Advertisement

Apidologie

, Volume 49, Issue 6, pp 747–758 | Cite as

High visitation rate of oil bees may increase pollination efficiency of Couepia uiti in Pantanal wetland

  • Samuel Boff
  • Gladys F. A. Melo-de-Pinna
  • Arnildo Pott
  • Andréa Cardoso Araujo
Original article
  • 64 Downloads

Abstract

Pollen transfer to the stigma is the primary mechanism of sexual reproduction in plants. Among bee species that act as pollen vectors and pollinators, attributes such as floral visitation rate, synchrony with the receptive phase of the flower, compatibility between flower shape and foraging behavior, and morphological traits are often used to infer pollination efficiency. Herein, we evaluate visitation frequency and behavior of bee species on Couepia uiti (Chrysobalanaceae) flowers in the southern Pantanal, Brazil. Additionally, after experimental manipulation of flower visitation and by accompanying pollen tube growth in the pistil after one single visit to the flowers, we were able to pinpoint the roles of Centris spilopoda and Apis mellifera on the pollination of C. uiti. Centris spilopoda was the most important pollinator of C. uiti in the study area. In fact, we found that this oil bee might enhance plant reproductive success by almost 40% after a single visit. In addition to its high abundance, the efficiency of C. spilopoda as pollinator may be explained by its tight synchrony with pollen liberation and stigmatic receptivity of flowers of C. uiti.

Keywords

bee activity and stigmatic receptivity floodplain Centridini pollen tube single visit 

Notes

Acknowledgements

The authors acknowledge Dr. Sebastião Laroca for bee identification, Amanda Galdi Boaretto, Morgana Sazan, and Waldemar Guimarães for help in the field, and the staff of the research station Base de Estudos do Pantanal (UFMS), in particular to Geraldo (in memoriam) and anonymous referees.

Author Contributions

SB and ACA conceived the study and designed experiment; SB performed experiments and analysis; SB and GMP analyzed pollen tube; SB, AP, and ACA led the writing of the study. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13592_2018_598_MOESM1_ESM.jpg (81 kb)
Figure S1. Pollen grains, pistil, and pollen tube growth after a single visit of the oil bee Centris spilopoda to flowers of Couepia uiti, in the Pantanal, Mato Grosso do Sul, Brazil. [A] Pollen grains of C. uiti (40x). [B] Region of the stigma and style (pistil) without pollen grains or pollen tube growth. [C] Pollen tube (10x) in the middle part of the style, 48h after pollination. [D] Pollen tube (10x) developed 24h after pollination, details of the callose formed along the tube growth. [E] Pollen tube (10x) in the center of the photo (see presence of callose) close to the ovary, note the presence of trichomes at the base of pistil. (JPG 80 kb)
13592_2018_598_MOESM2_ESM.xlsx (29 kb)
ESM 1 (XLSX 29 kb)

