Advertisement

Apidologie

, Volume 49, Issue 6, pp 721–733 | Cite as

The cholesterol-hydroxyecdysone-vitellogenin pathway is involved in the longevity of trophocytes and oenocytes of queen honey bees (Apis mellifera)

  • Cheng-Yen Lu
  • Po-Jung Huang
  • Chin-Yuan Hsu
Original article
  • 56 Downloads

Abstract

Trophocytes and oenocytes in the abdomen of honey bees do not divide after eclosion; however, trophocytes and oenocytes of queen bees have a longer lifespan and maintain better cellular function than those of worker bees. To explore this phenomenon, we assayed the molecules involved in the cholesterol-hydroxyecdysone-vitellogenin (Vg) pathway in the trophocytes and oenocytes of young and old worker and queen bees. The results showed that Vg and cholesterol levels in hemolymph and cholesterol levels, 20-hydroxyecdysone (20E) levels, and the messenger RNA levels of cytochrome P450 314A1 20-hydroxylase (Cyp314A1), ecdysone receptor isoform A (EcR-A), ecdysone receptor isoform B1 (EcR-B1), ultraspiracle (USP), ecdysone-induced protein 74 (E74), ecdysone-induced protein 75 (E75), broad-complex (BR-C), Vg, and Vg receptor (VgR) in trophocytes and oenocytes were increased in queen bees compared with worker bees. These findings indicated that queen bees have higher expression of molecules in the cholesterol-hydroxyecdysone-Vg pathway than worker bees.

Keywords

cholesterol 20-hydroxyecdysone vitellogenin longevity honey bee 

Notes

Acknowledgments

This work was supported by grants (CMRPD1E0022, CMRPD1G0081, CMRPD1E0023, CMRPD1G0581) from the Chang Gung Memorial Hospital, Linkou, Taiwan, and a grant (MOST106-2311-B-182-003) from the Ministry of Science and Technology, Taiwan.

Author contributions

C.Y.L. and C.Y.H. designed the research; C.Y.L. performed the research; C.Y.L., P.J.H, and C.Y.H. analyzed the data; C.Y.H. wrote the paper.

Supplementary material

13592_2018_596_MOESM1_ESM.pdf (383 kb)
ESM 1. (PDF 382 kb)

