Advertisement

Apidologie

, Volume 45, Issue 3, pp 327–346 | Cite as

From molecules to societies: mechanisms regulating swarming behavior in honey bees (Apis spp.)

  • Christina M. GrozingerEmail author
  • Jessica Richards
  • Heather R. Mattila
Review article

Abstract

Reproduction by colony fission, or swarming, is a spectacular example of a behavior that requires the simultaneous coordination of the activities of thousands of honey bee workers and their queen. The successful execution of this collective phenomenon relies on the appropriate response of individuals in swarms to a myriad of signals that are produced by workers and queens to synchronize their nest exodus, subsequent house hunting, and eventual relocation to a new nest site. In this review, we describe our current understanding of the social factors that trigger swarming in colonies and the nonchemical and chemical signals that mediate a coordinated transition between its stages. We also highlight emerging work on the physiological and genomic mechanisms underpinning swarming behavior. Finally, we discuss the possible evolutionary origins of swarming behavior, through comparisons with related behaviors of migration, overwintering, estivation, and diapause in honey bees and other insects.

Keywords

collective behavior swarming chemical communication physiology genomics honey bee 

Notes

Acknowledgments

The authors would like to thank Nick Sloff and Harland Patch (Penn State University) for assistance with graphical design of Figure 1, and Jonathan Snow (Barnard College) for the line drawing of the hive. This review was supported by a National Science Foundation CAREER grant to CMG, a US-Israel Binational Science Foundation grant to CMG (and A. Hefetz), and a Wellelsey College Brachman-Hoffman grant and Knafel Endowed Chair in the Natural Sciences to HRM.