References

  1. Aguiar, W. M., Gaglianone, M. C. (2008) Comportamento de abelhas visitantes florais de Lecythis lurida (Lecythidaceae) no norte do estado do Rio de Janeiro. Rev. Bras. Entomol. 52 (2), 277–282CrossRefGoogle Scholar
  2. Aguiar, C. M. L., Zanella, F. C. V., Martins, C. F., Carvalho, C. A. L. (2003) Plantas visitadas por Centris spp. (Hymenoptera: Apidae) na caatinga para obtenção de recursos florais. Neotrop. Entomol. 32, 247–259CrossRefGoogle Scholar
  3. Alves-dos-Santos, I., Machado, I. C., Gaglianone, M. C. (2007) História natural das abelhas coletoras de óleo. Oecol. Bras. 11 (4), 242–255CrossRefGoogle Scholar
  4. Assine, M. L., Merino, E. R., Pupim, F. D. N., Macedo, H. D. A., Santos, M. G. M. D. (2015) The Quaternary alluvial systems tract of the Pantanal Basin, Brazil. Braz. J. Geol. 45 (3), 475–489CrossRefGoogle Scholar
  5. Bawa, K. S. (1974) Breeding systems of tree species of a lowland tropical community. Evolution 28 (1), 85–92CrossRefGoogle Scholar
  6. Bedinger, P. A., Broz, A. K., Tovar-Mendez, A., McClure, B. (2017) Pollen-pistil interactions and their role in mate selection. Plant Physiol. 173 (1), 79–90.  https://doi.org/10.1104/pp.16.01286 CrossRefGoogle Scholar
  7. Bortolotto, I. M., Damasceno-Junior, G. A., Souza, P. R., Pott, A. (2018) Lista preliminar das plantas alimentícias nativas de Mato Grosso do Sul, Brasil. Iheringia Série Botânica 31, 101–116. (https://isb.emnuvens.com.br/iheringia/article/view/683)Google Scholar
  8. Brauner, S., Gottlieb, L. (1987) A self-compatible plant of Stephanomeria exigua subsp. Coronaria (Asteraceae) and its relevance to the origin of its self-pollinating derivative S. malheurensis. Syst. Bot. 12 (2), 299–304.  https://doi.org/10.2307/2419325 CrossRefGoogle Scholar
  9. Camillo, E. (1996) Utilização de espécies de Xylocopa (Hymenoptera, Anthophoridae) na polinização do maracujá amarelo. p.141–146. in: Anais do II Encontro sobre abelhas. Ribeirão Preto Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão PretoGoogle Scholar
  10. Carmo, R. M., Villaron Franceschinelli, E., da Silveira, F. A. (2004) Introduced honeybees (Apis mellifera) reduce pollination success without affecting the floral resource taken by native pollinators. Biotropica 36 (3), 371–376Google Scholar
  11. Cavalcante, M. C., Galetto, L., Maués, M. M., Pacheco Filho, A. J. S., et al. (2018) Nectar production dynamics and daily pattern of pollinator visits in Brazil nut (Bertholletia excelsa Bonpl.) plantations in Central Amazon: implications for fruit production. Apidologie.  https://doi.org/10.1007/s13592-018-0578-y
  12. Chautá-Mellizo, A., Campbell, S. A., Bonilla, M. A. (2012) Effects of natural and artificial pollination on fruit and offspring quality. Basic Appl. Ecol., Jena, 13 (6), 524–532Google Scholar
  13. Grandtner, M. M, Chevrette, J. (2013) Dictionary of Trees, Volume 2: South America: Nomenclature, Taxonomy and Ecology. Academic Press.Google Scholar
  14. Dizeo de Strittmatter, C. G. (1973) Nueva técnica de diafanización. Bol. Soc. Argent. Bot. 15, 126–9Google Scholar
  15. Ebeling, A., Klein, A.M., Schumacher, J., Weiser, W.W., Tscharntke, T. (2008) How does plant richness affect pollinator richness and temporal stability of flower visits? Oikos 177 (12), 1808–1815CrossRefGoogle Scholar
  16. Eisikowitch, D. (1998) Mobility of honey bee (Apidae, Apis mellifera L.) during foraging in avocado orchard. Apidologie 29 (3), 209–219Google Scholar
