Apidologie

, Volume 45, Issue 3, pp 289–305 | Cite as

Comparative methods offer powerful insights into social evolution in bees

Review article

Abstract

Bees are excellent models for studying the evolution of sociality. While most species are solitary, many form social groups. The most complex form of social behavior, eusociality, has arisen independently four times within the bees. Subsequent elaborations of the reproductive division of labor inherent to eusociality have led to the evolution of some of the most highly advanced forms of eusociality documented. Likewise, many reversals back to solitary behavior also create substantial variation in sociality within the bees. These replicated, independent origins and losses enable a comparative approach that facilitates the search for common mechanisms underlying transitions from solitary to group living. In this review, we discuss the extensive behavioral variation found within the bees and highlight how the comparative method has improved our understanding of social evolution. Finally, we discuss potential difficulties with this approach and outline promising avenues for future research.

Keywords

comparative method evolution communal semisocial eusocial genetics genomics 

References

  1. Alford, D.V. (1975) Bumblebees. Davis-Poynter, LondonGoogle Scholar
  2. Andersson, M. (1984) The Evolution of Eusociality. Annu. Rev. Ecol. Syst. 15(IS), 165–189Google Scholar
  3. Avilés, L., Harwood, G. (2012) A quantitative index of sociality and its application to group-living spiders and other social organisms. Ethology 118, 1219–1229PubMedCentralPubMedGoogle Scholar
  4. Baglione, V., Canestrari, D., Marcos, J.M., Ekman, J. (2006) Experimentally increased food resources in the natal territory promote offspring philopatry and helping in cooperatively breeding carrion crows. Proc. R. Soc. B: Biol. Sci. 273, 1529–1535Google Scholar
  5. Batra, S.W. (1966a) Nesting behavior of Halictus scabiosae in Switzerland (Hymenoptera:Halictidae). Insectes Soc. 13, 87Google Scholar
  6. Batra, S.W.T. (1966b) Nest and social behavior of halictine bees of India. Indian J. Entomol. 28, 375Google Scholar
  7. Biedermann, P., Taborsky, M. (2011) Larval helpers and age polyethism in ambrosia beetles. Proc. Natl. Acad. Sci. 108(41), 17064–17069Google Scholar
  8. Bourke, A.F.G. (2011) Principles of Social Evolution. OUP OxfordGoogle Scholar
  9. Brady, S., Sipes, S., Pearson, A., Danforth, B. (2006) Recent and simultaneous origins of eusociality in halictid bees. Proc. R. Soc. B 273, 1643–1649PubMedCentralPubMedGoogle Scholar
  10. Breed, M. (1976) The evolution of social behavior in primitively social bees: a multivariate analysis. Evolution 30, 234–240Google Scholar
  11. Bull, N.J., Schwarz, M.P. (1996) The habitat saturation hypothesis and sociality in an allodapine bee: cooperative nesting is not “making the best of a bad situation. Behav. Ecol. Sociobiol. 39, 267–274Google Scholar
  12. Cardinal, S., Danforth, B.N. (2011) The antiquity and evolutionary history of social behavior in bees. PLoS ONE 6, e21086. doi:10.1371/journal.pone.0021086 PubMedCentralPubMedGoogle Scholar
  13. Chenoweth, L.B., Tierney, S.M., Smith, J.A., et al. (2007) Social complexity in bees is not sufficient to explain lack of reversions to solitary living over long time scales. BMC Evol. Biol. 7, 246. doi:10.1186/1471-2148-7-246 PubMedCentralPubMedGoogle Scholar
  14. Costa, J.T., Fitzgerald, T.D. (1996) Developments in social terminology: semantic battles in a conceptual war. Trends Ecol. Evol. 11, 285PubMedGoogle Scholar
