, Volume 46, Issue 2, pp 209–223 | Cite as

Crop pollinators in Brazil: a review of reported interactions

  • T. C. GianniniEmail author
  • S. Boff
  • G. D. Cordeiro
  • E. A. CartolanoJr.
  • A. K. Veiga
  • V. L. Imperatriz-Fonseca
  • A. M. Saraiva
Review article


Pollinators are important to maintain ecosystem services, being part of the reproduction and seed formation process of plant species. In this study, we reviewed the literature and developed a database of interactions between pollinators and agricultural crops for Brazil. We classified the pollinators as effective, occasional, or potential, and also identified those species quoted simply as “visitors” (without reference to pollination). We found 250 crop pollinators pertaining to the three categories quoted, with 168 effective ones. Besides, we identified the effective pollinators of 75 agricultural crops. Bees pertaining to the family Apidae, mainly those from the genera Melipona, Xylocopa, Centris, and Bombus, were reportedly the most effective pollinators of agricultural crops. We also found that the exotic managed species Apis mellifera and the stingless bee Trigona spinipes are effective pollinators of some crops. In spite of some data having been originated from gray literature and the taxonomic impediment, this effort is a crucial step to clarify the gaps and bias on data. This study is the first to attempt to build, analyze, and make available a comprehensive data set about pollinators of agricultural crops in a country level, aiming to contribute to protective measures and to enhance the sustainable use of native pollinators in agriculture.


ecosystem services pollination agriculture bees Apoidea 



The authors are grateful to three anonymous referees, Carlos Alberto Garófalo, Márcia Ribeiro, and Luisa Gigante Carvalheiro for suggestions in the manuscript, and also to National Counsel of Technological and Scientific Development (CNPq) (472702/2013-0), São Paulo Research Foundation (FAPESP) (2011/06811-5), Coordination for the Improvement of Higher Education Personnel (CAPES), and Biodiversity and Computation (Biocomp, University of São Paulo).

Supplementary material

13592_2014_316_MOESM1_ESM.docx (40 kb)
ESM 1 (DOCX 40 kb)


