Advertisement

Apidologie

pp 1–15 | Cite as

Using next-generation sequencing to improve DNA barcoding: lessons from a small-scale study of wild bee species (Hymenoptera, Halictidae)

  • Gontran Sonet
  • Alain Pauly
  • Zoltán T. Nagy
  • Massimiliano Virgilio
  • Kurt Jordaens
  • Jeroen Van Houdt
  • Sebastian Worms
  • Marc De Meyer
  • Thierry Backeljau
Original article

Abstract

The parallel sequencing of targeted amplicons is a scalable application of next-generation sequencing (NGS) that can advantageously replace Sanger sequencing in certain DNA barcoding studies. It can be used to sequence different PCR products simultaneously, including co-amplified products. Here, we explore this approach by simultaneously sequencing five markers (including the DNA barcode and a diagnostic marker of Wolbachia) in 12 species of Halictidae that were previously DNA barcoded using Sanger sequencing. Consensus sequences were obtained from fresh bees with success rates of 74–100% depending on the DNA fragment. They improved the phylogeny of the group, detected Wolbachia infections (in 8/21 specimens) and characterised haplotype variants. Sequencing cost per marker and per specimen (11.43 €) was estimated to decrease (< 5.00 €) in studies aiming for a higher throughput. We provide guidelines for selecting NGS or Sanger sequencing depending on the goals of future studies.

Keywords

NGS phylogeny heteroplasmy Halictus smaragdulus Wolbachia 

Notes

Acknowledgements

Sequencing and library preparation was performed at the Genomics Core of KU Leuven (Belgium) with the help of Sigrun Jackmaert. We would like to thank the valuable suggestions of the two anonymous reviewers.

Authors’ contributions

GS, ZTN and TB conceived the research and wrote the article. GS and SW collected the data and performed the analyses. AP, ZTN, MV, KJ, JVH and MDM contributed to the interpretation of the data. All authors revised the text and the figures and approved the final manuscript.

Funding information

This study was funded by the Belgian Science Policy (BELSPO) and supported by the FWO Research Community W0.009.11N’Belgian Network for DNA Barcoding’ (BeBoL).

Supplementary material

13592_2018_594_MOESM1_ESM.pptx (133 kb)
ESM 1. (PPTX 132 kb)

