010). Anurofauna da Floresta Estacional Semidecidual da Estação Ecológica dos Caetetus, sudeste do Brasil. Biota Neotrop. 10 (1), 275–291.CrossRefGoogle Scholar
  17. Camillo, E., Garófalo, C.A., Serrano, J.C., Muccillo, G. (1995). Diversidade e abundância sazonal de abelhas e vespas solitárias em ninhos armadilhas (Hymenoptera: Apocrita, Aculeata). Rev. Bras. Entomol. 39 (2), 459–470.Google Scholar
  18. Carman, K., Jenkins, D.G. (2016). Comparing diversity to flower-bee interaction networks reveals unsuccessful foraging of native bees in disturbed habitats. Biol. Conserv. 202 (2016), 110–118.CrossRefGoogle Scholar
  19. Castro-Arellano, I., Lacher, T. Jr., Willig, M.R., Rangel, T.F. (2010). Assessment of assemblage-wide temporal niche segregation using null models. Meth. Ecol. Evol. 1 (3), 311–318.Google Scholar
  20. Cavarzere, V., Moraes, G.P., Donatelli, R.J. (2009). Avifauna da Estação Ecológica dos Caetetus, interior de São Paulo, Brasil. Pap. Avulsos Zool. 49 (35), 477–485.Google Scholar
  21. Chacoff, N.P., Vázquez, D.P., Lomáscolo, S.B., Stevani, E.L., Dorado, J., Padrón, B. (2012). Evaluating sampling completeness in a desert plant–pollinator network. J. Anim. Ecol. 81 (1), 190–200.CrossRefGoogle Scholar
  22. Core Team R (2016). R: A language and environment for statistical computing. Version 3.3.1. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/.Google Scholar
  23. Cruz, A.P.A., Dórea, M.C., Lima, L.C.L. (2015). Pollen types used by Centris (Hemisiella) tarsata Smith (1874) (Hymenoptera, Apidae) in the provisioning of brood cells in an area of Caatinga. Acta Bot. Bras. 29 (2), 282–284.CrossRefGoogle Scholar
  24. Dorado, J., Vázquez, D.P., Stevani, E.L., Chacoff, N.P. (2011). Rareness and specialization in plant–pollinator networks. Ecology 92 (1), 19–25.CrossRefGoogle Scholar
  25. Dórea, M.C., Aguiar, C.M.L., Figueroa, L.H.F., Lima, L.C.L., Santos, F.A.R. (2010). Residual pollen in nest of Centris analis (Hymenoptera, Apidae, Centridini) na área of caatinga vegetation from Brazil. Oecol. Aust. 14 (1), 232–237.CrossRefGoogle Scholar
  26. Dórea, M.C., Aguiar, C.M.L., Figueroa, L.H.F., Lima, L.C.L., Santos, F.A.R. (2013). A study of pollen residues in nest of Centris trigonoides Lepeletier (Hymenoptera, Apidae, Centridini) in Caatinga vegetation, Brazil. Grana 52 (2), 122–128.CrossRefGoogle Scholar
  27. Dórea, M.C., Santos, F.A.R., Lima, L.C.L., Figueroa, L.H.R. (2009). Análise polínica do resíduo pós-emergência de ninhos de Centris tarsata Smith (Hymenoptera: Apidae, Centridini). Neotrop. Entomol. 38 (2), 197–202.CrossRefGoogle Scholar
  28. Dormann, C.F., Fruend, J., Bluethgen, N., Gruber B. (2009). Indices, graphs and null models: analyzing bipartite ecological networks. Open. J. Ecol. 2, 7–24.CrossRefGoogle Scholar
  29. Dupont, Y.L., Hansen, D.M., Olesen, J.M. (2003). Structure of a plant–flower–visitor network in the high-altitude sub-alpine desert of Tenerife, Canary Islands. Ecography 26 (3), 301–310.CrossRefGoogle Scholar
  30. Durigan, G., Franco, G.A.D.C., Saito, M., Baitello, J.B. (2000). Estrutura e diversidade do componente arbóreo da floresta na Estação Ecológica dos Caetetus, Gália, SP. Rev. Bras. Bot. 23 (4), 371–383.CrossRefGoogle Scholar
  31. Erdtman, G. (1960). The acetolized method. A revised description. Svensk Bot. Tidskr. 54, 561–564.Google Scholar