  1. Adams, D.C., Rohlf, F.J., Slice, D.E. (2004) Geometric morphometrics: ten years of progress following the ‘revolution’. Ital. J. Zool. 71, 5–16CrossRefGoogle Scholar
  2. Aebi, A., Vaissiere, B.E., vanEngelsdorp, D., Delaplane, K.S., Roubik, D.W., Neumann, P. (2012) Back to the future: Apis versus non-Apis pollination. TREE 27, 142–143Google Scholar
  3. Agnarsson, I., Kuntner, M. (2007) Taxonomy in a changing world: seeking solutions for a science in crisis. Syst. Biol. 56, 531–539CrossRefPubMedGoogle Scholar
  4. Aizen, M.A., Garibaldi, L.A., Cunningham, S.A., Klein, A.M. (2009) How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Ann. Bot. 103, 1579–1588CrossRefPubMedCentralPubMedGoogle Scholar
  5. Aldana, J., Cure, J.R., Almanza, M.T., Vecil, D., Rodríguez, D. (2007) Efecto de Bombus atratus (Hymenoptera: Apidae) sobre la productividad de tomate (Lycopersicon esculentum Mill.) bajo invernadero en la Sabana de Bogotá, Colombia. Agron. Colomb. 25, 62–72Google Scholar
  6. Alonso, J.D.S., Silva, J.F., Garófalo, C.A. (2012) The effects of cavity length on nest size, sex ratio and mortality of Centris (Heterocentris) analis (Hymenoptera, Apidae, Centridini). Apidologie 43, 436–448CrossRefGoogle Scholar
  7. Becher, M.A., Osborne, J.L., Thorbek, P., Kennedy, P.J., Grimm, V. (2013) Towards a systems approach for understanding honeybee decline: a stocktaking and synthesis of existing models. J. Appl. Ecol. 50, 868–880CrossRefPubMedCentralPubMedGoogle Scholar
  8. Biesmeijer, J.C., Roberts, S.P.M., Reemer, M., Ohlemuller, R., Edwards, M., Peeters, T., Schaffers, A.P., Potts, S.G., Kleukers, R., Thomas, C.D., Settele, J., Kunin, W.E. (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354CrossRefPubMedGoogle Scholar
  9. Boiça Jr., A.I., Santos, T.M., Passilongo, J. (2004) Trigona spinipes (Fabr.) (Hymenoptera: Apidae) em espécies de maracujazeiro: flutuação populacional, horário de visitação e danos às flores. Neotrop. Entomol. 33, 135–139CrossRefGoogle Scholar
  10. Cameron, S.A., Lozier, J.D., Strange, J.P., Koch, J.B., Cordesa, N., Solter, L.F., Griswold, T.L. (2011) Patterns of widespread decline in North American bumble bees. PNAS 108, 662–666CrossRefPubMedCentralPubMedGoogle Scholar
  11. Cartolano Jr., E. A., Saraiva, A. M., Correa, P. L. P., Giannini, T. C., Giovanni, R. (2007) Uma proposta de esquema de dados de relacionamento entre espécimes. In: Proceedings of XXXIII Conferencia Latinoamericana de Informática, San JoseGoogle Scholar
  12. Cortopassi-Laurino, M., Ramalho, M. (1988) Pollen harvest by africanized Apis mellifera and Trigona spinipes in São Paulo: botanical and ecological views. Apidologie 19, 1–24CrossRefGoogle Scholar
  13. Dafni, A., Kevan, P.G., Husband, B.C. (2005) Practical pollination biology. Enviroquest, OntarioGoogle Scholar
  14. Delaplane, K.S., Dag, A., Danka, R.G., Freitas, B.F., Garibaldi, L.A., Goodwin, R.M., Hormaza, J.I. (2013) Standard methods for pollination research with Apis mellifera. J. Apic. Res. 52, 1–28CrossRefGoogle Scholar
  15. Dupont, Y.L., Damgaard, C., Simonsen, V. (2011) Quantitative historical change in bumblebee (Bombus spp.) assemblages of red clover fields. PLoS One 6, e25172CrossRefPubMedCentralPubMedGoogle Scholar
  16. Dupont, Y.L., Hansen, D.M., Valido, A., Olesen, J.M. (2004) Impact of introduced honey bees on native pollination interactions of the endemic Echium wildpretii (Boraginaceae) on Tenerife, Canary Islands. Biol. Cons. 118, 301–311CrossRefGoogle Scholar