References

  1. Abouheif, E., Wray, G.A. (2002) Evolution of the gene network underlying wing polyphenism in ants. Science 297, 249–252CrossRefPubMedGoogle Scholar
  2. Baldo, L., Hotopp, J.C.D., Jolley, K.A., Bordenstein, S.R., Biber, S.A., Choudhury, R.R., Hayashi, C., Maiden, M.C.J., Tettelin, H., Werren, J.H. (2006) Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl. Environ. Microbiol. 72, 7098–7110CrossRefPubMedPubMedCentralGoogle Scholar
  3. Batovska, J., Cogan, N.O.I., Lynch, S.E., Blacket, M.J. (2017) Using Next-Generation Sequencing for DNA Barcoding: Capturing Allelic Variation in ITS2. G3-Genes Genom. Genet. 7, 19–29Google Scholar
  4. Bolger, A.M., Lohse, M., Usadel, B. (2014) Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120CrossRefPubMedPubMedCentralGoogle Scholar
  5. Braig, H.R., Zhou, W., Dobson, S.L., O'Neill, S.L. (1998) Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J. Bacteriol. 180, 2373–2378PubMedPubMedCentralGoogle Scholar
  6. Breeuwer, J.A.J., Werren, J.H. (1993) Cytoplasmic incompatibility and bacterial density in Nasonia vitripennis. Genetics 135, 565–574PubMedPubMedCentralGoogle Scholar
  7. Breeuwer, J.A.J., Stouthamer, R., Barns, S.M., Pelletier, D.A., Weisburg, W.G., Werren, J.H. (1992) Phylogeny of the cytoplasmic incompatibility microorganism in the parasitoid wasp of the genus Nasonia (Hymenoptera: Pteromalidae) based on 16S ribosomal DNA sequences. Insect. Mol. Biol. 1, 25–36CrossRefPubMedGoogle Scholar
  8. Buhay, J.E. (2009) “COI-like” sequences are becoming problematic in molecular systematic and DNA barcoding studies. J Crust Biol 29, 96–110CrossRefGoogle Scholar
  9. Bybee, S.M., Bracken-Grissom, H.D., Haynes, B.D., Hermansen, R.A., Byers, R.L., Clement, M.J., Udall, J. A, Wilcox, E.R., Crandall, K. A. (2011) Targeted amplicon sequencing (TAS): a scalable next-gen approach to multilocus, multitaxa phylogenetics. Genome Biol. Evol. 3, 1312–23CrossRefPubMedPubMedCentralGoogle Scholar
  10. Casiraghi, M., Bordenstein, S.R., Baldo, L., Lo, N., Beninati, T., Wernegreen, J.J., Werren, J.H., Bandi, C. (2005) Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: Clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology 151, 4015–4022CrossRefPubMedGoogle Scholar
  11. Criscuolo, A., Brisse, S. (2013) AlienTrimmer: A tool to quickly and accurately trim off multiple short contaminant sequences from high-throughput sequencing reads. Genomics 102, 500–506CrossRefPubMedGoogle Scholar
  12. Cristiano, M.P., Fernandes-Salomão, T.M., Yotoko, K.S.C. (2012) Nuclear mitochondrial DNA: an Achilles’ heel of molecular systematics, phylogenetics, and phylogeographic studies of stingless bees. Apidologie 43, 527–538CrossRefGoogle Scholar
  13. Cruaud, P., Rasplus, J.Y., Rodriguez, L.J., Cruaud, A. (2017) High-throughput sequencing of multiple amplicons for barcoding and integrative taxonomy. Sci. Rep. 7, 1–12CrossRefGoogle Scholar
  14. Danforth, B.N., Brady, S.G., Sipes, S.D., Pearson, A. (2004) Single-copy nuclear genes recover Cretaceous-age divergences in bees. Syst. Biol. 53, 309–326CrossRefPubMedGoogle Scholar
  15. Danforth, B.N., Cardinal, S., Praz, C., Almeida, E. A. B., Michez, D. (2013) The impact of molecular data on our understanding of bee phylogeny and evolution. Annu. Rev. Entomol. 58, 57–78CrossRefPubMedGoogle Scholar
  16. Folmer, O. M, Black, W.H., Lutz, R., Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299PubMedGoogle Scholar
  17. Gerth, M., Geißler, A., Bleidorn, C. (2011) infections in bees (Anthophila) and possible implications for DNA barcoding. Syst. Biodivers. 9, 319–327CrossRefGoogle Scholar
  18. Gibbs, J. (2018) DNA barcoding a nightmare taxon: assessing barcode index numbers and barcode gaps for sweat bees. Genome 61, 21–31CrossRefPubMedGoogle Scholar
  19. Gibbs, J., Brady, S.G., Kanda, K., Danforth, B.N. (2012) Phylogeny of halictine bees supports a shared origin of eusociality for Halictus and Lasioglossum (Apoidea: Anthophila: Halictidae). Mol. Phylogenet. Evol. 65, 926–939CrossRefPubMedGoogle Scholar
  20. Grover, C.E., Salmon, A., Wendel, J.F. (2012) Targeted sequence capture as a powerful tool for evolutionary analysis. Am. J. Bot. 99, 312–9Google Scholar
  21. Hajibabaei, M., Janzen, D.H., Burns, J.M., Hallwachs, W., Hebert, P.D.N. (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences 103 (4):968-971Google Scholar
