Advertisement

Apidologie

pp 1–12 | Cite as

The effect of queen insemination volume on the growth of newly established honey bee (Apis mellifera) colonies

  • Alexandria N. Payne
  • Juliana Rangel
Original article
  • 43 Downloads

Abstract

The number of female progeny that a honey bee (Apis mellifera) queen produces in her lifetime is directly dependent on the amount of semen she collects upon mating (i.e., insemination volume) and the number of viable sperm cells contained within the semen (i.e., sperm viability). Queen insemination volume has been shown to alter queen mandibular pheromone profiles, as well as worker behavior and physiology at the individual level. In order to determine if queen insemination volume has any colony-level effects, we compared the growth of newly established colonies headed by queens instrumentally inseminated with either a low volume (1.5 μL) or a high volume (9.0 μL) of pooled semen from May to October in 2013 and 2015. We did not find a significant effect of queen insemination volume on the production of worker comb, drone comb, stored food, worker population, or seasonal queen or colony survivorship. Therefore, we concluded that queen insemination volume does not seem to directly affect growth at the colony level, at least during a colony’s first year.

Keywords

Apis mellifera colony growth instrumental insemination queen insemination volume 

Notes

Acknowledgements

We would like to thank Susan Cobey for instrumentally inseminating the queens used in this study and Dr. Jane Packard for her help in the statistical analysis of the data. We also thank Lauren Ward, Elizabeth Walsh, and Pierre Lau for their help in data collection.

Authors’ contribution

JR conceived and designed experiments, AP and JR performed experiments, interpreted data, performed analyses and wrote the paper. All authors read and approved the final manuscript.

Funding information

This study was funded in part by a USDA-NIFA grant to JR and NI (award 2015-67013-23170) and the Texas AgriLife Research Hatch Project TEX09557. This research was accomplished through support to AP from the Undergraduate Research Scholars Program at Texas A&M University