References

  1. Alaux, C., Duong, N., Schneider, S.S., Southey, B.R., Rodriguez-Zas, S., Robinson, G.E. (2009) Modulatory communication signal performance is associated with a distinct neurogenomic state in honey bees. PLoS ONE 4(8), e6694PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allen, M.D. (1955) Observations of honeybees attending their queen. Anim. Behav. 3, 66–69CrossRefGoogle Scholar
  3. Allen, M.D. (1956) The behaviour of honeybees preparing to swarm. Anim. Behav. 4(1), 14–22CrossRefGoogle Scholar
  4. Allen, M.D. (1959) The occurrence and possible significance of the “shaking” of honeybee queens by workers. Anim. Behav. 7, 66–69CrossRefGoogle Scholar
  5. Ambrose, J.T. (1976) Swarms in transit. Bee World 57, 101–109Google Scholar
  6. Anholt, R.R., Mackay, T.F. (2012) Genetics of aggression. Annu. Rev. Genet. 46, 145–164PubMedCrossRefGoogle Scholar
  7. Avitabile, A., Morse, R.A., Boch, R. (1975) Swarming honey bees guided by pheromones. Ann. Entomol. Soc. Am. 68, 1079–1082Google Scholar
  8. Beekman, M., Fathke, R.L., Seeley, T.D. (2006) How does an informed minority of scouts guide a honeybee swarm as it flies to its new home? Anim. Behav. 71, 161–171CrossRefGoogle Scholar
  9. Ben-Shahar, Y., Robichon, A., Sokolowski, M.B., Robinson, G.E. (2002) Influence of gene action across different time scales on behavior. Science 296(5568), 741–744PubMedCrossRefGoogle Scholar
  10. Bernasconi, G., Ratnieks, F.L.W., Rand, E. (2000) Effect of “spraying” by fighting honey bee queens (Apis mellifera L.) on the temporal structure of fights. Insectes Soc. 47, 21–26CrossRefGoogle Scholar
  11. Biesmeijer, J.C. (2003) The occurrence and context of the shaking signal in honey bees (Apis mellifera) exploiting natural food sources. Ethology 109(12), 1009–1020CrossRefGoogle Scholar
  12. Blum, M.S. (1992) Honey bee pheromones. In: Graham, J.M. (ed.) The hive and the honey bee, pp. 269–361. Dadant & Sons, HamiltonGoogle Scholar
  13. Boch, R., Lensky, Y. (1976) Pheromonal control of queen rearing in honey bee colonies. J. Apic. Res. 15, 59–62Google Scholar
  14. Boch, R., Shearer, D.A., Young, J.C. (1975) Honey bee pheromones: field tests of natural and artificial queen substance. J. Chem. Ecol. 1(1), 133–148CrossRefGoogle Scholar
  15. Breed, M.D., Stiller, T.M., Blum, M.S., Page, R.E. (1992) Honeybee nestmate recognition: effects of queen fecal pheromones. J. Chem. Ecol. 18, 1633–1640PubMedCrossRefGoogle Scholar
  16. Bruinsma, O., Van Kruijt, J.P., Dusseldorp, W. (1981) Delay of emergence of honey bee Apis mellifera queens in response to tooting sounds. Proc. K. Ned. Akad. van Wet. Ser. C Biol. Med. Sci. 84, 381–387Google Scholar
  17. Butler, C.G. (1940) The ages of bees in a swarm. Bee World 21, 9–10Google Scholar
  18. Butler, C.G. (1960) The significance of queen substance in swarming and supersedure in honey bee (Apis mellifera L.) colonies. Proc. R. Entomol. Soc. London A 35, 129–132Google Scholar
  19. Butler, C.G., Simpson, J. (1967) Pheromones of the queen honeybee (Apis mellifera L.) which enable her workers to follow her when swarming. Proc. R. Entomol. Soc. A 42(10–12), 149–154Google Scholar
  20. Butler, C.G., Callow, R.K., Chapman, J.R. (1964) 9-hydroxydec-trans-2-enoic acid, a pheromone stabilizing honeybee swarms. Nature 201(4920), 733CrossRefGoogle Scholar
  21. Butler, C.G., Fletcher, D.J.C., Watler, D. (1969) Nest-entrance marking with pheromones by the honeybee Apis mellifera L., and by a wasp Vespula vulgaris L. Anim. Behav. 17(1), 142–147CrossRefGoogle Scholar
  22. Cao, T.T., Hyland, K.M., Malechuck, A., Lewis, L.A., Schneider, S.S. (2007) The influence of the vibration signal on worker interactions with the nest and nest mates in established and newly founded colonies of the honey bee, Apis mellifera. Insectes Soc. 54, 144–149CrossRefGoogle Scholar