  17. Endress, P. K. (1994) Diversity and evolutionary biology of flowers. Cambridge: Cambridge University Press.Google Scholar
  18. Fischer, E., Gordo, M. (1993) Qualea cordata, pollination by the territorial bee Centris tarsata in the Campos Rupestres, Brazil. Ciência e Cultura (SBPC) 45 (2), 144–147Google Scholar
  19. Freitas, B. M., Paxton, R. J. (1998) A comparison of two pollinators: the introduced honey bees Apis mellifera and an indigenous bee Centris tarsata on cashew Anacardium occidentale in its native range of NE Brazil. J. Appl. Ecol. 35 (1), 109–121CrossRefGoogle Scholar
  20. Gaglianone, M. C., Rocha, H. H. S., Benevides, C. R., Junqueira, C. N., Augusto, S. C. (2010) Importância de Centridini (Apidae) na polinização de plantas de interesse agrícola: o maracujá-doce (Passiflora alata Curtis) como estudo de caso na região sudeste do Brasil. Oecol. Austral. 14 (1), 152–164CrossRefGoogle Scholar
  21. Gaglianone, M.C., Franceschinelli, E.V., Oliveira Campos, M. J., Freitas, L., et al. (2018) Applied pollination in temperate and subtropical areas, in: Roubik D.W. (Ed.), The pollination of cultivated plants. A compendium for practitioners Vol 1. Edition: Second Edition. Chapter: 9.3.4. Food and Agriculture Organization of the United Nations (FAO), pp. 238–247Google Scholar
  22. Giannini, T. C., Boff, S., Cordeiro, G. D., Cartolano Jr. E. A., Veiga, A. K., Imperatriz-Fonseca V. L., Saraiva A. M. (2015) Crop pollinators in Brazil, a review of reported interactions. Apidologie 46 (2), 209–223CrossRefGoogle Scholar
  23. Gibbs, P. E. (1988) Self-incompatibility mechanisms in flowering plants; some complications and clarifications. Lagascalia 15 (1), 17–28Google Scholar
  24. Gibbs P. E. (2014) Late-acting self-incompatibility—the pariah breeding system in flowering plants. New Phytol. 203 (3), 717–734CrossRefGoogle Scholar
  25. Gorenflo, A., Diekötter, T., van Kleunen, M., Wolters, V., Jauker, F. (2017) Contrasting pollination efficiency and effectiveness among flower visitors of Malva sylvestris, Borago officinalis and Onobrychis viciifolia. J. Pollinat. Ecol. 21 (1), 62–70Google Scholar
  26. Hiscock, S. J., Mcinnis, S. M. (2003) Pollen recognition and rejection during the sporophytic self-incompatibility response: Brassica and beyond. Trends Plant Sci. 8 (12), 606–613CrossRefGoogle Scholar
  27. Holanda-Neto, J. P., Freitas, B. M., Bueno, D. M., Araújo, Z. B. (2002) Low seed/nut productivity in cashew (Anacardium occidentale): Effects of self-incompatibility and honey bee (Apis mellifera) foraging behaviour. J. Hortic. Sci. Biotechnol. 77 (2), 226–231Google Scholar
  28. Hudewenz, A., Klein, A. M. (2015) Red mason bees cannot compete with honey bees for floral resources in a cage experiment. Ecol. Evol. 5 (21), 5049–5056.  https://doi.org/10.1002/ece3.1762 CrossRefGoogle Scholar
  29. Johansen, D. A. (1940) Plant microtechnique. McGraw - Hill Book Co. Inc., New York.Google Scholar
  30. Karron, J. D., Holmquist K.G., Flanagan R.J., Mitchell, R. J. (2009) Pollinator visitation patterns strongly influence among-flower variation in selfing rate. Ann. Bot. (Lond) 103 (9), 1379–1383CrossRefGoogle Scholar
  31. Kearns, C. A., Inouye D. W. (1993) Techniques for pollination biologists. University Press of Colorado.Google Scholar
  32. Macfarlane R. P. (2018) Applied pollination in temperate and subtropical areas, in: Roubik D.W. (Ed.), The pollination of cultivated plants. A compendium for practitioners Vol 1. Edition: Second Edition. Chapter: 8.11.5. Food and Agriculture Organization of the United Nations (FAO), pp. 137–181Google Scholar