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Amiri, E., Strand, M. K., Rueppell, O., Tarpy, D. R. (2017) Queen quality and the impact of honey bee diseases on queen health: Potential for nteractions between two major threats to colony health. Insects 8, 48CrossRefPubMedCentralGoogle Scholar
  2. Baer, B. (2005) Sexual selection in Apis bees. Apidologie 36, 187–200CrossRefGoogle Scholar
  3. Cobey, S. W. (2007) Comparison studies of instrumentally inseminated and naturally mated honey bee queens and factors affecting their performance. Apidologie 38, 390–410CrossRefGoogle Scholar
  4. Cobey, S. W., Tarpy, D. R., & Woyke, J. (2013) Standard methods for instrumental insemination of Apis mellifera queens. J. Api. Res. 52(4), 1–18CrossRefGoogle Scholar
  5. Collins, A. M. (2000) Relationship between semen quality and performance of instrumentally inseminated honey bee queens. Apidologie 31, 421–429CrossRefGoogle Scholar
  6. De Miranda, J. R., Fries, I. (2008) Venereal and vertical transmission of deformed wing virus in honeybees (Apis mellifera L.). J. Invert. Pathol. 98(2), 184–189CrossRefGoogle Scholar
  7. De Souza, D. A., Bezzera-Laure, M. A. F., Francoy, T. M., Gonçalves, L. S. (2013) Experimental evaluation of the reproductive quality of Africanized queen bees (Apis mellifera) on the basis of body weight at emergence. Genet. Mol. Res. 12, 5382–5391. DOI: https://doi.org/10.4238/2013.November.7.13 CrossRefPubMedGoogle Scholar
  8. Fewell, J. H., Winston, M. L. (1992) Colony state and regulation of pollen foraging in the honey bee, Apis mellifera L. Behav. Ecol. Sociobiol. 30(6), 387–393CrossRefGoogle Scholar
  9. Goel, M. K., Khanna, P., Kishore, J. (2010) Understanding survival analysis: Kaplan-Meier estimate. Int. J. Ayurveda Res. 1(4), 274–278CrossRefPubMedPubMedCentralGoogle Scholar
  10. Harbo, J. R. (1986) Propagation and instrumental insemination, In: Rinderer T.E. (Ed.), Bee Breeding and Genetics. Academic Press, Inc., Orlando, FL. pp. 361–389CrossRefGoogle Scholar
  11. Kocher, S., Richard, F. J., Tarpy, D. R., Grozinger, C. M. (2008) Genomic analysis of post-mating changes in the honey bee queen (Apis mellifera). BMC Genomics 9, 232CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kocher, S., Richard, F. J., Tarpy, D. R., Grozinger, C. M. (2009) Queen reproductive state modulates pheromone production and queen-worker interactions in honey bees. Behav. Ecol. 20, 1007–1014CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kocher, S. D., Ayroles, J. F., Stone, E. A., Grozinger, C. M. (2010) Individual variation in pheromone response correlates with reproductive traits and brain gene expression in worker honey bees. PLoS ONE.  https://doi.org/10.1371/journal.pone.0009116
  14. Koeniger, G. (1986) Reproduction and mating behavior, in: Rinderer, T.E. (Ed.), Bee Breeding and Genetics. Academic Press, Inc., Orlando, FL, pp. 235–252Google Scholar
  15. Kostarelou-Damianidou, M., Thrasyvoulou, A., Tselios, D., Bladenopoulos, K. (1995) Brood and honey production of honey bee colonies requeened at various frequencies. J. Api. Res. 34(1), 9–14CrossRefGoogle Scholar
  16. Kulhanek, K., Steinhauer, N., Rennich, K., Caron, D. M., Sagili, R. R., Pettis, J. S., Ellis, J. D., Wilson, M. E., Wilkes, J. T., Tarpy, D. R., Rose, R., Lee, K., Rangel, J., vanEngelsdorp, D. (2017): A national survey of managed honey bee 2015–2016 annual colony losses in the USA. J. Api. Res.  https://doi.org/10.1080/00218839.2017.1344496
  17. Laidlaw, H. H., Page, R. E. (1997) Queen Rearing and Bee Breeding. Wicwas, Cheschire.Google Scholar
  18. Littell, R. C., Henry, P. R., Ammerman, C. B. (1998) Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci. 76(4), 1216–1231CrossRefPubMedGoogle Scholar
  19. Mackensen, O. (1964) Relation of semen volume to success in artificial insemination of queen honey bees. J. Econ. Entomol. 57, 581–583CrossRefGoogle Scholar
  20. Mattila, H. R., Seeley, T. D. (2007) Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317(5836), 362–364CrossRefPubMedGoogle Scholar
  21. Mitchell, C. (1970) Weights of workers and drones. Am. Bee J. 110, 468–469Google Scholar
  22. Morse, R. A., Hooper, T. (1985) The Illustrated Encyclopedia of Beekeeping. Dutton, New YorkGoogle Scholar
  23. Niño, E. L., Malka, O., Hefetz, A., Teal, P., Hayes, J., Grozinger, C. M. (2012) Effects of honey bee (Apis mellifera L.) queen insemination volume on worker behavior and physiology. J. Insect Physiol. 58, 1082–1089CrossRefGoogle Scholar