  22. Hartig, G., Peters, R.S., Borner, J., Etzbauer, C., Misof, B., Niehuis, O. (2012) Oligonucleotide primers for targeted amplification of single-copy nuclear genes in apocritan Hymenoptera. PLoS One 7, e39826CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hebert, P.D.N., Cywinska, A., Ball, S.L., DeWaard, J.R. (2003) Biological identifications through DNA barcodes. Proc. R. Soc. London. Ser. B Biol. Sci. 270, 313–321CrossRefGoogle Scholar
  24. Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H., Hallwachs, W. (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. USA. 101, 14812–14817CrossRefPubMedGoogle Scholar
  25. Hebert, P.D.N., Braukmann, T.W.A., Prosser, S.W.J., Ratnasingham, S., DeWaard, J.R., Ivanova, N. V., Janzen, D.H., Hallwachs, W., Naik, S., Sones, J.E., Zakharov, E. V. (2018) A Sequel to Sanger: amplicon sequencing that scales. BMC Genomics 19, 219CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hiroki, M., Tagami, Y., Miura, K., Kato, Y. (2004) Multiple infection with Wolbachia inducing different reproductive manipulations in the butterfly Eurema hecabe. Proc. Biol. Sci. 271, 1751–1755CrossRefPubMedPubMedCentralGoogle Scholar
  27. James, A C., Dean, M.D., McMahon, M.E., Ballard, J.W.O. (2002) Dynamics of double and single Wolbachia infections in Drosophila simulans from New Caledonia. Heredity 88, 182–189CrossRefPubMedGoogle Scholar
  28. Jolley, K.A., Maiden, M.C.J. (2010) BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11, 595CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kawakita, A., Ascher, J.S., Sota, T., Kato, M., Roubik, D.W. (2008) Phylogenetic analysis of the corbiculate bee tribes based on 12 nuclear protein-coding genes (Hymenoptera: Apoidea: Apidae). Apidologie 39, 163–175CrossRefGoogle Scholar
  30. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., Drummond, A. (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kumar, S., Stecher, G., Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33, 1870–1874CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lanfear, R., Calcott, B., Kainer, D., Mayer, C., Stamatakis, A. (2014) Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol. Biol. 14, 82CrossRefPubMedPubMedCentralGoogle Scholar
  33. Magnacca, K., Brown, M. (2010) Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae). BMC Evol. Biol. 10, 174CrossRefPubMedPubMedCentralGoogle Scholar
  34. Marcus, J.M. (2018) Our love-hate relationship with DNA barcodes, the Y2K problem, and the search for next generation barcodes. AIMS Genet. 5, 1–23CrossRefGoogle Scholar
  35. Mercot, H., Llorente, B., Jacques, M., Atlan, A., Montchamp-Moreau, C. (1995) Variability within the Seychelles cytoplasmic incompatibility system in Drosophila simulans. Genetics 141, 1015–1023PubMedPubMedCentralGoogle Scholar
  36. Michener, C.D. (2007) The Bees of the World. 2nd Edition. Johns Hopkins University Press, BaltimoreGoogle Scholar
  37. Miller, M.A., Pfeiffer, W., Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proc. Gatew. Comput. Environ. Work. (GCE), 14 Nov. 2010, New Orleans, LA. pp. 1–8Google Scholar
  38. Nelson, L. A, Lambkin, C.L., Batterham, P., Wallman, J.F., Dowton, M., Whiting, M.F., Yeates, D.K., Cameron, S.L. (2012) Beyond barcoding: a mitochondrial genomics approach to molecular phylogenetics and diagnostics of blowflies (Diptera: Calliphoridae). Gene 511, 131–42CrossRefPubMedGoogle Scholar
  39. Nixon, K.C. (1999) The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15, 407–414CrossRefGoogle Scholar
  40. O’Neill, E.M., Schwartz, R., Bullock, C.T., Williams, J.S., Shaffer, H.B., Aguilar-Miguel, X., Parra-Olea, G., Weisrock, D.W. (2013) Parallel tagged amplicon sequencing reveals major lineages and phylogenetic structure in the North American tiger salamander (Ambystoma tigrinum) species complex. Mol. Ecol. 22, 111–129CrossRefPubMedGoogle Scholar
  41. Paradis, E. (2010) pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–20CrossRefPubMedGoogle Scholar
  42. Paradis, E., Claude, J., Strimmer, K. (2004) APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20, 289–290CrossRefPubMedGoogle Scholar
  43. Pauly, A., Devalez, J., Sonet, G., Nagy, Z.T., Boevé, J.L. (2015) DNA barcoding and male genital morphology reveal five new cryptic species in the West Palearctic bee Seladonia smaragdula (Vachal, 1895) (Hymenoptera: Apoidea: Halictidae). Zootaxa 4034, 257–290CrossRefPubMedGoogle Scholar