  32. Freitas, B.M., Paxton, R.J. (1998). A comparison of two pollinators: the introduced honey bee (Apis mellifera) and an indigenous bee (Centris tarsata) on cashew (Anacardium occidentale L.) in its native range of Ne Brazil. J. Appl. Ecol. 35 (1), 109–121.CrossRefGoogle Scholar
  33. Garibaldi, L.A., Steffan-Dewenter, I., Winfree, R., Aizen, M.A., Bommarco, R. et al. (2013). Wild pollinators enhance fruit set regardless of honey bee abundance. Science 339 (6127), 1608–1611.CrossRefGoogle Scholar
  34. Gathmann, A., Tscharntke, T. (2002). Foraging ranges of solitary bees. J. Anim. Ecol. 71 (5), 757–764.CrossRefGoogle Scholar
  35. Gotelli, N.J. (2000). Null model analysis of species co-occurrence patterns. Ecology 81 (9), 2606–2621.CrossRefGoogle Scholar
  36. Grime, J.P. (1979). Plant strategies and vegetation processes. Wiley, Chichester.Google Scholar
  37. Hilgert-Moreira, S., Nascher, C., Callegari-Jacques, S., Blochtein, B. (2013). Pollen resources and trophic niche breadth of Apis mellifera and Melipona obscurior (Hymenoptera, Apidae) in a subtropical climate in the Atlantic rain forest of southern Brazil. Apidologie 45 (1), 129–141.CrossRefGoogle Scholar
  38. Junqueira, C.N., Hogendoorn, K., Augusto, S.C. (2012). The use of trap-nests to manage carpenter bees (Hymenoptera: Apidae: Xylocopini), pollinators of passion fruit (Passifloraceae: Passiflora edulis f. flavicarpa). Ann. Entomol. Soc. Am. 105 (6), 884–889.CrossRefGoogle Scholar
  39. Kleijn, D., Raemakers, I. (2008). A retrospective analysis of pollen host plant use by stable and declining bumblebee species. Ecology 89 (7), 1811–1823.CrossRefGoogle Scholar
  40. Klein, A.-M., Vaissière, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274 (1608), 303–313.CrossRefGoogle Scholar
  41. Kratochwil, A., Beil, M., Schwabe, A. (2009). Complex structure of pollinator-plant interaction-webs: random, nested, with gradients or modules? Apidologie 40 (6), 634–650.CrossRefGoogle Scholar
  42. Krombein, K.V. (1967). Trap nesting wasps and bees. Life histories, nests and associates. Smithsonian Institution Press, Washington.Google Scholar
  43. Lima, R., Ferreira-Caliman, M.J., Dórea, M.C., Garcia, C.T., Santos, F.A.R., Oliveira, F.F., Garófalo, C.A. (2017). Floral resource partitioning between Centris (Heterocentris) analis (Fabricius, 1804) and Centris (Heterocentris) terminata Smith, 1874 (Hymenoptera, Apidae, Centridini), in an urban fragment of the Atlantic Forest. Sociobiology 64 (3), 292–300.CrossRefGoogle Scholar
  44. Lopezaraiza-Mikel, M.E., Hayes, R.B., Whalley, M.R., Memmott, J. (2007). The impact of an alien plant on a native plant–pollinator network: an experimental approach. Ecol. Lett. 10 (7), 539–550.CrossRefGoogle Scholar
  45. Lyra-Neves, C.M., Carvalho, C.A.L., Machado, C.S., Aguiar, C.M.L., Sousa, F.S.M. (2014). Pollen consumed by the solitary bee Tetrapedia diversipes (Apidae: Tetrapediini) in a tropical agroecosystem. Grana 53 (4), 302–308.CrossRefGoogle Scholar
  46. Mello, M.A.R., Bezerra, E.L.S., Machado, I.C. (2013). Functional roles of Centridini oil bees and Malpighiaceae oil flowers in biome-wide pollination networks. Biotropica 45 (1), 45–53.CrossRefGoogle Scholar
  47. Melo, A.C.G., Durigan, G., Gorenstein, M.R. (2007). Efeito do fogo sobre o banco de sementes em faixa de borda de Floresta Estacional Semidecidual, SP, Brasil. Acta Bot. Bras. 21 (4), 927–934.CrossRefGoogle Scholar