  24. Niño, E. L., Tarpy, D. R.,Grozinger, C. M. (2013) Differential effects of insemination volume and substance on reproductive changes in honey bee queens (Apis mellifera L.). Insect Mol Biol. 22, 233–244CrossRefPubMedGoogle Scholar
  25. Njeru, L. K., Raina, S. K., Kutima, H. L., Salifu, D., Cham, D. T., Kimani, J. N., Muli, E. M. (2017) Effect of larval age and supplemental feeding on morphometrics and oviposition in honey bee Apis mellifera scutellata queens. J. Apicult. Res. 56(3), 183–189. DOI:  https://doi.org/10.1080/00218839.2017.1307714 CrossRefGoogle Scholar
  26. Oldroyd, B. P., Fewell, J. H. (2007) Genetic diversity promotes homeostasis in insect colonies. Trends Ecol. Evol. 22(8), 408–413CrossRefPubMedGoogle Scholar
  27. Rangel, J., Seeley, T. D. (2012) Colony fissioning in honey bees: size and significance of the swarm fraction. Insect. Soc. 59, 453–462. DOI:  https://doi.org/10.1007/s00040-012-0239-5 CrossRefGoogle Scholar
  28. Rangel, J., Tarpy, D. R. (2015) The combined effects of miticides on the mating health of honey bee (Apis mellifera L.) queens. J. Apicult. Res. 54(3), 275–283CrossRefGoogle Scholar
  29. Rangel, J., Tarpy, D. R. (2016) In-hive miticides and their effect on queen supersedure and colony growth in the honey bee (Apis mellifera). J. Environ. Anal. Toxicol. 6:3. DOI:  https://doi.org/10.4172/2161-0525.1000377 CrossRefGoogle Scholar
  30. Rangel, J., Keller, J. J., Tarpy, D. R. (2013) The effects of honey bee (Apis mellifera L.) queen reproductive potential on colony growth. Insect. Soc. 60(1), 65–73Google Scholar
  31. Richard, F. J., Tarpy, D. R., Grozinger, C. M. (2007) Effects of insemination quantity on honey bee queen physiology. PLoS One.  https://doi.org/10.1371/journal.pone.0000980
  32. Richard F. J., Schal, C., Tarpy, D. R., Grozinger, C. M. (2011) Effects of instrumental insemination and insemination quantity on Dufour’s gland chemical profiles and vitellogenin expression in honey bee queens (Apis mellifera). J. Chem. Ecol. 37, 1027–1036CrossRefPubMedGoogle Scholar
  33. Seeley, T. D. (1995) The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies. Harvard University Press, CambridgeGoogle Scholar
  34. Seeley, T. D., Tarpy, D. R. (2007) Queen promiscuity lowers disease within honeybee colonies. Proc. Roy. Soc. Lond. B Biol. Sci. 274(1606), 67–72CrossRefGoogle Scholar
  35. Seeley, T. D., Visscher, P. K. (2003) Choosing a home: how the scouts in a honey bee swarm perceive the completion of their group decision making. Behav. Ecol. Sociobiol. 54, 511–520CrossRefGoogle Scholar
  36. Seitz, N., Traynor, K. S., Steinhauer N., Rennich, K., Wilson, M. E., Ellis, J. D., Rose, R., Tarpy, D. R., Sagili, R. R., Caron, D. M., et al. (2016) A national survey of managed honey bee 2014–2015 annual colony losses in the USA. J. Apicult. Res.  https://doi.org/10.1080/00218839.2016.1153294
  37. Tarpy, D. R. (2003) Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proc. Biol. Sci. 270(1510), 99–103CrossRefPubMedPubMedCentralGoogle Scholar
  38. Tarpy, D. R., Nielsen, D. I. (2002) Sampling error, effective paternity and estimating the genetic structure of honey bee colonies (Hymenoptera: Apidae). Ann. Entomol. Soc. Am. 95, 513–528CrossRefGoogle Scholar
  39. Tarpy, D. R., Seeley, T. D. (2006) Lower disease infections in honeybee (Apis mellifera) colonies headed by polyandrous vs monandrous queens. Naturwissenschaften 93(4), 195–199CrossRefPubMedGoogle Scholar
  40. Tarpy, D. R., Nielsen, R., Nielsen, D. I. (2004) A scientific note on the revised estimates of effective paternity frequency in Apis. Insect. Soc. 51(2), 203–204CrossRefGoogle Scholar
  41. Wilde, J. (1994) Comparison of the development and productivity of bee colonies with naturally and instrumentally inseminated queens kept in different conditions before and after the insemination. Zootechnica 39, 135–152Google Scholar
  42. Winston, M. L. (1987) The Biology of the Honey Bee. Harvard University Press, CambridgeGoogle Scholar
  43. Woyke J. (1989) Results of instrumental insemination, in: Moritz R.F.A. (Ed.), The Instrumental Insemination of the Queen Bee. Bucharest, Apimondia, pp. 93–103Google Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of EntomologyTexas A&M UniversityCollege StationUSA

Personalised recommendations