  17. Francisco, F.O., Nunes-Silva, P., Francoy, T.M., Wittmann, D., Imperatriz-Fonseca, V.L., Arias, M.C., Morgan, E.D. (2008) Morphometrical, biochemical and molecular tools for assessing biodiversity. An example in Plebeia remota (Holmberg, 1903) (Apidae, Meliponini). Insect. Soc. 55, 231–237CrossRefGoogle Scholar
  18. Francoy, T.M., Grassi, M.L., Imperatriz-Fonseca, V.L., May-Itzá, W.J., Quezada-Euán, J.J.G. (2011) Geometric morphometrics of the wing as a tool for assigning genetic lineages and geographic origin to Melipona beecheii (Hymenoptera: Meliponini). Apidologie 42, 499–507CrossRefGoogle Scholar
  19. Francoy, T.M., Silva, R.A.O., Nunes-Silva, P., Menezes, C., Imperatriz-Fonseca, V.L. (2009) Gender identification of five genera of stingless bees (Apidae, Meliponini) based on wing morphology. Genet. Mol. Res. 8, 207–214Google Scholar
  20. Free, J.B. (1993) Insect pollination of crops. Academic, London, UKGoogle Scholar
  21. Freitas, B.M., Oliveira Filho, J.H. (2001) Criação racional de mamangavas para polinização em áreas agrícolas. Banco do Nordeste, FortalezaGoogle Scholar
  22. Freitas, B.M., Oliveira Filho, J.H. (2003) Ninhos racionais para mamangava (Xylocopa frontalis) na polinização do maracujá-amarelo (Passiflora edulis). Ciênc. Rural 33, 1135–1139CrossRefGoogle Scholar
  23. Gallai, N., Salles, J.M., Settele, J., Vaissière, B.E. (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821CrossRefGoogle Scholar
  24. Garibaldi, L.A., Aizen, M.A., Klein, A.M., Cunningham, S.A., Harder, L.D. (2011) Global growth and stability of agricultural yield decrease with pollinator dependence. PNAS 108, 5909–5914CrossRefPubMedCentralPubMedGoogle Scholar
  25. Garibaldi, L.A., Steffan-Dewenter, I., Winfree, R., Aizen, M.A., Bommarco, R., Cunningham, S.A., Kremen, C., Carvalheiro, L.G., Harder, L.D., Afik, O., et al. (2013) Wild pollinators enhance fruit set of crops regardless of honey-bee abundance. Science 339, 1608–1611CrossRefPubMedGoogle Scholar
  26. Giannini, T.C., Acosta, A.L., Garófalo, C.A., Saraiva, A.M., Alves dos Santos, I., Imperatriz-Fonseca, V.L. (2012) Pollination services at risk: bee habitats will decrease owing to climate change in Brazil. Ecol. Model. 244, 127–131CrossRefGoogle Scholar
  27. Giannini, T.C., Acosta, A.L., Silva, C.I., Oliveira, P.E.A.M., Imperatriz-Fonseca, V.L., Saraiva, A.M. (2013a) Identifying the areas to preserve passion fruit pollination service in Brazilian Tropical Savannas under climate change. Agric. Ecosyst. Environ. 171, 39–46CrossRefGoogle Scholar
  28. Giannini, T.C., Pinto, C.E., Acosta, A.L., Taniguchi, M., Saraiva, A.M., Alves-dos-Santos, I. (2013b) Interactions at large spatial scale: the case of Centris bees and floral oil producing plants in South America. Ecol. Model. 258, 74–81CrossRefGoogle Scholar
  29. Girão, L.C., Lopes, A.V., Tabarelli, M., Bruna, E.M. (2007) Changes in tree reproductive traits reduce functional diversity in a fragmented Atlantic Forest landscape. PLoS One 2, e908CrossRefPubMedCentralPubMedGoogle Scholar
  30. Gotelli, N.J. (2004) A taxonomic wish-list for community ecology. Phil. Trans. R. Soc. B 359, 585–597CrossRefPubMedCentralPubMedGoogle Scholar
  31. Heard, T.A. (1999) The role of stingless bees in crop pollination. Annu. Rev. Entomol. 44, 183–206CrossRefPubMedGoogle Scholar
  32. Imperatriz-Fonseca, V.L., Saraiva, A.M., Jong, D. (2006) Bees as pollinators in Brazil: assessing the status and suggesting best practices. Holos, BrasíliaGoogle Scholar