  23. Cao, T.T., Hyland, K.M., Malechuk, A., Lewis, L.A., Schneider, S.S. (2009) The effect of repeated vibration signals on worker behavior in established and newly founded colonies of the honey bee, Apis mellifera. Behav. Ecol. Sociobiol. 63, 521–529CrossRefGoogle Scholar
  24. Clayton, D.F. (2004) Songbird genomics: methods, mechanisms, opportunities, and pitfalls. Ann. N. Y. Acad. Sci. 1016, 45–60PubMedCrossRefGoogle Scholar
  25. Combs Jr., G.F. (1972) The engorgement of swarming worker honeybees. J. Apic. Res. 11(3), 121–128Google Scholar
  26. Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A. (2005) Effective leadership and decision-making in animal groups on the move. Nature 433, 513–516PubMedCrossRefGoogle Scholar
  27. Cummings, M.E. (2012) Looking for sexual selection in the female brain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367(1600), 2348–2356PubMedPubMedCentralCrossRefGoogle Scholar
  28. Denlinger, D.L. (1986) Dormancy in tropical insects. Annu. Rev. Entomol. 31, 239–264PubMedCrossRefGoogle Scholar
  29. Denlinger, D.L. (2002) Regulation of diapause. Annu. Rev. Entomol. 47, 93–122PubMedCrossRefGoogle Scholar
  30. Donahoe, K., Lewis, L.A., Schneider, S.S. (2003) The role of the vibration signal in the house-hunting process of honey bee (Apis mellifera) swarms. Behav. Ecol. Sociobiol. 54, 593–600CrossRefGoogle Scholar
  31. Duangphakdee, O., Hepbur, H.R., Radloff, S.E., Pirk, C.W.W., Rodim, P., Wongsiri, S. (2012) Waggle dances in absconding colonies of the red dwarf honeybee, Apis florea. Insectes Soc. 59, 571–577CrossRefGoogle Scholar
  32. Dyer, F.C. (2002) The biology of the dance language. Annu. Rev. Entomol. 47, 917–949PubMedCrossRefGoogle Scholar
  33. Dyer, F.C., Seeley, T.C. (1994) Colony migration in the tropical honey bee Apis dorsata F. (Hymenoptera: Apidae). Insectes Soc. 41, 129–140CrossRefGoogle Scholar
  34. Engels, W., Adler, A., Rosenkranz, P., Lübke, G., Francke, W. (1993) Dose-dependent inhibition of emergency queen rearing by synthetic 9-ODA in the honey bee, Apis mellifera carnica. J. Comp. Physiol. B. 163, 363–366CrossRefGoogle Scholar
  35. Esch, H. (1967) The sound produced by swarming honey bees. Z. Vergl. Physiol. 56, 408–411CrossRefGoogle Scholar
  36. Esch, H. (1976) Body temperature and flight performance of honey bees in a servomechanically controlled wind tunnel. J. Comp. Physiol. 109, 264–277CrossRefGoogle Scholar
  37. Fefferman, N.H., Starks, P.T. (2006) A modeling approach to swarming in honey bees (Apis mellifera). Insectes Soc. 53(1), 37–45CrossRefGoogle Scholar
  38. Ferguson, A.W., Free, J.B., Pickett, J.A., Winder, M. (1979) Techniques for studying honeybee pheromones involved in clustering, and experiments on the effect of Nasonov and queen pheromones. Physiol. Entomol. 4, 339–344CrossRefGoogle Scholar
  39. Fletcher, D.J.C. (1978a) The influence of vibratory dances by worker honeybees on the activity of virgin queens. J. Apic. Res. 17, 3–13Google Scholar
  40. Fletcher, D.J.C. (1978b) Vibration of queen cells by worker honeybees and its relation to the issue of swarms with virgin queens. J. Apic. Res. 17, 14–26Google Scholar
  41. Fluri, P., Luscher, M., Wille, H., Gerig, L. (1982) Changes in the weight of the pharyngeal gland and haemolymph titres of juvenile hormone, protein and vitellogenin in worker honey bees. J. Insect Physiol. 28, 61–68CrossRefGoogle Scholar
  42. Free, J.B. (1987) Pheromones of social bees. Cornell University Press, IthacaGoogle Scholar