  44. Perrot-Minnot, M.J., Guo, L.R., Werren, J.H. (1996) Single and double infections with Wolbachia in the parasitic wasp Nasonia vitripennis: Effects on compatibility. Genetics 143, 961–972PubMedPubMedCentralGoogle Scholar
  45. Pesenko, Y.A. (1999) Phylogeny and Classification of the Family Halictidae Revised (Hymenoptera: Apoidea). J. Kansas Entomol. Soc. 72, 104–123.Google Scholar
  46. Pesenko, Y.A. (2004) The phylogeny and classification of the tribe Halictini with special reference to the Halictus genus-group (Hymenoptera: Halictidae). Zoosyst. Ross. 13, 83–113Google Scholar
  47. Raychoudhury, R., Grillenberger, B.K., Gadau, J., Bijlsma, R., van de Zande, L., Werren, J.H., Beukeboom, L.W. (2010) Phylogeography of Nasonia vitripennis (Hymenoptera) indicates a mitochondrial-Wolbachia sweep in North America. Heredity 104, 318–326CrossRefPubMedGoogle Scholar
  48. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–42CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ros, V.I.D., Fleming, V.M., Feil, E.J., Breeuwer, J.A.J. (2009) How diverse is the genus Wolbachia? Multiple-gene sequencing reveals a putatively new Wolbachia supergroup recovered from spider mites (Acari: Tetranychidae). Appl. Environ. Microbiol. 75, 1036–1043CrossRefPubMedGoogle Scholar
  50. Schirmer, M., D’Amore, R., Ijaz, U.Z., Hall, N., Quince, C. (2016) Illumina error profiles: resolving fine-scale variation in metagenomic sequencing data. BMC Bioinformatics 17, 125CrossRefPubMedPubMedCentralGoogle Scholar
  51. Schliep, K.P. (2011) phangorn: Phylogenetic analysis in R. Bioinformatics 27, 592–593CrossRefPubMedGoogle Scholar
  52. Schmidt, S., Schmid-Egger, C., Morinière, J., Haszprunar, G., Hebert, P.D.N. (2015) DNA barcoding largely supports 250 years of classical taxonomy: identifications for Central European bees (Hymenoptera, Apoidea partim). Mol. Ecol. Resour. 15, 985–1000CrossRefPubMedGoogle Scholar
  53. Shokralla, S., Gibson, J.F., Nikbakht, H., Janzen, D.H., Hallwachs, W., Hajibabaei, M. (2014) Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens. Mol. Ecol. Resour. 14, 892–901PubMedPubMedCentralGoogle Scholar
  54. Shokralla, S., Porter, T.M., Gibson, J.F., Dobosz, R., Janzen, D.H., Hallwachs, W., Golding, G.B., Hajibabaei, M. (2015) Massively parallel multiplex DNA sequencing for specimen identification using an Illumina MiSeq platform. Sci. Rep. 5, 9687CrossRefPubMedPubMedCentralGoogle Scholar
  55. Smith, M.A., Fisher, B. (2009) Invasions, DNA barcodes, and rapid biodiversity assessment using ants of Mauritius. Front. Zool. 6, 31CrossRefPubMedPubMedCentralGoogle Scholar
  56. Smith, M.A., Bertrand, C., Crosby, K., Eveleigh, E.S., Fernandez-Triana, J., Fisher, B.L., Gibbs, J., Hajibabaei, M., Hallwachs, W., Hind, K., Hrcek, J., Huang, D.W., Janda, M., Janzen, D.H., Li, Y., Miller, S.E., Packer, L., Quicke, D., Ratnasingham, S., Rodriguez, J., Rougerie, R., Shaw, M.R., Sheffield, C., Stahlhut, J.K., Steinke, D., Whitfield, J., Wood, M., Zhou, X. (2012) Wolbachia and DNA barcoding insects: patterns, potential, and problems. PLoS One 7, e36514CrossRefPubMedPubMedCentralGoogle Scholar
  57. Stamatakis, A. (2015) Using RAxML to Infer Phylogenies. Curr. Protoc. Bioinformatics 51, 6.14.1–6.14.14CrossRefGoogle Scholar
  58. Ward, P.S. & Downie, D.A. (2005) The ant subfamily Pseudomyrmecinae (Hymenoptera: Formicidae): phylogeny and evolution of big-eyed arboreal ants. Syst. Entomol. 30, 310–335CrossRefGoogle Scholar
  59. Wilkinson, M.J., Szabo, C., Ford, C.S., Yarom, Y., Croxford, A.E., Camp, A., Gooding, P. (2017) Replacing Sanger with Next Generation Sequencing to improve coverage and quality of reference DNA barcodes for plants. Sci. Rep. 7, 46040CrossRefPubMedPubMedCentralGoogle Scholar
  60. Zhang, J., Kobert, K., Flouri, T., Stamatakis, A. (2014) PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620CrossRefPubMedGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Operational Directorate Taxonomy and Phylogeny (JEMU)Royal Belgian Institute of Natural SciencesBrusselsBelgium
  2. 2.Department of Biology (JEMU)Royal Museum for Central AfricaTervurenBelgium
  3. 3.Evolutionary Ecology GroupUniversity of AntwerpAntwerpBelgium
  4. 4.Genomics Core, KULeuven—UZLeuvenLeuvenBelgium
  5. 5.Institute of Life SciencesUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations