, Volume 45, Issue 6, pp 757–770 | Cite as

Why the viability of spermatozoa diminishes in the honeybee (Apis mellifera) within short time during natural mating and preparation for instrumental insemination

  • H. Vasfi GençerEmail author
  • Yasin Kahya
  • Jerzy Woyke
Original article


The viability of spermatozoa is a crucial parameter to appreciate semen quality and insemination potential of males both in natural mating and instrumental insemination. Here, we conducted a step-by-step investigation to address the questions why and at which step(s) the viability loss is occurring in spermatozoa of honeybees during natural mating and preparation for instrumental insemination. We detected the viability of spermatozoa in semen samples obtained from seminal vesicles and partly and fully everted endophalli of drones and in ejaculates collected into syringe tips, as well as the viability of spermatozoa in lateral oviducts of queens returning from the mating flight. A great diminish of spermatozoa viability (~10 %) was found in lateral oviducts of queens returning from mating flight (88.7 %) in comparison to viable spermatozoa in intact seminal vesicles of drones (98.1 %). Our results demonstrated that the decrease in spermatozoa viability occurs during the second stage of eversion of endophallus (viability loss, 3.3 %), and during injection of semen into the lateral oviducts of queens (viability loss, 6.1 %). The acting factor decreasing the viability of spermatozoa was the increased pressure occurring during the process of natural and instrumental insemination.


drone queen Apis mellifera eversion of endophallus spermatozoa viability instrumental insemination 



We thank two anonymous reviewers for their constructive comments and suggestions. We also thank Siamak Hamednia and Burak Kiziltepe for their help with field and laboratory work.