References

  1. Amdam, G.V., Simoes, Z.L.P., Hagen, A., Norberg, K., Schroder, K., Mikkelsen, O., Kirkwood, T.B.L., Omholt, S.W. (2004) Hormonal control of yolk precursor vitellogenin regulates immune function and longevity in honeybees. Exp. Gerontol. 39, 767–773CrossRefGoogle Scholar
  2. Amdam, G.V., Aase, A.L., Seehuus, S.C., Fondrk, M.K., Norberg, K., Hartfelder, K. (2005) Social reversal of immunosenescence in honey bee workers. Exp. Gerontol. 40, 939–947CrossRefGoogle Scholar
  3. Aurori, C.M., Buttstedt, A., Dezmirean, D.S., Mărghitaș, L.A., Moritz, R.F.A., Erler, S. (2014) What is the main driver of ageing in long-lived winter honeybees: antioxidant enzymes, innate immunity, or vitellogenin? J. Gerontol. A Biol. Sci. Med. Sci. 69, 633–639CrossRefGoogle Scholar
  4. Barchuk, A.R., Figueiredo, V.L.C., Simões, Z.L.P. (2008) Downregulation of ultraspiracle gene expression delays pupal development in honeybees. J. Insect Physiol. 54, 1035–1040CrossRefGoogle Scholar
  5. Burtis, K.C., Thummel, C.S., Jones, C.W., Karim, F.D., Hogness, D.S. (1990) The Drosophila 74EF early puff contains E74, a complex ecdysone-inducible gene that encodes two ets-related proteins. Cell 61, 85–99CrossRefGoogle Scholar
  6. Chan, Q.W.T., Mutti, N.S., Foster, L.J., Kocher, S.D., Amdam, G.V., Florian, W. (2011) The worker honeybee fat body proteome is extensively remodeled preceding a major life-history transition. PLoS ONE 6, e24794CrossRefGoogle Scholar
  7. Chuang, Y.L., Hsu, C.Y. (2013) Changes in mitochondrial energy utilization in young and old worker honeybees (Apis mellifera). Age 35, 1867–1879CrossRefGoogle Scholar
  8. Clark, A.J., Block, K. (1959) The absence of sterol synthesis in insects. J. Biol. Chem. 234, 2578–2582Google Scholar
  9. Corona, M., Velarde, R.A., Remolina, S., Moran-Lauter, A., Wang, Y., Hughes, K.A., Robinson, G.E. (2007) Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc. Natl. Acad. Sci. USA 104, 7128–7133CrossRefGoogle Scholar
  10. Deitsch, K.W., Chen, J.S., Raikhel, A.S. (1995) Indirect control of yolk protein genes by 20-hydroxyecdysone in the fat body of the mosquito, Aedes aegypti. Insect Biochem. Mol. Biol. 25, 449–454CrossRefGoogle Scholar
  11. Elsik, C.G., Worley, K.C., Bennett, A.K., Beye, M., Camara, F., et al. (2014) Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genomics 15, 86CrossRefGoogle Scholar
  12. Feldlaufer, M.F., Herbert, E.W., Svoboda, J.A., Thompson, M.J. (1986) Biosynthesis of makisterone A and 20-hydroxyecdysone from labeled sterols by the honey bee, Apis mellifera. Archiv. Insect Biochem. Physiol. 3, 415–421CrossRefGoogle Scholar
  13. Geva, S., Hartfelder, K., Bloch, G. (2005) Reproductive division of labor, dominance, and ecdysteroid levels in hemolymph and ovary of the bumble bee Bombus terrestris. J. Insect Physiol. 51, 811–823CrossRefGoogle Scholar
  14. Guidugli-Lazzarini, K.R., do Nascimento, A.M., Tanaka, É.D., Piulachs, M.D., Hartfelder, K., Bitondi, M.G., Paulino Simões, Z.L. (2008) Expression analysis of putative vitellogenin and lipophorin receptors in honey bee (Apis mellifera L.) queens and workers. J. Insect Physiol. 54, 1138–1147CrossRefGoogle Scholar
  15. Hansen, I.A., Attardo, G.M., Rodriguez, S.D., Drake, L.L. (2014) Four-way regulation of mosquito yolk protein precursor genes by juvenile hormone-, ecdysone-, nutrient-, and insulin-like peptide signaling pathways. Front. Physiol. 5, 103CrossRefGoogle Scholar
  16. Hill, R.J., Billas, I.M.L., Bonneton, F., Graham, L.D., Lawrence, M.C. (2013) Ecdysone receptors: from the Ashburner model to structural biology. Annu. Rev. Entomol. 58, 251–271CrossRefGoogle Scholar
  17. Hsieh, Y.S., Hsu, C.Y. (2011a) Honeybee trophocytes and fat cells as target cells for cellular senescence studies. Exp. Gerontol. 46, 233–240CrossRefGoogle Scholar
  18. Hsieh, Y.S., Hsu, C.Y. (2011b) The changes of age-related molecules in the trophocytes and fat cells of queen honeybees (Apis mellifera). Apidologie 42, 728–739CrossRefGoogle Scholar
  19. Hsieh, Y.S., Hsu, C.Y. (2013) Oxidative stress and anti-oxidant enzyme activities in the trophocytes and fat cells of queen honeybees (Apis mellifera). Rejuvenation Res. 16, 295–303CrossRefGoogle Scholar
  20. Hsu, C.Y., Chan, Y.P. (2013) The use of honeybees reared in a thermostatic chamber for aging studies. Age 35, 149–158CrossRefGoogle Scholar
  21. Hsu, C.Y., Chuang, Y.L. (2014) Changes in energy-regulated molecules in the trophocytes and fat cells of young and old worker honeybees (Apis mellifera). J. Gerontol. A Biol. Sci. Med. Sci. 69, 955–964CrossRefGoogle Scholar