  48. Menezes, G.B., Gonçalves-Esteves, V., Bastos, E.M.A.F., Augusto, S.C., Gaglianone, M.C. (2012). Nesting and use of pollen resources by Tetrapedia diversipes Klug (Apidae) in Atlantic Forest areas (Rio de Janeiro, Brazil) in different stages of regeneration. Rev. Bras. Entomol. 56 (1), 86–94.CrossRefGoogle Scholar
  49. Michener, C.D. (2007). The bees of the world, 2nd edition. Johns Hopkins University Press, Baltimore.Google Scholar
  50. Myers, N., Mittermeier, R.A., Mittermeier, C.G., Fonseca, G.A.B., Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 403, 853–845.CrossRefGoogle Scholar
  51. Oliveira, R., Schlindwein, C. (2009). Searching for a manageable pollinator for Acerola orchards: the solitary oil-collecting bee Centris analis (Hymenoptera: Apidae: Centridini). J. Econ. Entomol. 102 (1), 265–273.CrossRefGoogle Scholar
  52. Ollerton, J., Winfree, R., Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos 120 (3), 321–326.CrossRefGoogle Scholar
  53. Patefield, W.M. (1981) Algorithm AS159. An efficient method of generating r x c tables with given row and column totals. Appl. Statist. 30 (1), 91–97.CrossRefGoogle Scholar
  54. Pedro, W.A., Passos, F.C., Lim, B.K. (2001). Morcegos (Chiroptera; Mammalia) da Estação Ecológica de Caetetus, Estado de São Paulo. Chiroptera Neotrop. 7 (1–2), 136–140.Google Scholar
  55. Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O., Kunin, W.E. (2010). Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25 (6), 345–353.CrossRefGoogle Scholar
  56. Quiróz-Garcia, D.L., Martinez-Hernandez, E., Palacios-Chavez, R., Galindo-Miranda, N.E. (2001). Nest provisions and pollen foraging in three species of solitary bees (Hymenoptera: Apidae) from Jalisco, Mexico. J. Kansas Entomol. Soc. 74 (2), 61–69.Google Scholar
  57. Rabelo, L.S., Vilhena, A.M.G.F., Bastos, E.M.A.F., Augusto, S.C. (2014). Differentiated use of pollen sources by two sympatric species of oil-collecting bees (Hymenoptera: Apidae). J. Nat. Hist. 48 (25–26), 1595–1609.CrossRefGoogle Scholar
  58. Ricketts, T.H., Daily, G.C., Ehrlich, P.R., Michener, C.D. (2004). Economic value of tropical forest to coffee production. Proc. Natl. Acad. Sci. USA 101 (34), 12579–12582.CrossRefGoogle Scholar
  59. Rocha-Filho, L.C., Garófalo, C.A. (2016). Natural history of Tetrapedia diversipes (Hymenoptera, Apidae) in an Atlantic semi-deciduous forest remnant surrounded by coffee crops, Coffea arabica (Rubiaceae). Ann. Entomol. Soc. Am. 109 (2), 183–197.CrossRefGoogle Scholar
  60. Rocha-Filho, L.C., Krug, C., Silva, C.I., Garófalo, C.A. (2012). Floral resources used by Euglossini bees (Hymenoptera: Apidae) in coastal ecosystems of the Atlantic forest. Psyche 2012, 1–13.CrossRefGoogle Scholar
  61. Rocha-Filho, L.C., Rabelo, L.S., Augusto, S.C., Garófalo, C.A. (2017). Cavity-nesting bees and wasps (Hymenoptera: Aculeata) in a semi-deciduous Atlantic forest fragment immersed in a matrix of agricultural land. J. Insect Conserv. 21 (4), 727–736.CrossRefGoogle Scholar
  62. Saito, M., Durigan, G., Baitello, J.B., Franco, G.A.D.C., Pastore, J.A., Aguiar, O.T., Nakata, H. (2004). Ocorrência de espécies vegetais em diferentes condições de habitat e etapas do processo sucessional na região de Assis, SP. Pesquisas em conservação e recuperação ambiental no Oeste Paulista: resultados da cooperação Brasil/Japão. Pesquisas em conservação e recuperação ambiental no Oeste Paulista: resultados da cooperação Brasil/Japão. 1st edition. Vol. 1. Bôas OV, Durigan D (orgs.). Páginas and Letras, São Paulo, SP, Brazil. http://iflorestal.sp.gov.br/files/2004/01/IF-C14.pdf.
