, Volume 46, Issue 1, pp 92–106 | Cite as

Pollen and nectar quality drive the major and minor floral choices of bumble bees

  • Laurent Somme
  • Maryse Vanderplanck
  • Denis Michez
  • Isabelle Lombaerde
  • Romain Moerman
  • Bernard Wathelet
  • Ruddy Wattiez
  • Georges Lognay
  • Anne-Laure Jacquemart
Original article


To investigate whether floral resource quality impacts on bumble bee floral choices, we determined the pollen foraging constancy and floral choices of four bumble bee species commonly occurring in peaty, wet meadows in South Belgium. We subsequently analyzed the chemical contents of pollen and nectar, as well as the nectar production of the major host plant species. Individuals of B. lapidarius and B. pascuorum collected high-quality pollen (i.e., having high essential amino acid and phytosterol content) on Comarum palustre and Trifolium pratense, whereas individuals of B. terrestris s.l. and B. hypnorum enlarged their diet breadth to less valuable pollen resources (Cirsium palustre and Valeriana repens). Since Persicaria bistorta and Comarum palustre offer abundant and concentrated nectar, these plant species might represent major nectar sources for bumble bee species in peaty, wet meadows. The present study demonstrated the role of pollen composition on differences in foraging strategies among bumble bee species.


amino acids floral rewards nectar sugars phytosterols polylectism 



The authors thank the Belgian Fund for Scientific Research (FNRS contract 2.4540.09) for funding this study. LS holds a FRIA fellowship (Funds for training in Industry and Agriculture Research) and MV holds an aspirant FNRS fellowship. The study was conducted in accordance with current Belgian laws. We thank the “Département de la Nature et des Forêts” (DNF, Région Wallonne, Belgium) for the derogation concerning the sampling of plant and insect individuals in nature reserves, the DNF and Natagora for granting access to their properties, and Christel Buyens and Isabelle Van de Vreken for technical assistance.

Supplementary material

13592_2014_307_MOESM1_ESM.doc (174 kb)
Table S1 (DOC 174 kb)