  33. Kim, K.C., Byrne, L.B. (2006) Biodiversity loss and the taxonomic bottleneck: emerging biodiversity science. Ecol. Res. 21, 794–810CrossRefGoogle Scholar
  34. Kennedy, C.M., Lonsdorf, E., Neel, M.C., Williams, N.M., Ricketts, T.H., Winfree, R., Bommarco, R., Brittain, C., Burley, A.L., Cariveau, D., et al. (2013) A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599CrossRefPubMedGoogle Scholar
  35. Klein, A.M., Vaissière, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., Tscharntke, T. (2007) Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274, 303–313CrossRefPubMedCentralPubMedGoogle Scholar
  36. Kleinert, A. M. P., Giannini, T. C. (2012) Generalist bee species on Brazilian bee-plant interaction networks. Psyche, 291519, 7 pagesGoogle Scholar
  37. Lautenbach, S., Seppelt, R., Liebscher, J., Dormann, C.F. (2012) Spatial and temporal trends of global pollination benefit. PLoS One 7, e35954CrossRefPubMedCentralPubMedGoogle Scholar
  38. LeBuhn, G., Droege, S., Connor, E.F., Gemmill-Herren, B., Potts, S.G., Minckley, R.L., Griswold, T., Jean, R., Kula, E., Roubik, D.W., et al. (2013) Detecting insect pollinator declines on regional and global scales. Cons. Biol. 27, 113–120CrossRefGoogle Scholar
  39. Lennartsson, L. (2002) Extinction thresholds and disrupted plant–pollinator interactions in fragmented plant populations. Ecology 83, 3060–3072Google Scholar
  40. Magnacca, K.N., Brown, M.J.F. (2012) DNA barcoding a regional fauna: Irish solitary bees. Mol. Ecol. Resour. 12, 990–998CrossRefPubMedGoogle Scholar
  41. Magalhães, C.B., Freitas, B.M. (2013) Introducing nests of the oil-collecting bee Centris analis (Hymenoptera: Apidae: Centridini) for pollination of acerola (Malpighia emarginata) increases yield. Apidologie 44, 234–239CrossRefGoogle Scholar
  42. Malagodi-Braga, K.S., Kleinert, A.M.P. (2004) Could Tetragonisca angustula Latreille (Apinae, Meliponini) be used as strawberry pollinator in greenhouses? Australian J. Agric. Res. 55, 771–773CrossRefGoogle Scholar
  43. Michener, C.D. (2007) The Bees of the World. Johns Hopkins, BaltimoreGoogle Scholar
  44. Morandin, L.A., Winston, M.L. (2005) Wild bee abundance and seed production in conventional, organic, and genetically modified canola. Ecol. Appl. 15, 871–881CrossRefGoogle Scholar
  45. Nunes-Silva, P., Hrncir, M., Silva, C.I., Roldao, Y., Imperatriz-Fonseca, V.L. (2013) Stingless bees, Melipona fasciculata, as efficient pollinators of eggplant (Solanum melongena) in greenhouses. Apidologie 44, 537–546CrossRefGoogle Scholar
  46. Oliveira, R., Schlindwein, C. (2009) Searching for a manageable pollinator for acerola orchards: the solitary oil-collecting bee Centris analis (Hymenoptera: Apidae: Centridini). J. Econ. Entomol. 102, 265–273CrossRefPubMedGoogle Scholar
  47. Ollerton, J., Price, V., Armbruster, W.S., Memmott, J., Watt, S., Waser, N.M., Totland, O., Goulson, D., Alarcón, R., Stout, J.C., Tarrant, S. (2012) Overplaying the role of honey bees as pollinators: a comment on Aebi and Neumann (2011). TREE 27, 141–142PubMedGoogle Scholar
  48. Ollerton, J., Winfree, R., Tarrant, S. (2011) How many flowering plants are pollinated by animals? Oikos 120, 321–326CrossRefGoogle Scholar
  49. Pereira, M., Garófalo, C.A. (2010) Biologia da nidificação de Xylocopa frontalis e Xylocopa grisescens (Hymenoptera, Apidae, Xylocopini) em ninhos-armadilha. Oecologia Aust. 14, 193–209CrossRefGoogle Scholar