  15. Costa, J.T., Fitzgerald, T.D. (2005) Social terminology revisited: Where are we ten years later? 42, 559–564Google Scholar
  16. Crespi, B.J., Yanega, D. (1995) The definition of eusociality. Behav. Ecol. 6, 109–115Google Scholar
  17. Cronin, A.L., Hirata, M. (2003) Social polymorphism in the sweat bee Lasioglossum (Evylaeus) baleicum (Cockerell) (Hymenoptera, Halictidae) in Hokkaido, northern Japan. Insectes Soc. 50, 379–386Google Scholar
  18. Danforth, B. (2007) Bees. Curr Biol 17, R156–61. doi:10.1016/j.cub.2007.01.025 PubMedGoogle Scholar
  19. Danforth, B.N., Cardinal, S., Praz, C., et al. (2013) The Impact of Molecular Data on Our Understanding of Bee Phylogeny and Evolution. Annu. Rev. Entomol. 58, 57–78PubMedGoogle Scholar
  20. Davies, N.B., Krebs, J.R., West, S.A. (2012) An Introduction to Behavioural Ecology. In: Davies, N.B., Krebs, J.R., West, S.A. (eds.) Google Books, 4th edn. Blackwell Science Inc, West Sussex, UKGoogle Scholar
  21. Degnan, J.H., Rosenberg, N.A. (2008) Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24, 332–340Google Scholar
  22. Dew, R.M., Rehan, S.M., Tierney, S.M., et al. (2011) A single origin of large colony size in allodapine bees suggests a threshold event among 50 million years of evolutionary tinkering. Insectes Soc. 59, 207–214Google Scholar
  23. Dornhaus, A., Chittka, L. (2001) Food alert in bumblebees (Bombus terrestris): possible mechanisms and evolutionary implications. Behav. Ecol. Sociobiol. 50, 570–576Google Scholar
  24. Dornhaus, A., Brockmann, A., Chittka, L. (2003) Bumble bees alert to food with pheromone from tergal gland. J. Comp. Physiol. A: Neuroethol., Sens., Neural, Behav. Physiol. 189, 47–51Google Scholar
  25. Eickwort, G.C., Eickwort, J.M., Gordon, J., Eickwort, M.A. (1996) Solitary behavior in a high-altitude population of the social sweat bee Halictus rubicundus (Hymenoptera: Halictidae). Behav. Ecol. Sociobiol. 38, 227–233Google Scholar
  26. Emlen, S.T. (1982) The Evolution of Helping. I. An Ecological Constraints Model. Am. Nat. 119, 29–39Google Scholar
  27. Evans, H.E. (1977) Extrinsic versus intrinsic factors in the evolution of insect sociality. Bioscience 27, 613–617Google Scholar
  28. Faulkes, C.G., Bennett, N.C., Bruford, M.W., O’brien, H.P., Aguilar, G.H., Jarvis, J.U.M. (1997) Ecological constraints drive social evolution in the African mole-rats. Proc. R. Soc. B: Biological Sci. 264, 1619–1627Google Scholar
  29. Ferreira, P.G., Patalano, S., Chauhan, R., Ffrench-Constant, R., Gabaldon, T., Guigo, R., Sumner, S. (2013) Transcriptome analyses of primitively eusocial wasps reveal novel insights into the evolution of sociality and the origin of alternative phenotypes. Genome Biol. 14, R20. doi:10.1186/gb-2013-14-2-r20 PubMedGoogle Scholar
  30. Field, J. (1996) Patterns of provisioning and iteroparity in a solitary halictine bee, Lasioglossum (Evylaeus) fratellum (Perez), with notes on L. (E.) calceatum (Scop) and L. (E.) villosulum (K). Insectes Soc. 43, 167Google Scholar
  31. Field, J., Shreeves, G., Sumner, S., Casiraghi, M. (2000) Insurance-based advantage to helpers in a tropical hover wasp. Nature 404, 869–871PubMedGoogle Scholar
  32. Field, J., Paxton, R.J., Soro, A., Bridge, C. (2010) Cryptic plasticity underlies a major evolutionary transition. Curr. Biol. 1–4. doi:10.1016/j.cub.2010.10.020
  33. Field, J., Paxton, R.J., Soro, A., et al. (2012) Body size, demography and foraging in a socially plastic sweat bee: a common garden experiment. Behav. Ecol. Sociobiol. 66, 743–756Google Scholar
  34. Fischman, B.J., Woodard, S.H., Robinson, G.E. (2011) Molecular evolutionary analyses of insect societies. Proc Natl Acad Sci U S A 108(Suppl 2), 10847–10854PubMedCentralPubMedGoogle Scholar
  35. Gadagkar, R. (1990) Evolution of eusociality: the advantage of assured fitness returns. Philos. Trans. R. Soc. B: Biolog. Sci. 329, 17–25Google Scholar
  36. Gadau, J., Helmkampf, M., Nygaard, S., Roux, J., Simola, D., Smith, C., Suen, G., Wurm, Y., Smith, C. (2012) The genomic impact of 100 million years of social evolution in seven ant species. Trends Genet. 28, 14–21PubMedCentralPubMedGoogle Scholar
  37. Garófalo, C.A. (1974) Aspectos evolutivos da biologia da reprodução em abelhas (Hymenoptera, Apoidea). Dissertation thesis. Universidade de São Paulo, Ribeirão Prêto, BrazilGoogle Scholar
  38. Gibbs, J., Brady, S.G., Kanda, K., Danforth, B.N. (2012) Phylogeny of halictine bees supports a shared origin of eusociality for Halictus and Lasioglossum (Apoidea: Anthophila: Halictidae). Mol. Phylogenet. Evol. 1–14. doi:10.1016/j.ympev.2012.08.013
  39. Gillespie, J.H. (1977) Natural selection for variance in offspring numbers: a new evolutionary principle. Am. Nat. 111, 1010–1014Google Scholar
  40. Goulson, D. (2003) Bumblebees: ecology and behaviour. Oxford University Press, OxfordGoogle Scholar
  41. Grafen, A. (1989) The Phylogenetic Regression. Philos. Trans. R. Soc. Lond. Series B, Biol. Sci. 326, 119–157Google Scholar
  42. Hamilton, W.D. (1964) The genetical evolution of social behavior: I and II. J. Theor. Biol. 7, 1PubMedGoogle Scholar
  43. Harvey, P.H., Pagel, M. (1991) The comparative method in evolutionary biology. Oxford University Press, OxfordGoogle Scholar
  44. Harvey, P.H., Kavanagh, M., Clutton-Brock, T.H. (1978) Sexual dimorphism in primate teeth. J Zoology 186, 475–485Google Scholar
  45. Heinrich, B. (1979) Bumblebee economics. Harvard University PressGoogle Scholar
  46. Hines, H., Hunt, J., O’Conner, T., Gillespie, J., Cameron, S.A. (2007) Multigene phylogeny reveals eusociality evolved twice in vespid wasps. Proc. Nat. Acad. Sci USA 104, 3295–3299PubMedCentralPubMedGoogle Scholar
  47. Hoiss, B., Krauss, J., Potts, S.G., Roberts, S., Steffan-Dewenter, I. (2012) Altitude acts as an environmental filter on phylogenetic composition, traits and diversity in bee communities. Proc. R. Soc. B: Biol. Sci. 279, 4447–4456Google Scholar
  48. Johnson, B.R., Borowiec, M.L., Chiu, J.C., Lee, E.K., Atallah, J., Ward, P.S. (2013) Phylogenomics resolves evolutionary relationships among ants, bees, and wasps. Curr. Biol. 23(20), 2058–2062PubMedGoogle Scholar
  49. Kapheim, K.M., Smith, A.R., Nonacs, P., Wcislo, W.T., Wayne, R.K. (2013) Foundress polyphenism and the origins of eusociality in a facultatively eusocial sweat bee, Megalopta genalis (Halictidae). Behav. Ecol. Sociobiol. 67, 331–340Google Scholar
  50. Kaspari, M., Vargo, E.L. (1995) Colony size as a buffer against seasonality: Bergmann’s rule in social insects. Am. Nat. 145, 610–632Google Scholar
  51. Keller, L., Perrin, N. (1995) Quantifying the level of eusociality. Proc. R. Soc. B: Biol. Sci. 260, 311–315Google Scholar
  52. Kent, D.S., Simpson, J.A. (1992) Eusociality in the beetle Austroplatypus incompertus (Coleoptera: Curculionidae). Naturwissenschaften 79, 86–87Google Scholar
  53. Knerer, G., Plateaux-Quenu, C. (1966) On polygyny in Halictinae (Hymenoptera). C.R. hebd. Séances Acad. Sci. Série D: Sci. Nat 263, 2014–2017Google Scholar
  54. Kocher, S.D., Li, C., Yang W., Tan, H., Yi, S.V., Yang, X., Hoekstra, H.E., Zhang, G., Pierce, N.E., Yu, D.W. (2013) The genome of a socially polymorphic halictid bee, Lasioglossum albipes. Genome. Biol. 14(12), R142Google Scholar
  55. Komdeur, J. (1992) Importance of habitat saturation and territory quality for evolution of cooperative breeding in the Seychelles warbler. Nature 358, 494–495Google Scholar
  56. Lacey, E.A., Sherman, P.W. (2005) Redefining eusociality: concepts, goals and levels of analysis. Ann. Zool. Fenn. 42, 573–577Google Scholar
  57. Langer, P., Hogendoorn, K., Keller, L. (2004) Tug-of-war over reproduction in a social bee. Nature 428, 844–847PubMedGoogle Scholar
  58. Laverty, T.M., Plowright, R.C. (1985) Comparative bionomics of temperate and tropical bumble bees with special reference to Bombus ephippiatus (Hymenoptera: Apidae). Can. Entomol. 117, 467–474Google Scholar
  59. Lin, N., Michener, C.D. (1972) Evolution of sociality in insects. Q. Rev. Biol. 47, 131Google Scholar
  60. Lo, N., Gloag, R.S., Anderson, D.L., Oldroyd, B.P. (2010) A molecular phylogeny of the genus Apis suggests that the Giant Honey Bee of the Philippines, A. breviligula Maa, and the Plains Honey Bee of southern India, A. indica Fabricius, are valid species. Syst. Entomol. 35, 226–233. doi:10.1111/j.1365-3113.2009.00504.x
  61. Maynard Smith, J., Szathmary, E. (1997) The major transitions in evolution. Oxford University Press, OxfordGoogle Scholar
  62. McLeish, M.J., Chapman, T.W. (2007) The origin of soldiers in the gall-inducing thrips of Australia (Thysanoptera: Phlaeothripidae). Aust. J. Entomol. 46, 300–304Google Scholar
  63. Michener, C.D. (1969) Comparative social behavior of bees. Annu. Rev. Entomol. 14, 299–342Google Scholar
  64. Michener, C.D. (1974) The Social Behavior of the Bees. Harvard University Press, Cambridge, MAGoogle Scholar
  65. Michener, C.D. (1985) From solitary to eusocial: Need there be a series of intervening species. Exp. Behav. Ecol. Sociobiol. 31, 293Google Scholar
  66. Moreau, C.S., Bell, C.D., Vila, R., Archibald, S.B., Pierce, N.E. (2006) Phylogeny of the ants: diversification in the age of angiosperms. Science 312, 101–104PubMedGoogle Scholar
  67. Murphy, C.M., Breed, M.D. (2007) A predictive distribution map for the giant tropical ant, Paraponera clavata. J. Insect Sci. 7, 1–10PubMedGoogle Scholar
  68. Nonacs, P. (2000) Measuring and using skew in the study of social behavior and evolution. Am. Nat. 156, 577–589Google Scholar
  69. Nowak, M.A., Tarnita, C.E., Wilson, E.O. (2010) The evolution of eusociality. Nature 466, 1057–1062PubMedCentralPubMedGoogle Scholar
  70. O’Riain, M.J., Faulkes, C. (2008) African Mole-Rats: Eusociality, Relatedness and Ecological Constraints. In: Korb, J., Heinze, J. (eds.) Ecology of Social Evolution, pp. 207–223. Springer, BerlinGoogle Scholar
  71. Packer, L. (1990) Solitary and eusocial nests in a population of Augochlorella striata (Provancher) (Hymenoptera, Halictidae) at the northern edge of its range. Behav. Ecol. Sociobiol. 27, 339–344Google Scholar
  72. Packer, L. (1991) The evolution of social behavior and nest architecture in sweat bees of the subgenus Evylaeus (Hymenoptera : Halictidae): a phylogenetic approach. Behav. Ecol. Sociobiol. 29, 153–160Google Scholar
  73. Packer, L., Knerer, G. (1985) Social evolution and its correlates in bees of the subgenus Evylaeus (Hymenoptera: Halictidae). Behav. Ecol. Sociobiol. 27, 339–344Google Scholar
  74. Pagel, M., Meade, A. (2006) Bayesian analysis of correlated evolution of discrete characters by reversible‐jump Markov chain Monte Carlo. Am. Nat. 167, 808–825PubMedGoogle Scholar
  75. Pagel, M., Meade, A. (2013) BayesTraits computer package, version 2.0. http://www.evolution.rdg.ac.uk/BayesTraits.html.