  1. Ayasse, M., Stökl, J., Francke, W. (2011) Chemical ecology and pollinator-driven speciation in sexually deceptive orchids. Phytochemistry, Plant-Insect Interact. 72, 1667–1677Google Scholar
  2. Baker, H.G., Baker, I. (1990) The predictive value of nectar chemistry to the recognition of pollinator types. Isr. J. Bot. 39, 157–166Google Scholar
  3. Behmer, S.T., Nes, W.D. (2003) Insect sterol nutrition and physiology: a global overview. Adv. Insect Physiol. 31, 1–72Google Scholar
  4. Benton, T. (2006) Bumblebees: the natural history & identification of the species found in Britain. Collins, LondonGoogle Scholar
  5. Beug, H.-J. (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Friedrich Pfeil, München, GermanyGoogle Scholar
  6. Canavoso, L.E., Jouni, Z.E., Karnas, K.J., Pennington, J.E., Wells, M.A. (2001) Fat metabolism in insects. Annu. Rev. Nutr. 21, 23–46PubMedCrossRefGoogle Scholar
  7. Carolan, J.C., Murray, T.E., Fitzpatrick, Ú., Crossley, J., Schmidt, H., Cederberg, B., McNally, L., Paxton, R.J., Williams, P.H., Brown, M.J.F. (2012) Colour patterns do not diagnose species: quantitative evaluation of a DNA barcoded cryptic bumblebee complex. PLoS ONE 7, e29251PubMedCentralPubMedCrossRefGoogle Scholar
  8. Carter, C., Shafir, S., Yehonatan, L., Palmer, R.G., Thornburg, R. (2006) A novel role for proline in plant floral nectars. Naturwissenschaften 93, 72–79PubMedCrossRefGoogle Scholar
  9. Carvalheiro, L.G., Kunin, W.E., Keil, P., Aguirre-Gutiérrez, J., Ellis, W.N., Fox, R., Groom, Q., Hennekens, S., Van Landuyt, W., Maes, D., et al. (2013) Species richness declines and biotic homogenisation have slowed down for NW-European pollinators and plants. Ecol. Lett. 16, 870–878PubMedCentralPubMedCrossRefGoogle Scholar
  10. Carvell, C. (2002) Habitat use and conservation of bumblebees (Bombus spp.) under different grassland management regimes. Biol. Conserv. 103, 33–49CrossRefGoogle Scholar
  11. Carvell, C., Westrich, P., Meek, W.R., Pywell, R.F., Nowakowski, M. (2006) Assessing the value of annual and perennial forage mixtures for bumblebees by direct observation and pollen analysis. Apidologie 37, 326–340CrossRefGoogle Scholar
  12. Chapman, R.F. (2012) The insects: structure and function, 5th edn. Cambridge University Press, USAGoogle Scholar
  13. Cnaani, J., Thomson, J.D., Papaj, D.R. (2006) Flower choice and learning in foraging bumblebees: effects of variation in nectar volume and concentration. Ethology 112, 278–285CrossRefGoogle Scholar
  14. Cohen, A.C. (2004) Insect diets: science and technology. CRC Press, Boca RatonGoogle Scholar
  15. Comba, L., Corbet, S.A., Hunt, L., Warren, B. (1999) Flowers, nectar and insect visits: evaluating British plant species for pollinator-friendly gardens. Ann. Bot. 83, 369–383CrossRefGoogle Scholar
  16. Connop, S., Hill, T., Steer, J., Shaw, P. (2010) The role of dietary breadth in national bumblebee (Bombus) declines: simple correlation? Biol. Conserv. 143, 2739–2746CrossRefGoogle Scholar
  17. Cook, S.M., Awmack, C.S., Murray, D.A., Williams, I.H. (2003) Are honey bees’ foraging preferences affected by pollen amino acid composition? Ecol. Entomol. 28, 622–627CrossRefGoogle Scholar
  18. Corbet, S.A. (2003) Nectar sugar content: estimating standing crop and secretion rate in the field. Apidologie 34, 1–10CrossRefGoogle Scholar
  19. Day, S., Beyer, R., Mercer, A., Odgen, S. (1990) The nutrient composition of honeybee-collected pollen in Otago, New Zealand. J. Apic. Res. 29, 138–146Google Scholar
  20. De Groot, A.P. (1953) Protein and amino acid requirements of the honeybee (Apis mellifera L.). Physiol Comp Oecologia 3, 197–285Google Scholar
  21. Dufrêne, M., Legendre, P. (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366Google Scholar
  22. Erdtman, G. (1960) The acetolysis method. A revised description. Svensk Botanisk Tidskrift 54, 561–564Google Scholar