  43. Free, J.B., Ferguson, A.W., Pickett, J.A. (1981a) Evaluation of the various components of the Nasanov pheromone used by clustering honeybees. Physiol. Entomol. 6(3), 263–268CrossRefGoogle Scholar
  44. Free, J.B., Pickett, J.A., Ferguson, A.W., Smith, M.C. (1981b) Synthetic pheromones to attract honeybee (Apis mellifera) swarms. J. Agr. Sci. 97(2), 427–431CrossRefGoogle Scholar
  45. Gahl, R.A. (1975) The shaking dance of honeybee workers: evidence for age discrimination. Anim. Behav. 23, 230–232CrossRefGoogle Scholar
  46. Gary, N.E. (1962) Chemical mating attractants in the queen honey bee. Science 136, 773–774PubMedCrossRefGoogle Scholar
  47. Getz, W.M., Brückner, D., Parisian, T.R. (1982) Kin structure and the swarming behavior of the honey bee Apis mellifera. Behav. Ecol. Sociobiol. 10, 265–270CrossRefGoogle Scholar
  48. Gilley, D.C. (1998) The identity of nest-site scouts in honey bee swarms. Apidologie 29(3), 229–240CrossRefGoogle Scholar
  49. Gilley, D.C. (2001) The behavior of honey bees (Apis mellifera ligustica) during queen duels. Ethology 107, 601–622CrossRefGoogle Scholar
  50. Gilley, D.C. (2003) Absence of nepotism in the harassment of dueling queens by honeybee workers. Proc. R. Soc. Lond. B 270(1528), 2045–2049CrossRefGoogle Scholar
  51. Gilley, D.C., Tarpy, D.R. (2005) Three mechanisms of queen elimination in swarming honey bee colonies. Apidologie 36, 461–474CrossRefGoogle Scholar
  52. Gilley, D.C., DeGrandi-Hoffman, G., Hooper, J.E. (2006) Volatile compounds emitted by live European honey bee (Apis mellifera) queens. J. Insect Physiol. 2, 520–527CrossRefGoogle Scholar
  53. Grooters, H.J. (1987) Influences of queen piping and worker behaviour on the timing of emergence of honey bee queens. Insectes Soc. 34, 181–193CrossRefGoogle Scholar
  54. Grozinger, C.M. (in press) Honey bee pheromones. In: J. Graham (ed) The hive and the honey bee, Indianapolis, Dadant. 42 pGoogle Scholar
  55. Grozinger, C.M., Robinson, G.E. (2007) Endocrine modulation of a pheromone responsive gene in the honey bee brain. J. Comp. Bio. A 193(4), 461–470Google Scholar
  56. Grozinger, C.M., Sharabash, N.M., Whitfield, C.W., Robinson, G.E. (2003) Pheromone-mediated gene expression in the honey bee brain. Proc. Natl. Acad. Sci. USA 100(Suppl 2), 14519–14525PubMedPubMedCentralCrossRefGoogle Scholar
  57. Grozinger, C.M., Fan, Y., Hoover, S.E., Winston, M.L. (2007a) Genome-wide analysis reveals differences in brain gene expression patterns associated with caste and reproductive status in honey bees (Apis mellifera). Mol. Ecol. 16(22), 4837–4848PubMedCrossRefGoogle Scholar
  58. Grozinger, C.M., Fischer, P., Hampton, J.E. (2007b) Uncoupling primer and releaser responses to pheromone in honey bees. Naturwissenschaften 94(5), 375–379PubMedCrossRefGoogle Scholar
  59. Hahn, D.A., Denlinger, D.L. (2011) Energetics of insect diapause. Annu. Rev. Entomol. 56, 103–121PubMedCrossRefGoogle Scholar
  60. Hefetz, A., Taghizadeh, T., Francke, W. (1996) The exocrinology of the queen bumble bee Bombus terrestris (Hymenoptera: Apidae, Bombini). Z. Naturforsch. 51, 409–422Google Scholar
  61. Heinrich, B. (1979) Thermoregulation of African and European honeybees during foraging, attack and hive exits and returns. J. Exp. Bio. 80, 217–229Google Scholar
  62. Heinrich, B. (1981) The mechanisms and energetics of honeybee swarm temperature regulation. J. Exp. Biol. 91, 25–55Google Scholar
  63. Hepburn, H.R. (2006) Absconding, migration and swarming in honeybees: an ecological and evolutionary perspective. In: Kipyatkov, V.E. (ed.) Life cycles in social insects: behavior, ecology and evolution, pp. 121–135. St. Petersburg University Press, St. PetersburgGoogle Scholar
  64. Hepburn, H.R., Radloff, S.E. (1998) Honeybees of Africa, p. 386. Springer, New YorkCrossRefGoogle Scholar
  65. Hoover, S.E.R., Keeling, C.I., Winston, M.L., Slessor, K.N. (2003) The effect of queen pheromones on worker honey bee ovary development. Naturwissenschaften 90, 477–480PubMedCrossRefGoogle Scholar
  66. Huang, Z.Y., Robinson, G.E. (1995) Seasonal changes in juvenile hormone titers and rates of biosynthesis in honey bees. J. Comp. Physiol. B. 165, 18–28PubMedCrossRefGoogle Scholar
  67. Huang, Z.Y., Robinson, G.E. (1996) Regulation of honey bee division of labor by colony age demography. Behav. Ecol. sociol. 39(3), 147–158Google Scholar
  68. Inoue, T., Sakagami, S., Salmah, S., Nukmal, N. (1984) Discovery of successful absconding in the stingless bee Trigona (Tetragonula) laeviceps. J. Apic. Res. 23, 136–142Google Scholar
  69. Janson, S., Middendorf, M., Beekman, M. (2005) Honeybee swarms: how do scouts guide a swarm of uninformed bees? Anim. Behav. 70, 349–358CrossRefGoogle Scholar
  70. Kankare, M., Salminen, T., Laiho, A., Vesala, L., Hoikkla, A. (2010) Changes in gene expression linked with adult reproductive diapause in a northern malt fly species: a candidate gene microarray study. BMC Ecol. 10, 3PubMedPubMedCentralCrossRefGoogle Scholar
  71. Katzav-Gozansky, T., Soroker, V., Francke, W., Hefetz, A. (2003) Honeybee egg-laying workers mimic a queen signal. Insectes Soc. 50, 20–23CrossRefGoogle Scholar
  72. Keeling, C.I., Slessor, K.N., Higo, H.A., Winston, M.L. (2003) New components of the honey bee (Apis mellifera L.) queen retinue pheromone. P. Natl. Acad. Sci.USA 100(8), 4486–4491CrossRefGoogle Scholar
  73. Kocher, S.D., Grozinger, C.M. (2011) Cooperation, conflict, and the evolution of queen pheromones. J. Chem. Ecol. 37(11), 1263–1275PubMedCrossRefGoogle Scholar
  74. Koeniger, N., Koeniger, G. (1980) Observations and experiments on migration and dance communication of Apis dorsata in Sri Lanka. J. Apic. Res. 19, 21–34Google Scholar
  75. Kryger, P., Moritz, R.F.A. (1997) Lack of kin recognition in swarming honeybees (Apis mellifera). Behav. Eco. Sociobiol. 40(4), 271–276CrossRefGoogle Scholar
  76. Kunert, K., Crailsheim, K. (1988) Seasonal changes in carbohydrate, lipid and protein content in emerging worker honeybees and their mortality. J. Apic. Res. 27, 13–21Google Scholar
  77. Lensky, Y., Slabezki, Y. (1981) The inhibiting effect of the queen bee (Apis mellifera L.) foot-print pheromone on the construction of swarming queen cups. J. Insect Physiol. 27(5), 313–323CrossRefGoogle Scholar
  78. Leta, M.A., Gilbert, C., Morse, R.A. (1996) Levels of hemolymph sugars and body glycogen of honeybees (Apis mellifera L.) from colonies preparing to swarm. J. Insect Physiol. 42(3), 239–245CrossRefGoogle Scholar
  79. Lewis, L.A., Schneider, S.S. (2000) The modulation of worker behavior by the vibration signal during house hunting in swarms of the honeybee, Apis mellifera. Behav. Ecol. Sociobiol. 48, 154–164CrossRefGoogle Scholar
  80. Lewis, L.A., Schneider, S.S. (2008) Migration dances in swarming colonies of the honey bee Apis mellifera. Apidologie 39, 354–361CrossRefGoogle Scholar
  81. Li, S.I., Purugganan, M.D. (2011) The cooperative amoeba: Dictyostelium as a model for social evolution. Trends Genet. 27(2), 48–54PubMedCrossRefGoogle Scholar
  82. Liang, Z.S., Nguyen, T., Mattila, H.R., Rodriguez-Zas, S.L., Seeley, T.D., Robinson, G.E. (2012) Molecular determinants of scouting behavior in honey bees. Science 335, 1225–1228PubMedCrossRefGoogle Scholar
  83. Lindauer, M. (1955) Schwarmbienen auf Wohnungssuche. Z. vergl. Physiol. 37, 263–324CrossRefGoogle Scholar
  84. Ma, Z., Guo, W., Guo, X., Wang, X., Kang, L. (2011) Modulation of behavioral phase changes of the migratory locust by the catecholamine metabolic pathway. Proc. Natl. Acad. Sci. USA 108(10), 3882–3887PubMedPubMedCentralCrossRefGoogle Scholar