  33. Martin, F. W. (1958) Staining and observing pollen tubes in the styles by means of fluorescence. Stain Technol. 34 (3), 125–128CrossRefGoogle Scholar
  34. Martins, A. C., Aguiar, A. J., Alves-dos-Santos, I. (2013) Interaction between oil-collecting bees and seven species of Plantaginaceae. Flora, 208 (7), 401–411CrossRefGoogle Scholar
  35. Mayfield, M., Waser, N. M., Price, M. (2001) Exploring the ‘Most effective pollinator principle’ with complex flowers bumblebees and Ipomopsis aggregata. Ann. Bot. 88 (4), 591–96CrossRefGoogle Scholar
  36. Michener, C. D. (1974) The social behavior of the bees. Cambridge: Harvard University Press.Google Scholar
  37. Motten, A. F. (1986) Pollination ecology of the spring wildflower community of a temperate deciduous forest. Ecol. Monogr. 56 (1), 21–42CrossRefGoogle Scholar
  38. Moure, J. S., Urban, D., Melo, G. A. R. (2012) Catalogue of Bees (Hymenoptera, Apoidea) in the Neotropical Region (Moure, Urban, Melo, Orgs,). online version. Disponível em: http://www.moure.cria.org.br/catalogue (acessado em 3 de outubro de 2012)
  39. Müller, A., Diener, S., Schnyder, S., Stutz, K., Sedivy, C.; Dorn, S., (2006) Quantitative pollen requirements of solitary bees: implications for bee conservation and the evolution of bee–flower relationships. Biol. Conserv. 130 (4), 604–615.  https://doi.org/10.1016/j.biocon.2006.01.023 CrossRefGoogle Scholar
  40. Oliveira, R., Schlindwein, C. (2009) Searching for a manageable pollinator for acerola orchard: The solitary oil-collecting bee Centris analis (Hymenoptera: Apidae: Centridini). J. Econ. Entomol. 102 (1), 265–273CrossRefGoogle Scholar
  41. Ollerton, J., Winfree, R., Tarrant, S. (2011) How many flowering plants are pollinated by animals? Oikos 120 (3), 321–326.  https://doi.org/10.1111/j.1600-0706.2010.18644.x CrossRefGoogle Scholar
  42. Paini, D. R. (2004) Impact of the introduced honey bee (Apis mellifera) (Hymenoptera: Apidae) on native bees: a review. Austral Ecol. 29 (4), 399–407.  https://doi.org/10.1111/j.1442-9993.2004.01376.x
  43. Paulino-Neto, H. F. (2007) Pollination and the breeding system of Couepia uiti (Mart and Zucc) Benth. (Chrysobalanaceae) in the Pantanal da Nhecolândia. Braz. J. Bot. 67 (4), 715–719Google Scholar
  44. Pott, A., Pott, V. J. (1994) Plantas do Pantanal. Brasília, Embrapa.Google Scholar
  45. Proctor, M., Yeo, P., Lack, A. (2003) The natural history of pollination. Timber Press. Portland.Google Scholar
  46. Radford, A. E., Dickison, W. C. Massey, J. R., Bell, C. R. (1974) Vascular plant systematics. New York: Harper and Row Publishers.Google Scholar
  47. Raw, A. (1979) Centris dirrhoda (Anthophoridae), the bee visiting west indian cherry flowers (Malpighia punicifolia). Rev. Biol. Trop. 27 (2), 203–205.Google Scholar
  48. Richards, A. J. (1986) Plant Breeding Systems. Allen and Unwin, London.Google Scholar
  49. Roubik, D.W. (1978) Competitive interactions between neotropical pollinators and africanized honey bees. Science 201 (4360), 1030–1032.  https://doi.org/10.1126/science.201.4360.1030 CrossRefGoogle Scholar
  50. Roubik, D. W. (1989) Ecology and natural history of tropical bees. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  51. Sáez, A., Morales, C. L., Ramos, L. Y., Aizen, M. A. (2014) Extremely frequent bee visits increase pollen deposition but reduce drupelet set in raspberry. J. Appl. Ecol. 51 (6), 1603–1612.  https://doi.org/10.1111/1365-2664.12325