  23. Fontaine, C., Collin, C.L., Dajoz, I. (2008) Generalist foraging of pollinators: diet expansion at high density. J. Ecol. 96, 1002–1010CrossRefGoogle Scholar
  24. Frankard, P., Ghiette, P., Hindryckx, M.-N., Schumacker, R., Wastiaux, C. (1998) Peatlands of Wallony (S-Belgium). Suoseura - Finnish Peatland Society 49, 33–47Google Scholar
  25. Génissel, A., Aupinel, P., Bressac, C., Tasei, J.-N., Chevrier, C. (2002) Influence of pollen origin on performance of Bombus terrestris micro-colonies. Entomol. Exp. Appl. 104, 329–336CrossRefGoogle Scholar
  26. Gibbs, J.P. (2000) Pérdida de Humedales y Conservación de la Biodiversidad. Conserv. Biol. 14, 314–317CrossRefGoogle Scholar
  27. Gonzalez-Teuber, M., Heil, M. (2009) Nectar chemistry is tailored for both attraction of mutualists and protection from exploiters. Plant Signal. Behav. 4, 809–813PubMedCentralPubMedCrossRefGoogle Scholar
  28. Goslee, S., Urban, D. (2007) The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19Google Scholar
  29. Goulson, D. (2009) Bumblebees: behaviour, ecology, and conservation, 2nd edn. Oxford University Press, USAGoogle Scholar
  30. Goulson, D., Darvill, B. (2004) Niche overlap and diet breadth in bumblebees: are rare species more specialized in their choice of flowers? Apidologie 35, 9Google Scholar
  31. Goulson, D., Lye, G.C., Darvill, B. (2008) Decline and conservation of bumble bees. Annu. Rev. Entomol. 53, 191–208PubMedCrossRefGoogle Scholar
  32. Gruter, C., Ratnieks, F.L.W. (2011) Flower constancy in insect pollinators. Commun. Integr. Biol. 4, 633–636PubMedCentralPubMedCrossRefGoogle Scholar
  33. Guillén, A., Rico, E., Castroviejo, S. (2005) Reproductive biology of the Iberian species of Potentilla L. (Rosaceae). Reprod. Biol. 62, 9–21Google Scholar
  34. Hagbery, J., Nieh, J.C. (2012) Individual lifetime pollen and nectar foraging preferences in bumble bees. Naturwissenschaften 99, 821–832PubMedCrossRefGoogle Scholar
  35. Hanley, M.E., Franco, M., Pichon, S., Darvill, B., Goulson, D. (2008) Breeding system, pollinator choice and variation in pollen quality in British herbaceous plants. Funct. Ecol. 22, 592–598CrossRefGoogle Scholar
  36. Harder, L.D. (1986) Effects of nectar concentration and flower depth on flower handling efficiency of bumble bees. Oecologia 69, 309–315CrossRefGoogle Scholar
  37. Human, H., Nicolson, S.W., Strauss, K., Pirk, C.W.W., Dietemann, V. (2007) Influence of pollen quality on ovarian development in honeybee workers (Apis mellifera scutellata). J. Insect Physiol. 53, 649–655PubMedCrossRefGoogle Scholar
  38. Ishii, H.S. (2005) Analysis of bumblebee visitation sequences within single bouts: implication of the overstrike effect on short-term memory. Behav. Ecol. Sociobiol. 57, 599–610CrossRefGoogle Scholar
  39. Janson, E.M., Grebenok, R.J., Behmer, S.T., Abbot, P. (2009) Same host-plant, different sterols: variation in sterol metabolism in an insect herbivore community. J. Chem. Ecol. 35, 1309–1319PubMedCrossRefGoogle Scholar
  40. Juillet, N., Scopece, G. (2010) Does floral trait variability enhance reproductive success in deceptive orchids? Perspect. Plant Ecol. Evol. Syst. 12, 317–322CrossRefGoogle Scholar
  41. Kindt, R., Coe, R. (2005) Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi. ISBN 92-9059-179-XGoogle Scholar
  42. Kitaoka, T.K., Nieh, J.C. (2009) Bumble bee pollen foraging regulation: role of pollen quality, storage levels, and odor. Behav. Ecol. Sociobiol. 63, 625–625CrossRefGoogle Scholar
  43. Kleijn, D., Raemakers, I. (2008) A retrospective analysis of pollen host plant use by stable and declining bumble bee species. Ecology 89, 1811–1823PubMedCrossRefGoogle Scholar
  44. Leonhardt, S.D., Blüthgen, N. (2012) The same, but different: pollen foraging in honeybee and bumblebee colonies. Apidologie 43, 449–464CrossRefGoogle Scholar