  76. Parker, J., Tsagkogeorga, G., Cotton, J.A., Liu, Y., Provero, P., Stupka, E., Rossiter, S. (2013) Genome-wide signatures of convergent evolution in echolocating mammals. Nature 502, 228–231PubMedGoogle Scholar
  77. Paxton, R.J., Thoren, P.A., Tengo, J., Estoup, A., Pamilo, P. (1996) Mating structure and nestmate relatedness in a communal bee, Andrena jacobi (Hymenoptera, Andrenidae), using microsatellites. Mol. Ecol. 5, 511–519PubMedGoogle Scholar
  78. Picker, M.D., Hoffman, M.T., Leverton, B. (2007) Density of Microhodotermes viator (Hodotermitidae) mounds in southern Africa in relation to rainfall and vegetative productivity gradients. J. Zool. 271, 37–44Google Scholar
  79. Pike, N., Foster, W. (2008) The Ecology of Altruism in a Clonal Insect. In: Korb, J., Heinze, J. (eds.) Ecology of Social Evolution, pp. 37–56. Springer, BerlinGoogle Scholar
  80. Plateaux-Quenu, C. (1993a) Modalités de la socialisation chez les Halictinae (Hymenoptera, Halictidae). I: Biologie des Halictinae. L’Année biologique 32(4), 183–204Google Scholar
  81. Plateaux-Quenu, C. (1993b) Flexibilite sociale chez Evylaeus albipes (F.) (Hymenoptera, Halictinae). Actes Coll Insectes Soc 8, 127–134Google Scholar
  82. Plateaux-Quenu, C., Plateaux, L., Packer, L. (2000) Population-typical behaviours are retained when eusocial and non-eusocial forms of Evylaeus albipes (F.) (Hymenoptera, Halictidae) are reared simultaneously in the laboratory. Insectes Soc 47, 263–270Google Scholar
  83. Purcell, J. (2011) Geographic patterns in the distribution of social systems in terrestrial arthropods. Biol. Rev. Camb. Philos. Soc. 86, 475–491PubMedGoogle Scholar
  84. Rehan, S.M., Richards, M.H., Schwarz, M.P. (2009) Evidence of Social Nesting in the Ceratina of Borneo (Hymenoptera: Apidae). J. Kansas Entomol. Soc. 82, 194–209Google Scholar
  85. Rehan, S.M., Richards, M.H., Schwarz, M.P. (2010) Social polymorphism in the Australian small carpenter bee, Ceratina (Neoceratina) australensis. Insectes Soc. 57, 403–412Google Scholar
  86. Rehan, S.M., Leys, R., Schwarz, M.P. (2012) A mid-cretaceous origin of sociality in xylocopine bees with only two origins of true worker castes indicates severe barriers to eusociality. PLoS ONE 7, e34690. doi:10.1371/journal.pone.0034690 PubMedCentralPubMedGoogle Scholar
  87. Richards, M.H. (2011) Colony Social Organisation and Alternative Social Strategies in the Eastern Carpenter Bee, Xylocopa virginica. J. Insect Behav. 24, 399–411Google Scholar
  88. Richards, M.H., Packer, L. (1996) The socioecology of body size variation in the primitively eusocial sweat bee, Halictus ligatus (Hymenoptera: Halictidae). Oikos 77, 68–76Google Scholar
  89. Riechert, S.E., Roeloffs, R., Echternacht, A.C. (1986) The ecology of the cooperative spider Agelena consociata in Equatorial Africa (Araneae, Agelenidae). J. Arachnol. 14, 175–191Google Scholar
  90. Rosenheim, J.A. (1990) Density-dependent parasitism and the evolution of aggregated nesting in the solitary Hymenoptera. Ann. Entomol. Soc. Am. 83, 277–286Google Scholar
  91. Ross, K.G., Matthews, R.W. (1991) The social biology of wasps. Cornell University Press, Ithaca, New YorkGoogle Scholar
  92. Rubenstein, D.R., Lovette, I.J. (2007) Temporal environmental variability drives the evolution of cooperative breeding in birds. Curr. Biol. 17, 1414–1419PubMedGoogle Scholar
  93. Sakagami, S.F., Munakata, M. (1972) Distribution and bionomics of a transpalaeartic eusocial halictine bee, Lasioglossum (Evylaeus) calceatum, in northern Japan, with reference to its solitary life cycle at high altitude. J. Fac. Sci. Hokkaido Univ. Ser. 6 Zoology. 18, 411Google Scholar
  94. Schwarz, M.P., Richards, M.H., Danforth, B.N. (2007) Changing paradigms in insect social evolution: insights from halictine and allodapine bees. Annu. Rev. Entomol. 52, 127–150PubMedGoogle Scholar
  95. Schwarz, M.P., Tierney, S.M., Rehan, S.M., Chenoweth, L.B., Cooper, S.J.B. (2011) The evolution of eusociality in allodapine bees: workers began by waiting. Biol. Lett. 7, 277–280PubMedCentralPubMedGoogle Scholar
  96. Sherman, P.W., Lacey, E.A., Reeve, H.K., Keller, L. (1995) The eusociality continuum. Behav. Ecol. 6, 102–108Google Scholar
  97. Smith, A.R., Wcislo, W.T., O’Donnell, S. (2003) Assured fitness returns favor sociality in a mass-provisioning sweat bee, Megalopta genalis (Hymenoptera: Halictidae). Behav. Ecol. Sociobiol. 54, 14–21Google Scholar
  98. Smith, A.R., Kapheim, K.M., Pérez-Ortega, B., Brent, C.S., Wcislo, W.T. (2012) Juvenile hormone levels reflect social opportunities in the facultatively eusocial sweat bee Megalopta genalis (Hymenoptera: Halictidae). Horm. Behav . doi:10.1016/j.yhbeh.2012.08.012 Google Scholar
  99. Song, S., Liu, L., Edwards, S.V. (2012) Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc. Natl Acad. Sci. USA 109, 14942–14947PubMedCentralPubMedGoogle Scholar
  100. Soro, A., Field, J., Bridge, C., Cardinal, S.C., Paxton, R.J. (2010) Genetic differentiation across the social transition in a socially polymorphic sweat bee, Halictus rubicundus. Mol. Ecol. 19, 3351–3363PubMedGoogle Scholar
  101. Soucy, S.L., Danforth, B.N. (2002) Phylogeography of the socially polymorphic sweat bee Halictus rubicundus (Hymenoptera: Halictidae). Evolution 56, 330–341PubMedGoogle Scholar
  102. Spessa, A., Schwarz, M.P., Adams, M. (2000) Sociality in Amphylaeus morosus (Hymenoptera: Colletidae: Hylaeinae). Ann. Entomol. Soc. Am. 93, 684–692Google Scholar
  103. Stacey, P.B., Ligon, J.D. (1991) The benefits-of-philopatry hypothesis for the evolution of cooperative breeding: variation in territory quality and group size effects. Am. Nat. 137, 831–846Google Scholar
  104. Stark, R.E. (1992) Cooperative Nesting in the multivoltine large carpenter bee Xylocopa sulcatipes Maa (Apoidea: Anthophoridae): Do Helpers Gain or Lose to Solitary Females? Ethology 91, 301–310Google Scholar
  105. Stevens, M.I., Hogendoorn, K., Schwarz, M.P. (2007) Evolution of sociality by natural selection on variances in reproductive fitness: evidence from a social bee. BMC Evol. Biol. 7, 153PubMedCentralPubMedGoogle Scholar
  106. Székely, T., Remeš, V., Freckleton, R.P., Liker, A. (2013) Why care? Inferring the evolution of complex social behaviour. J. Evol. Biol. 26, 1381–1391PubMedGoogle Scholar
  107. Tierney, S.M., Smith, J.A., Chenoweth, L., Schwarz, M.P. (2008) Phylogenetics of allodapine bees: a review of social evolution, parasitism and biogeography. Apidologie 39, 3–15Google Scholar
  108. Toth, A.L., Robinson, G.E. (2007) Evo-devo and the evolution of social behavior. Trends Genet. 23, 334–341PubMedGoogle Scholar
  109. Toth, A.L., Varala, K., Newman, T.C., et al. (2007) Wasp gene expression supports an evolutionary link between maternal behavior and eusociality. Science 318, 441–444PubMedGoogle Scholar