  22. Hsu, C.Y., Hu, T.H. (2014) Energy-regulated molecules maintain young status in the trophocytes and fat cells of old queen honeybees. Biogerontology 15, 389–400CrossRefGoogle Scholar
  23. Hsu, C.Y., Lu, C.Y. (2015) Mitochondrial energy utilization maintains young status in the trophocytes and oenocytes of old queen honeybees. Apidologie 46, 583–594CrossRefGoogle Scholar
  24. Hsu, C.Y., Chuang, Y.L., Chan, Y.P. (2014) Changes in cellular degradation activity in young and old worker honeybees (Apis mellifera). Exp. Gerontol. 50, 128–136CrossRefGoogle Scholar
  25. Hsu, C.Y., Qiu, J.T., Chan, Y.P. (2016) Cellular degradation activity is maintained during aging in long-lived queen bees. Biogerontology 17, 829–840CrossRefGoogle Scholar
  26. Huang, X., Warren, J.T., Gilbert, L.I. (2008) New players in the regulation of ecdysone biosynthesis. J. Genet. Genomics 35, 1–10CrossRefGoogle Scholar
  27. Jindra, M., Sehnal, F., Riddiford, L.M. (1994) Isolation, characterization and developmental expression of the ecdysone-induced E75 gene of the wax moth Galleria mellonella. Eur. J. Biochem. 221, 665–675CrossRefGoogle Scholar
  28. Keller, L., Jemielity, S. (2006) Social insects as a model to study the molecular basis of ageing. Exp. Gerontol. 41, 553–556CrossRefGoogle Scholar
  29. Kuterbach, D.A., Walcott, B. (1986) Iron-containing cells in the honey-bee (Apis mellifera). I. Adult morphology and physiology. J. Exp. Biol. 126, 375–387Google Scholar
  30. Lee R. B, Nieh J.C. (2017) Larval honey bees infected with Nosema ceranae have increased vitellogenin titers as young adults. Sci. Rep. 7, 14144.CrossRefGoogle Scholar
  31. Lourenco, A.P., Mackert, A., Cristino, A.D., Simoes, Z.L.P. (2008) Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie 39, 372–385CrossRefGoogle Scholar
  32. Lu, C.Y., Chuang, Y.L., Hsu, C.Y. (2017) Aging results in a decline in cellular energy metabolism in the trophocytes and oenocytes of worker honeybees (Apis mellifera). Apidologie 48, 761–775CrossRefGoogle Scholar
  33. Mello, T.R.P., Aleixo, A.C., Pinheiro, D.G., Nunes, F.M.F., Bitondi, M.M.G., Hartfelder, K., Barchuk, A.R., Simões, Z.L. (2014) Developmental regulation of ecdysone receptor (EcR) and EcR-controlled gene expression during pharate-adult development of honeybees (Apis mellifera). Front. Genet. 5, 445CrossRefGoogle Scholar
  34. Nelson, C.M., Ihle, K.E., Fondrk, M.K., Page, R.E. Jr, Amdam, G.V. (2007) The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol. 5, e62CrossRefGoogle Scholar
  35. Nilsen, K.A., Ihle, K.E., Frederick, K., Fondrk, M.K., Smedal, B., Hartfelder, K., Amdam, G.V. (2011) Insulin-like peptide genes in honey bee fat body respond differently to manipulation of social behavioral physiology. J. Exp. Biol. 214, 1488–1497CrossRefGoogle Scholar
  36. Paes-de-Oliveira, V.T., Cruz-Landim, C. (2003) Size of fat body trophocytes and the ovarian development in workers and queens of Melipona quadrifasciata anthidioides. Sociobiology 4, 701–709Google Scholar
  37. Paul, R.K., Takeuchi, H., Matsuo, Y., Kubo, T. (2005) Gene expression of ecdysteroid-regulated gene E74 of the honeybee in ovary and brain. Insect Mol. Biol. 14, 9–15CrossRefGoogle Scholar
  38. Paul, R.K., Takeuchi, H., Kubo, T. (2006) Expression of two ecdysteroid-regulated genes, broad-complex and E75, in the brain and ovary of the honeybee (Apis mellifera L.). Zool. Sci. 23, 1085–1092CrossRefGoogle Scholar
  39. Petryk, A., Warren, J.T., Marques, G., Jarcho, M.P., Gilbert, L.I., Kahler, J., Parvy, J.P., Li, Y., Dauphin-Villemant, C., O'Connor, M.B. (2003) Shade is the Drosophila P450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone. Proc. Natl. Acad. Sci. USA 100, 13773–13778CrossRefGoogle Scholar
  40. Pierceall, W.E., Li, C., Biran, A., Miura, K., Raikhel, A.S., Segraves, W.A. (1999) E75 expression in mosquito ovary and fat body suggests reiterative use of ecdysone-regulated hierarchies in development and reproduction. Mol. Cell. Endocrinol. 150, 73–89CrossRefGoogle Scholar
  41. Remolina, S.C., Hughes, K.A. (2008) Evolution and mechanisms of long life and high fertility in queen honey bees. Age 30, 177–185CrossRefGoogle Scholar
  42. Robinson, G.E., Strambi, C., Strambi, A., Feldlaufer, M.F. (1991) Comparison of juvenile hormone and ecdysteroid titres in adult worker and queen honey bees. J. Insect Physiol. 37, 929–935CrossRefGoogle Scholar