  45. Liao, K., Gituru, R.W., Guo, Y.-H., Wang, Q.-F. (2011) The presence of co-flowering species facilitates reproductive success of Pedicularis monbeigiana (Orobanchaceae) through variation in bumble-bee foraging behaviour. Ann. Bot. 108, 877–884PubMedCentralPubMedCrossRefGoogle Scholar
  46. Lognay, G., Severin, M., Boenke, A., Wagstaffe, P.J. (1992) Edible fats and oils reference materials for sterols analysis with particular attention to cholesterol. Part 1. Investigation of some analytical aspects by experienced laboratories. Analyst 117, 1093–1097CrossRefGoogle Scholar
  47. Mayer, C., Michez, D., Chyzy, A., Brédat, E., Jacquemart, A.-L. (2012) The abundance and pollen foraging behaviour of bumble bees in relation to population size of whortleberry (Vaccinium uliginosum). PLoS ONE 7, e50353PubMedCentralPubMedCrossRefGoogle Scholar
  48. Michener, C.D. (2007) The bees of the world. Johns Hopkins University Press, BaltimoreGoogle Scholar
  49. Nicolson, S.W. (2011) Bee food: the chemistry and nutritional value of nectar, pollen and mixtures of the two. Afr. Zool. 46, 197–204CrossRefGoogle Scholar
  50. Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H. (2013) Vegan: Community Ecology Package. R package version 1.17-0. Available:
  51. Ollerton, J., Winfree, R., Tarrant, S. (2011) How many flowering plants are pollinated by animals? Oikos 120, 321–326CrossRefGoogle Scholar
  52. Pelletier, L., McNeil, J.N. (2003) The effect of food supplementation on reproductive success in bumblebee field colonies. Oikos 103, 688–694CrossRefGoogle Scholar
  53. Percival, M.S. (1961) Types of nectar in Angiosperms. New Phytol. 60, 235–281CrossRefGoogle Scholar
  54. Proctor, M., Yeo, P., Lack, A. (1996) The natural history of pollination. Timber Press Inc., Oregon, USAGoogle Scholar
  55. Prys-Jones, O.E., Corbet, S.A. (2011) Bumblebees: 6, 3rd edn. Pelagic Publishing, Exeter, EnglandGoogle Scholar
  56. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. [WWW Document]. URL
  57. Raguso, R.A. (2004) Flowers as sensory billboards: progress towards an integrated understanding of floral advertisement. Curr. Opin. Plant Biol. 7, 434–440PubMedCrossRefGoogle Scholar
  58. Rasmont, P., Regali, A., Ings, T.C., Lognay, G., Baudart, E., Marlier, M., Delcarte, E., Viville, P., Marot, C., Falmagne, P., Verhaeghe, J.-C., Chittka, L. (2005) Analysis of pollen and nectar of Arbutus unedo as a food source for Bombus terrestris (Hymenoptera: Apidae). J. Econ. Entomol. 98, 656–663PubMedCrossRefGoogle Scholar
  59. Roberts, D.W. (2012) labdsv: Ordination and Multivariate Analysis for Ecology. R package version 1.4-1. Available:
  60. Robertson, A.W., Mountjoy, C., Faulkner, B.E., Roberts, M.V., Macnair, M.R. (1999) Bumble bee selection of Mimulus guttatus flowers: the effects of pollen quality and reward depletion. Ecology 80, 2594–2606CrossRefGoogle Scholar
  61. Roulston, T.H., Cane, J.H. (2000) Pollen nutritional content and digestibility for animals. Plant Syst. Evol. 222, 187–209CrossRefGoogle Scholar
  62. Roulston, T.H., Cane, J.H., Buchmann, S.L. (2000) What governs protein content of pollen: pollinator preferences, pollen-pistil interactions, or phylogeny? Ecol. Monogr. 70, 617–643Google Scholar
  63. Roulston, T.H., Goodell, K. (2011) The Role of Resources and Risks in Regulating Wild Bee Populations. Annu. Rev. Entomol. 56, 293–312Google Scholar
  64. Schlindwein, C., Wittmann, D., Martins, C.F., Hamm, A., Siqueira, J.A., Schiffler, D., Machado, I.C. (2005) Pollination of Campanula rapunculus L. (Campanulaceae): how much pollen flows into pollination and into reproduction of oligolectic pollinators? Plant Syst. Evol. 250, 147–156Google Scholar
  65. Sedivy, C., Müller, A., Dorn, S. (2011) Closely related pollen generalist bees differ in their ability to develop on the same pollen diet: evidence for physiological adaptations to digest pollen. Funct. Ecol. 25, 718–725CrossRefGoogle Scholar
  66. Somme, L., Mayer, C., Jacquemart, A.-L. (2014) Multilevel spatial structure impacts on the pollination services of Comarum palustre (Rosaceae). PLoS ONE 9, e99295PubMedCentralPubMedCrossRefGoogle Scholar