  1. Baer, B., Zareie, R., Paynter, E., Poland, V., Millar, A.H. (2012) Seminal fluid proteins differ in abundance between genetic lineages of honeybees. J. Proteomics 75, 5646–5653PubMedCrossRefGoogle Scholar
  2. Bieńkowska, M., Panasiuk, B., Węgrzynowicz, P., Gerula, D. (2011) The effect of different thermal conditions on drone semen quality and number of spermatozoa entering the spermatheca of queen bee. J. Apic. Sci. 55, 161–168Google Scholar
  3. Burley, L.M., Fell, R.D., Saacke, R.G. (2008) Survival of honey bee (Hymenoptera. Apidae) spermatozoa incubated at room temperature from drones exposed to miticides. J. Econ. Entomol. 101, 1081–1087PubMedCrossRefGoogle Scholar
  4. Collins, A.M. (2000) Survival of honey bee (Hymenoptera: Apidae) spermatozoa stored at above-freezing temperatures. J. Econ. Entomol. 93, 421–429Google Scholar
  5. Collins, A.M. (2003) A scientific note on the effect of centrifugation on pooled honey bee semen. Apidologie 34, 469–470CrossRefGoogle Scholar
  6. Collins, A.M. (2004) Sources of variation in the viability of honey bee, Apis mellifera L., semen collected for artificial insemination. Invertebr. Reprod. Dev. 45, 231–237CrossRefGoogle Scholar
  7. Collins, A.M., Donoghue, A.M. (1999) Viability assessment of honey bee, Apis mellifera, sperm using dual florescent staining. Theriogenology 51, 1513–1523PubMedCrossRefGoogle Scholar
  8. Collins, A.M., Pettis, J.S. (2001) Effect of varroa infestation on semen quality. Am. Bee J. 141, 590–593Google Scholar
  9. Czekońska, K., Chuda-Mickiewicz, B., Chorbiński, P. (2013a) The effect of brood incubation temperature on the reproductive value of honey bee (Apis mellifera) drones. J. Apic. Res. 52, 96–105CrossRefGoogle Scholar
  10. Czekońska, K., Chuda-Mickiewicz, B., Chorbiński, P. (2013b) The influence of honey bee (Apis mellifera) drone age on volume of semen and viability of spermatozoa. J. Apic. Sci. 57, 61–66Google Scholar
  11. Dade, H. A. (1977) Anatomy and dissection of the honeybee. International Bee Research Association; London.Google Scholar
  12. den Boer, S.P.A., Boomsma, J.J., Baer, B. (2009) Honey bee males and queens use glandular secretions to enhance sperm viability before and after storage. J. Insect Physiol. 55, 538–543CrossRefGoogle Scholar
  13. Gençer, H.V., Kahya, Y. (2011a) Are sperm traits of drones (Apis mellifera L.) from laying worker colonies noteworthy? J. Apic. Res. 50, 130–137CrossRefGoogle Scholar
  14. Gençer, H.V., Kahya, Y. (2011b) The viability of sperm in lateral oviducts and spermathecae of instrumentally inseminated and naturally mated honey bee (Apis mellifera L.) queens. J. Apic. Res. 50, 190–194CrossRefGoogle Scholar
  15. Holman, L. (2009) Sperm viability staining in ecology and evolution: potential pitfalls. Behav. Ecol. and Sociobiol. 63, 1679–1688CrossRefGoogle Scholar
  16. Hopkins, B.K., Herr, C. (2010) Factors affecting the successful cryopreservation of honey bee (Apis mellifera) spermatozoa. Apidologie 41, 548–556CrossRefGoogle Scholar
  17. Hunter, F.M., Birkhead, T.R. (2002) Sperm viability and sperm competition in insects. Curr. Biol. 12, 121–123PubMedCrossRefGoogle Scholar
  18. Imhoof, M. (2012) More than honey. Film Against GravityGoogle Scholar
  19. Koeniger, G. (1986) Mating sign and multiple mating in the honeybee. Bee World 67, 141–150Google Scholar
  20. Koeniger, G. (n.d.) Mehrfachpaarung der Bienenkönigin. Ein Film des Institut für Bienenkunde, Oberursel, Germany.Google Scholar
  21. Koeniger, N., Koeniger, G. (1991) An evolutionary approach to mating behavior and drone copulatory organs in Apis. Apidologie 22, 581–590CrossRefGoogle Scholar
  22. Koeniger, G., Koeniger, N., Fabritius, M. (1979) Some detailed observations of mating in the honey bee. Bee World 60, 53–57Google Scholar
  23. Laidlaw Jr., H.H., Page Jr., R.E. (1997) Queen rearing and bee breeding. Wicwas Press, CheshireGoogle Scholar
  24. Locke, S.J., Peng, Y.S. (1993) The effects of drone age, semen storage, and contamination on semen quality in the honey bee (Apis mellifera). Physiol. Entomol. 18, 144–148CrossRefGoogle Scholar
  25. Lodesani, M., Balduzzi, D., Galli, A. (2004) Functional characterization of semen in honeybee queen (A. m. ligustica S.) spermatheca and the efficiency of diluted semen technique in instrumental insemination. Ital. J. of Anim Sci. 3, 385–392Google Scholar
  26. Moritz, R.F.A. (1984) The effect of different diluents on insemination success in the honeybee using mixed semen. J. Apic. Res. 23, 164–167Google Scholar
  27. Page Jr., R.E. (1986) Sperm utilization in social insects. Annu. Rev. Entomol. 31, 297–320CrossRefGoogle Scholar
  28. Paynter, E., Baer-Imhoof, B., Linden, M., Lee-Pullen, T., Heel, K., Rigby, P., Baer, B. (2014) Flow cytometry as a rapid and reliable method to quantify sperm viability in the honeybee Apis mellifera. Cytometry Part A . 85, 463–472Google Scholar
  29. Peer, D.F. (1956) Multiple mating of queen honey bees. J. Econ. Entomol. 49, 741–743Google Scholar
  30. Ruttner, F. (1988) Breeding techniques and selection for breeding of the honeybee. British Isles of Bee Breeders’ Association, DerbyGoogle Scholar
  31. Ruttner, F., Koeniger, G. (1971) Die Füllung der Spermatheca der Bienenkönigin. Aktive Wandering oder Passiver Transport der Spermatozoen? Z. Vergl Physiolgie 72, 411–422CrossRefGoogle Scholar
  32. Rzymski, P., Langowska, A., Fliszkiewicz, M., Poniedziałek, B., Karczewski, J., Wiktorowicz, K. (2012) Flow cytometry as an estimation tool for honey bee sperm viability. Theriogenology 77, 1642–1647PubMedCrossRefGoogle Scholar
  33. Schlüns, H., Koeniger, G., Koeniger, N., Moritz, R.F.A. (2004) Sperm utilization pattern in the honeybee (Apis mellifera). Behav. Ecol. Sociobiol. 56, 458–463CrossRefGoogle Scholar
  34. Stürup, M., Baer-Imhoof, B., Nash, D.R., Boomsma, J.J., Baer, B. (2013) When every sperm counts: factors affecting male fertility in the honeybee Apis mellifera. Behav. Ecol. 24, 1192–1198CrossRefGoogle Scholar
  35. Taber, S. (1954) The frequency of multiple mating of queen honey bees. J. Econ. Entomol. 47, 995–998Google Scholar
  36. Tofilski, A., Chuda-Mickiewicz, B., Czekońska, K., Chorbiński, P. (2012) Flow cytometry evidence about sperm competition in honey bee (Apis mellifera). Apidologie 43, 63–70CrossRefGoogle Scholar
  37. Verma, L.R. (1974) Honeybee spermatozoa and their survival in the queen’s spermatheca. Bee World 55, 53–61Google Scholar
  38. Wegener, J., Bienefeld, K. (2012) Toxicity of cryoprotectants to honey bee semen and queens. Theriogenology 77, 600–607PubMedCrossRefGoogle Scholar
  39. Wegener, J., May, T., Knollmann, U., Kamp, G., Müller, K., Bienefeld, K. (2012) In vivo validation of in vitro quality tests for cryopreserved honey bee semen. Cryobiol. 65, 126–131CrossRefGoogle Scholar
  40. Woyke, J. (1956) Anatomo-physiological changes in queen bees returning from mating flights, and the process of multiple mating. Bull. Acad. Polon. Sci 4, 81–87. online; Scholar
  41. Woyke, J. (1962) Natural and artificial insemination of queen honeybees. Bee World 43, 21–25Google Scholar
  42. Woyke, J. (1983) Dynamics of entry of spermatozoa into the spermatheca of instrumentally inseminated queen honeybees. J. Apic. Res. 22, 150–154Google Scholar
  43. Woyke, J. (1988) A mathematical model for the dynamics of spermatozoa entry into the spermathecae of instrumentally inseminated queen honeybees. J. Apic. Res. 27, 122–125Google Scholar
  44. Woyke, J. (2008) Why the eversion of endophallus of honey bee drone stops at the partly everted stage and significance of this. Apidologie 39, 627–636CrossRefGoogle Scholar
  45. Woyke, J. (2010) Three substances ejected by Apis mellifera drones during endophallus eversion as well as during natural matings with queen bees. Apidologie 41, 613–621CrossRefGoogle Scholar
  46. Woyke, J. (2011) The mating sign of queen bees originates from two drones and the process of multiple mating in honey bees. J. Apic. Res. 50, 272–283CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France 2014

Authors and Affiliations

  1. 1.Faculty of Agriculture, Department of Animal ScienceAnkara UniversityAnkaraTurkey
  2. 2.Apiculture DivisionUniversity of Life Sciences—SGGWWarsawPoland

Personalised recommendations