  43. Sappington, T.W., Raikhel, A.S. (1995) Receptor-mediated endocytosis of yolk proteins by insect oocytes. In Recent advances in insect biochemistry and molecular biology, eds Ohnishi E, Sonobe H, Takahashi SY. Nagoya University Press, Nagoya, 235–257Google Scholar
  44. Seehuus, S.-C., Norberg, K., Gimsa, U., Krekling, T., Amdam, G.V. (2006) Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc. Natl. Acad. Sci. USA 103, 962–967CrossRefGoogle Scholar
  45. Seehuus, S.-C., Taylor, S., Petersen, K., Aamodt, R.M. (2013) Somatic maintenance resources in the honeybee worker fat body are distributed to withstand the most life-threatening challenges at each life stage. PLoS ONE 8, e69870CrossRefGoogle Scholar
  46. Segraves, W.A., Hogness, D.S. (1990) The E75 ecdysone inducible gene responsible for the 75B early puff in Drosophila encodes two new members of the steroid receptor superfamily. Genes Dev. 4, 204–219CrossRefGoogle Scholar
  47. Sun, G., Zhu, J., Li, C., Tu, Z., Raikhel, A.S. (2002) Two isoforms of the early E74 gene, an Ets transcription factor homologue, are implicated in the ecdysteroid hierarchy governing vitellogenesis of the mosquito, Aedes aegypti. Mol. Cell. Endocrinol. 190, 147–157CrossRefGoogle Scholar
  48. Takeuchi, H., Paul, R.K., Matsuzaka, E., Kubo, T. (2007) EcR-A expression in the brain and ovary of the honeybee (Apis mellifera L.). Zool. Sci. 24, 596–603CrossRefGoogle Scholar
  49. Talbot, W.S., Swyryd, E.A., Hogness, D.S. (1993) Drosophila tissue with different metamorphic responses to ecdysone express different ecdysone receptor isoforms. Cell 73, 1323–1337CrossRefGoogle Scholar
  50. The Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443, 931–949CrossRefGoogle Scholar
  51. Tzolovsky, G., Deng, W.M., Schlitt, T., Bownes, M. (1999) The function of the broad-complex during Drosophila melanogaster oogenesis. Genetics 153, 1371–1383Google Scholar
  52. Wang, S.F., Miura, K., Miksicek, R.J., Segraves, W.A., Raikhel, A.S. (1998) DNA binding and transactivation characteristics of the mosquito ecdysone receptor-Ultraspiracle complex. J. Biol. Chem. 273, 27531–27540CrossRefGoogle Scholar
  53. Wang, S.F., Li, C., Sun, G., Zhu, J., Raikhel, A.S. (2002) Differential expression and regulation by 20-hydroxyecdysone of mosquito ecdysteroid receptor isoforms A and B. Mol. Cell. Endocrinol. 196, 29–42CrossRefGoogle Scholar
  54. Wang, Y., Jorda, M., Jones, P.L., Maleszka, R., Ling, X., Robertson, H.M., Mizzen, C.A., Peinado, M.A., Robinson, G.E. (2006) Functional CpG methylation system in a social insect. Science 314, 645–647CrossRefGoogle Scholar
  55. Wheeler, D.E., Kawooya, J.K. (1990) Purification and characterization of honey bee vitellogenin. Arch. Insect Biochem. Physiol. 14, 253–267CrossRefGoogle Scholar
  56. Wyatt, G.R., Davey, K.G. (1996) Cellular and molecular actions of juvenile hormone. II. Roles of juvenile hormone in adult insects. Adv. Insect Physiol. 26, 1–155CrossRefGoogle Scholar
  57. Yamazaki, Y., Kiuchi, M., Takeuchi, H., Kubo, T. (2011) Ecdysteroid biosynthesis in workers of the European honeybee Apis mellifera L. Insect Biochem. Mol. Biol. 41, 283–293CrossRefGoogle Scholar
  58. Yang, C., Lin, Y., Liu, H., Shen, G. (2014) The broad complex isoform 2 (BrC-Z2) transcriptional factor plays a critical role in vitellogenin transcription in the silkworm Bombyx mori. Biochim. Biophys. Acta 1840, 2674–2684CrossRefGoogle Scholar
  59. Yao, T.P., Sagraves, W.A., McKeown, M., Evans, R.M. (1992) Drosophila ultra-spiracle modulates ecdysone receptor function via heterodimer formation. Cell 71, 63–72CrossRefGoogle Scholar
  60. Zhou, B., Hiruma, K., Shinoda, T., Riddiford, L.M. (1998) Juvenile hormone prevents ecdysteroid-induced expression of broad complex RNAs in the epidermis of the tobacco hornworm Manduca sexta. Dev. Biol. 203, 233–244CrossRefGoogle Scholar
  61. Zhu, J., Chen, L., Raikhel, A.S. (2007) Distinct roles of Broad isoforms in regulation of the 20-hydroxyecdysone effector gene, vitellogenin, in the mosquito Aedes aegypti. Mol. Cell. Endocrinol. 267, 97–105CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical SciencesChang Gung UniversityTao-YuanTaiwan
  2. 2.Graduate Institute of Biomedical Sciences, College of MedicineChang Gung UniversityTao-YuanTaiwan
  3. 3.Genomic Medicine Research Core LaboratoryChang Gung Memorial HospitalLinkouTaiwan
  4. 4.Department of Obstetrics and GynecologyChang Gung Memorial HospitalLinkouTaiwan

Personalised recommendations