  63. Santos, R.M., Aguiar, C.M.L., Dórea, M.C., Almeida, G.F., Santos, F.A.R., Augusto, S.C. (2013). The larval provisions of the crop pollinator Centris analis: pollen spectrum and trophic niche breadth in an agroecosystem. Apidologie 44 (6), 630–641.CrossRefGoogle Scholar
  64. Santos, G.M.M., Aguiar, C.M.L., Mello, M.A.R. (2010). Flower-visiting guild associated with the Caatinga flora: trophic interaction networks formed by social bees and social wasps with plants. Apidologie 41 (4), 466–475.CrossRefGoogle Scholar
  65. Schoener, T.W. (1986) Resource partitioning. In: Kikkawa, J., Anderson, D. J. (eds) Community Ecology – Pattern and Process. Blackwell Scientific Publications, Boston, pp 91–126.Google Scholar
  66. Staab, M., Bruelheide, H., Durka, W., Michalski, S., Purschke, O., Zhu C.D., Klein, A.-M. (2016). Tree phylogenetic diversity promotes host-parasitoid interactions. Proc. R. Soc. B 283 (1834), 20160275.CrossRefGoogle Scholar
  67. Tabanez, M.F., Durigan, G., Keuroghlian, A., Barbosa, A.F., Freitas, C.A., et al. (2005). Plano de Manejo da Estação Ecológica dos Caetetus. IF Série Registro 29, 1–104 http://s3.amazonaws.com/WCSResources/file_20110822_090807_mtabanez_PlanoManejoEstacaoEcologicaDosCaetetus_2004_xOsP.pdf.Google Scholar
  68. Tabarelli, M., Mantovani, W., Peres, C.A. (1999). Effects of habitat fragmentation on plant guild structure in the montane Atlantic forest of southeastern Brazil. Biol. Conserv. 91 (2–3), 119–127.CrossRefGoogle Scholar
  69. The Plant List. (2013). Version 1.1. http://www.theplantlist.org/.
  70. Thébault, E., Fontaine, C. (2010). Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329 (5993), 853–856.CrossRefGoogle Scholar
  71. Udulutsch, R.G., Souza, V.C., Rodrigues, R.R., Dias, P. (2010). Composição florística e chaves de identificação para as lianas da Estação Ecológica dos Caetetus, estado de São Paulo, Brasil. Rodriguésia 61 (4), 715–730.CrossRefGoogle Scholar
  72. Ulrich, W., Gotelli, N.J. (2007). Null model analysis of species nestedness patterns. Ecology 88 (7), 1824–1831.CrossRefGoogle Scholar
  73. Vázquez, D.P., Melián, C.J., Williams, N.M., Blüthgen, N., Krasnov, B.R., Poulin, R. (2007). Species abundance and asymmetric interaction strength in ecological networks. Oikos 116 (7), 1120–1127.CrossRefGoogle Scholar
  74. Veddeler, D., Olschewski, R., Tscharntke, T., Klein, A.-M. (2008). The contribution of non-managed social bees to coffee production: new economic insights based on farm-scale yield data. Agroforest. Syst. 73 (2), 109–114.CrossRefGoogle Scholar
  75. Vergara, C.H., Badano, E.I. (2009). Pollinator diversity increases fruit production in Mexican coffee plantations: the importance of rustic management systems. Agric. Ecosyst. Environ. 129 (1–3), 117–123.CrossRefGoogle Scholar
  76. Vergeron, P. (1964). Interprétation statistique des résultats en matière d’analyse pollinique des miels. Ann. Abeille 7 (4), 349–364.CrossRefGoogle Scholar
  77. Vilhena, A.M.G.F., Rabelo, L.S., Bastos, E.M.A.F., Augusto, S.C. (2012). Acerola pollinators in the savannah of Central Brazil: temporal variations in oil-collecting bee richness and a mutualistic network. Apidologie 43 (1), 51–62.CrossRefGoogle Scholar
  78. Villanueva-Gutierrez, R., Quezada-Euan, J., Eltz, T. (2013). Pollen diets of two sibling orchid bee species, Euglossa, in Yucatán, southern Mexico. Apidologie 44 (4), 440–446.CrossRefGoogle Scholar
  79. Winemiller, K.O., Fitzgerald, D.B., Bower, L.M., Pianka, E.R. (2015). Functional traits, convergent evolution, and periodic tables of niches. Ecol. Lett. 18 (8), 737–751.CrossRefGoogle Scholar
  80. Wood, T.J., Holland, J.M., Goulson, D. (2016). Diet characterisation of solitary bees on farmland: dietary specialisation predicts rarity. Biodivers. Conserv. 25 (13), 2655–2671.CrossRefGoogle Scholar
  81. Zuefle, M.E., Brown, W.P., Tallamy, D.W. (2008). Effects of nonnative plants on native insect community of Delaware. Biol. Invasions 10, 1159–1169.CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-FFCLRPUniversidade de São Paulo-USPSão PauloBrazil

Personalised recommendations