  67. Southwick, E.E., Loper, G.M., Sadwick, S.E. (1981) Nectar production, composition, energetics and pollinator attractiveness in spring flowers of Western New York. Am. J. Bot. 68, 994–1002CrossRefGoogle Scholar
  68. Sowig, P. (1989) Effects of flowering plant’s patch size on species composition of pollinator communities, foraging strategies, and resource partitioning in bumblebees (Hymenoptera: Apidae). Oecologia 78, 550–558CrossRefGoogle Scholar
  69. Standifer, L.N., McCaughey, W.F., Dixon, S.E., Gilliam, M., Loper, G.M. (1980) Biochemistry and microbiology of pollen collected by honey bees (Apis mellifera L.) from almond, Prunus dulcis. II. Protein, amino acids and enzymes. Apidologie 11, 163–171CrossRefGoogle Scholar
  70. Stout, J.C., Goulson, D. (2002) The influence of nectar secretion rates on the responses of bumblebees (Bombus spp.) to previously visited flowers. Behav. Ecol. Sociobiol. 52, 239–246CrossRefGoogle Scholar
  71. Svoboda, J.A., Thompson, M.J., Herbert, E.W., Shimanuki, H. (1980) Sterol utilization in honey bees fed a synthetic diet: analysis of prepupal sterols. J. Insect Physiol. 26, 291–294CrossRefGoogle Scholar
  72. Tasei, J.-N., Aupinel, P. (2008) Nutritive value of 15 single pollens and pollen mixes tested on larvae produced by bumblebee workers (Bombus terrestris, Hymenoptera: Apidae). Apidologie 39, 397–409CrossRefGoogle Scholar
  73. Vanderplanck, M., Leroy, B., Wathelet, B., Wattiez, R., Michez, D. (2014a) Standardized protocol to evaluate pollen polypeptides as bee food source. Apidologie 45, 192–204CrossRefGoogle Scholar
  74. Vanderplanck, M., Michez, D., Vancraenenbroeck, S., Lognay, G. (2011) Micro-quantitative method for analysis of sterol levels in honeybees and their pollen loads. Anal. Lett. 44, 1807–1820CrossRefGoogle Scholar
  75. Vanderplanck, M., Moerman, R., Rasmont, P., Lognay, G., Wathelet, B., Wattiez, R., Michez, D. (2014b) How does pollen chemistry impact development and feeding behaviour of polylectic bees? PLoS ONE 9, e86209PubMedCentralPubMedCrossRefGoogle Scholar
  76. Verté, P. (2007) Les marais de la Haute-Semois, 40 années de conservation d’un site de très grand intérêt biologique. Echo des Réserves 3, 4–9Google Scholar
  77. Waser, N.M. (1986) Flower constancy: definition, cause, and measurement. Am. Nat. 127, 593–603CrossRefGoogle Scholar
  78. Waser, N.M., Ollerton, J. (2006) Plant-pollinator interactions: from specialization to generalization. University of Chicago Press, ChicagoGoogle Scholar
  79. Waters, J., Darvill, B., Lye, G.C., Goulson, D. (2011) Niche differentiation of a cryptic bumblebee complex in the Western Isles of Scotland. Insect Conserv. Divers. 4, 46–52CrossRefGoogle Scholar
  80. Weiner, C.N., Hilpert, A., Werner, M., Linsenmair, K.E., Blüthgen, N. (2010) Pollen amino acids and flower specialisation in solitary bees. Apidologie 41, 476–487CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France 2014

Authors and Affiliations

  • Laurent Somme
    • 1
  • Maryse Vanderplanck
    • 2
  • Denis Michez
    • 2
  • Isabelle Lombaerde
    • 1
  • Romain Moerman
    • 2
    • 6
  • Bernard Wathelet
    • 3
  • Ruddy Wattiez
    • 4
  • Georges Lognay
    • 5
  • Anne-Laure Jacquemart
    • 1
  1. 1.Earth and Life Institute – Research group Genetics, Reproduction, PopulationsUniversité catholique de Louvain (UCL)Louvain-la-NeuveBelgium
  2. 2.Laboratory of ZoologyUniversity of Mons - UMONSMonsBelgium
  3. 3.Industrial Biological Chemistry unit, Gembloux Agro-Bio TechUniversity of LiègeGemblouxBelgium
  4. 4.Department of Proteomic and Protein BiochemistryUniversity of Mons - UMONSMonsBelgium
  5. 5.Unit of Analytical Chemistry, Gembloux Agro-Bio TechUniversity of LiègeGemblouxBelgium
  6. 6.Evolutionary Biology & EcologyUniversité Libre de Bruxelles (ULB)BrusselsBelgium

Personalised recommendations