  52. Sazan, M. S., Bezerra, A. D. M., Freitas, B. M. (2014) Oil collecting bees and Byrsonima cydoniifolia A. Juss. (Malpighiaceae) interactions: the prevalence of long-distance cross pollination driving reproductive success. An. Acad. Bras. Ciên. 86 (1), 347–358Google Scholar
  53. Schneider, D., Goldway, M., Rotman, N., Adato, I., Stern, R.A. (2009) Cross pollination improves ‘Orri’ mandarin fruit yield. Sci. Hortic. 122 (3), 380–384CrossRefGoogle Scholar
  54. Seavey, S. R., Bawa K. S. (1986) Late-acting self-incompatibility in Angiosperms. Bot. Rev. 52 (2), 95–219CrossRefGoogle Scholar
  55. Snelling, R. R. (1984) Studies on the taxonomy and distribution of American Centridine bees (Hymenoptera: Anthophoridae). Natural History Museum Los Angeles County, CA., Contrib. Sci. (Los Angeles). 347, 1–69Google Scholar
  56. Stein, K., Coulibaly, D., Stenchly, K., Goetze, D., Porembski, S., Lindner, A., Konaté S, Linsenmair, E. K. (2017) Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa. Sci. Rep. 7 (1), 17691CrossRefGoogle Scholar
  57. Teixeira, L. A. G., Machado, I. C. (2000) Sistema de polinização e reprodução Byrsonima sericea DC. (Malpighiaceae). Acta Bot. Bras. 14 (3), 347–357Google Scholar
  58. Toräng P., Vikström L., Wunder J., Wötzel S., Coupland G., Ågren J. (2017) Evolution of the selfing syndrome: Anther orientation and herkogamy together determine reproductive assurance in a selfcompatible plant. Evolution 71 (9), 2206–2218CrossRefGoogle Scholar
  59. Vilas Boas, J. C., Fava, W. S., Laroca, S., Sigrist, M. R. (2013) Two sympatric Byrsonima species (Malpighiaceae) differ in phenological and reproductive patterns. Flora 208 (5–6), 360–369CrossRefGoogle Scholar
  60. Vinson, S. B., William, H. J., Frankie, G. W., Shrum, G. (1997) Floral lipid chemistry of Byrsonima crassifolia (Malpighiaceae) and a use of floral lipids by Centris bees (Hymenoptera: Apidae). Biotropica 29 (1), 76–83CrossRefGoogle Scholar
  61. Vinson, S. B., Frankie, G. W., Williams, H. J. (2006) Nest liquid resources of several cavity nesting bees in the genus Centris and the identification of a preservative, levulinic acid. J. Chem. Ecol. 32 (9), 2013–2021CrossRefGoogle Scholar
  62. Vogel, S. (1974) Ölblumen und Ölsammelnde Bienen. Trop. Subtrop. Pflanzenwelt 7, 1–267Google Scholar
  63. Vogel, S. (1990) History of the Malpighiaceae in the light of pollination ecology. Mem. N. Y. Bot. Gard. 55, 130–142.Google Scholar
  64. Waser, N. M., Ollerton, J. (2006) Plant-pollinator interactions: from specialization to generalization. (Waser Ollerton, J. Eds.). University of Chicago Press.Google Scholar
  65. Zhang H., Huang J., Williams P. H., Vaissière, B. E., Zhou, Z., Gai, Q., et al. (2015) Managed bumblebees outperform honeybees in increasing peach fruit set in China: Different limiting processes with different pollinators. PLoS ONE 10 (3), e0121143.  https://doi.org/10.1371/journal.pone.0121143 CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Biologia VegetalUniversidade Federal de Mato Grosso do SulCampo GrandeBrazil
  2. 2.Department of Food, Environmental and Nutritional SciencesUniversity of MilanMilanItaly
  3. 3.Programa de Pós-Graduação em BotânicaUniversidade de São PauloSão PauloBrazil
  4. 4.Laboratório de Ecologia, Instituto de BiociênciasUniversidade Federal de Mato Grosso do SulCampo GrandeBrazil

Personalised recommendations