  50. Polce, C., Termansen, M., Aguirre-Gutierrez, J., Boatman, N.D., Budge, G.E., Andrew, C., Garratt, M.P., Pietravalle, S., Potts, S.G., Ramirez, J.A., Somerwill, K.E., Biesmeijer, J.C. (2013) Species distribution models for crop pollination: a modelling framework applied to Great Britain. PLoS One 8, e76308CrossRefPubMedCentralPubMedGoogle Scholar
  51. Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O., Kunin, W.E. (2010) Global pollinator declines: trends, impacts and drivers. TREE 25, 345–353PubMedGoogle Scholar
  52. Rohlf, J.F., Marcus, L.F. (1993) A revolution in morphometrics. TREE 8, 129–132Google Scholar
  53. Roubik, D.W. (1980) Foraging behavior of competing Africanized honey bees and stingless bees. Ecology 61, 836–845CrossRefGoogle Scholar
  54. Roubik, D.W., Villanueva-Gutierrez, R. (2009) Invasive Africanized honey bee impact on native solitary bees: a pollen resource and trap nest analysis. Biol. J. Linn. Soc. 98, 152–160CrossRefGoogle Scholar
  55. Saraiva, A. M., Veiga, A. K., Cartolano Junior, E. A. (2011) Biodiversity Data Digitizer – A tool for a richer biodiversity data content digitization. Proceedings of TDWG, New OrleansGoogle Scholar
  56. Sazima, I., Sazima, M. (1989) Mamangavas e irapuás (Hymenoptera, Apoidea): visitas, interações e conseqüências para polinização do maracujá (Passifloraceae). Rev. Bras. Entomol. 33, 109–118Google Scholar
  57. Schneider, S.S., DeGrandi-Hoffman, G., Smith, D.R. (2004) The African Honey Bee: factors contributing to a successful biological invasion. Annu. Rev. Entomol. 49, 351–376CrossRefGoogle Scholar
  58. Silveira, F.A., Pinheiro-Machado, C., Alves dos Santos, I., Kleinert, A.M.P., Imperatriz-Fonseca, V.L. (2002) Taxonomic constraints for the conservation and sustainable use of wild pollinators—the Brazilian wild bees. In: Kevan, P., Imperatriz Fonseca, V.L. (eds.) Pollinating Bees, pp. 41–50. Ministry of Environment, BrasíliaGoogle Scholar
  59. Slaa, E.J., Chaves, L.A.S., Malagodi-Braga, K.S., Hofstede, F.E. (2006) Stingless bees in applied pollination: practice and perspectives. Apidologie 37, 293–315CrossRefGoogle Scholar
  60. Thomson, D. (2004) Competitive interactions between the invasive European honey bee and native bumble bees. Ecology 85, 458–470CrossRefGoogle Scholar
  61. Valentini, A., Pompanon, F., Taberlet, P. (2009) DNA barcoding for ecologists. TREE 24, 110–117PubMedGoogle Scholar
  62. Velthuis, H.H.W., Doorn, A. (2006) A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37, 421–451CrossRefGoogle Scholar
  63. Vogel, S. (1974) Ölblumen und ölsammelnde Bienen. Tropische und Subtropische flanzenwelt 7, 285–547Google Scholar
  64. Wieczorek, J., Bloom, D., Guralnick, R., Blum, S., Doring, M., Giovanni, R., Robertson, T., Vieglais, D. (2012) Darwin Core: an evolving community-developed biodiversity data standard. PLoS One 7, e29715CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France 2014

Authors and Affiliations

  • T. C. Giannini
    • 1
    • 2
    • 3
    • 5
    Email author
  • S. Boff
    • 4
    • 5
  • G. D. Cordeiro
    • 4
    • 5
  • E. A. CartolanoJr.
    • 1
    • 5
  • A. K. Veiga
    • 1
    • 5
  • V. L. Imperatriz-Fonseca
    • 2
    • 5
  • A. M. Saraiva
    • 1
    • 5
  1. 1.Escola PolitécnicaUniversidade de São PauloSão PauloBrazil
  2. 2.Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
  3. 3.Universidade Santo AmaroSão PauloBrazil
  4. 4.Faculdade de Filosofia, Ciências e LetrasUniversidade de São PauloRibeirão PretoBrazil
  5. 5.Research Center on Biodiversity and Computing, BioCompSão PauloBrazil

Personalised recommendations