  110. Toth, A.L., Varala, K., Henshaw, M.T., Rodriguez-Zas, S.L., Hudson, M.E., Robinson, G.E. (2010) Brain transcriptomic analysis in paper wasps identifies genes associated with behaviour across social insect lineages. Proc. R. Soc. B: Biol. Sci. 277, 2139–2148Google Scholar
  111. Ulrich, Y., Perrin, N., Chapuisat, M. (2009) Flexible social organization and high incidence of drifting in the sweat bee, Halictus scabiosae. Mol. Ecol. 18, 1791–1800PubMedGoogle Scholar
  112. Vijay, N., Poelstra, J.W., Künstner, A., Wolf, J.B.W. (2013) Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments. Mol. Ecol. 22, 620–634PubMedGoogle Scholar
  113. Ware, J.L., Grimaldi, D.A., Engel, M.S. (2010) The effects of fossil placement and calibration on divergence times and rates: an example from the termites (Insecta: Isoptera). Arthropod Struct. Dev. 39, 204–219. doi:10.1016/j.asd.2009.11.003
  114. Wcislo, W., Danforth, B. (1997) Secondarily solitary: the evolutionary loss of social behavior. Trends Ecol. Evol. 12, 468–474PubMedGoogle Scholar
  115. Wcislo, W.T., Tierney, S.M. (2009) The evolution of communal behavior in bees and wasps: an alternative to eusociality. Organization of Insect Societies: From Genome to Sociocomplexity 148–169Google Scholar
  116. Wcislo, W.T., Arneson, L., Roesch, K., Gonzalez, V., Smith, A., Fernandez, H. (2004) The evolution of nocturnal behaviour in sweat bees, Megalopta genalis and M. ecuadoria (Hymenoptera: Halictidae): an escape from competitors and enemies? Biol. J. Linn. Soc. 83, 377–387Google Scholar
  117. Wenzel, J.W., Pickering, J. (1991) Cooperative foraging, productivity, and the central limit theorem. Proc. Natl Acad. Sci. U S A 88, 36–38PubMedCentralPubMedGoogle Scholar
  118. West-Eberhard, M.J. (2003) Developmental plasticity and evolution. Oxford University PressGoogle Scholar
  119. Wheat, C.W., Wahlberg, N. (2013) Critiquing blind dating: the dangers of over-confident date estimates in comparative genomics. Trends Ecol. Evol . doi:10.1016/j.tree.2013.07.007 Google Scholar
  120. Wilson, E.O. (1971) The insect societies. Harvard University Press, CambridgeGoogle Scholar
  121. Wilson, E.O. (1990) Success and dominance in ecosystems: the case of the social insects. Ohlendorf/Luhe, GermanyGoogle Scholar
  122. Wilson, E.O., Holldobler, B. (2005) Eusociality: Origin and consequences. Proc. Natl Acad. Sci. USA 102, 13367–13371PubMedCentralPubMedGoogle Scholar
  123. Wong, J., Meunier, J., Kölliker, M. (2013) The evolution of parental care in insects. Ecol. Entomol. 38, 123–137Google Scholar
  124. Woodard, S.H., Fischman, B.J., Venkat, A., Hudson, M.E., Varala, K., Cameron, S.A., Clark, A.G., Robinson, G.E. (2011) Genes involved in convergent evolution of eusociality in bees. Proc. Natl Acad. Sci. USA 108, 7472–7477PubMedCentralPubMedGoogle Scholar
  125. Yanega, D. (1988) Social plasticity and early-diapausing females in a primitively social bee. Proc. Natl Acad. Sci. USA 85, 4374–4377PubMedCentralPubMedGoogle Scholar
  126. Yang, Z., Bielawski, J.P. (2000) Statistical methods for detecting molecular adaptation. Trends Ecol. Evol. 15, 496–503PubMedGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France 2014

Authors and Affiliations

  1. 1.Department of Organismic and Evolutionary Biology, Museum of Comparative ZoologyHarvard UniversityCambridgeUSA
  2. 2.Institute for BiologyMartin-Luther-University Halle-WittenbergHalleGermany

Personalised recommendations