  85. MacRae, T.H. (2010) Gene expression, metabolic regulation and stress tolerance during diapause. Cell. Mol. Life Sci. 67, 2405–2424PubMedCrossRefGoogle Scholar
  86. Makinson, J.C., Oldroyd, B.P., Schaerf, T.M., Wattanachaiyingcharoen, W., Beekman, M. (2011) Moving home: nest-site selection in the Red Dwarf honeybee (Apis florea). Behav. Ecol. Sociobiol. 65(5), 945–958CrossRefGoogle Scholar
  87. Martin, P. (1963) Die Steuerung der Volksteilung beim Schwärmen der Bienen. Zugleich ein Beitrag zum Problem der Wanderschwärme. Insectes Soc. 10, 13–42CrossRefGoogle Scholar
  88. Matsuka, M., Verma, L.R., Wongsiri, S., Shrestha, K.K., Partap, U (eds) (1998) Asian bees and beekeeping: progress of research and development. In: Proceedings of Fourth Asian Apicultural Association International Conference, Kathmandu, 23–28 March 1998. Science Publishers, Inc. Enfield, NH. 274 pGoogle Scholar
  89. Mattila, H.R., Otis, G.W. (2007) Dwindling pollen resources trigger the transition to broodless populations of long-lived honeybees each autumn. Ecol. Entomol. 32, 496–505CrossRefGoogle Scholar
  90. Maurizio, A. (1950) The influence of pollen feeding and brood rearing on the length of life and physiological condition of the honeybee: preliminary report. Bee World 31, 9–12Google Scholar
  91. McGlynn, T.P. (2012) The ecology of nest movement in social insects. Annu. Rev. Entomol. 57, 291–308PubMedCrossRefGoogle Scholar
  92. McIndoo, N.E. (1915) The scent-producing organ of the honey bee. Proc. Acad. Natl. Sci. Phila. 66, 542–555Google Scholar
  93. Melathopoulous, A.P., Winston, M.L., Pettis, J.S., Pankiw, T. (1996) Effect of queen mandibular pheromone on initiation and maintenance of queen cells in the honey bee (Apis mellifera L.). Can. Entomol. 128, 263–272CrossRefGoogle Scholar
  94. Michelsen, A., Kirchner, W.H., Andersen, B.B., Lindauer, M. (1986) The tooting and quacking vibration signals of honeybee queens: a quantitative analysis. J. Comp. Physiol. A. 158(5), 605–611CrossRefGoogle Scholar
  95. Michener, C.D. (2013) The Meliponini. In: Vit, P., Pedro, S.R.M., Roubik, D.W. (eds.) Pot-honey: a legacy of stingless bees, pp. 3–18. Springer, New YorkCrossRefGoogle Scholar
  96. Moneti, G., Dani, F.R., Pieraccini, G., Turillazzi, S. (1997) Solid-phase microextraction of insect epicuticular hydrocarbons for gas chromatographic/mass spectrometric analysis. Rapid Commun. Mass Sp. 11, 857–862CrossRefGoogle Scholar
  97. Morse, R.A. (1963) Swarm orientation in honeybees. Science 141, 357–358PubMedCrossRefGoogle Scholar
  98. Naumann, K., Winston, M.L., Slessor, K.N. (1993) Movement of honey bee (Apis mellifera L.) queen mandibular pheromone in populous and unpopulous colonies. J. Insect Behav. 6(2), 211–223CrossRefGoogle Scholar
  99. Nieh, J.C. (1993) The stop signal of honey bees: reconsidering its message. Behav. Ecol. Sociobiol. 33, 51–56CrossRefGoogle Scholar
  100. Nieh, J.C. (1998) The honey bee shaking signal: function and design of a modulatory communication signal. Behav. Ecol. Sociobiol. 42(1), 23–36CrossRefGoogle Scholar
  101. Otis, G.W., Winston, M.L., Taylor, O.R. (1981) Engorgement and dispersal of Africanized honeybee swarms. J. Apic. Res. 20(1), 3–11Google Scholar
  102. Ott, S.R., Verlinden, H., Rogers, S.M., Brighton, C.H., Quah, P.S., Vleugels, R.K., Verdonck, R., Vanden Broeck, J. (2012) Proc. Natl. Acad. Sci. USA 109(7), E381–E387PubMedPubMedCentralCrossRefGoogle Scholar
  103. Page, R.E., Peng, C.Y.S. (2001) Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp. Gerontol. 36, 695–711PubMedCrossRefGoogle Scholar
  104. Page, R.E., Blum, M.S., Fales, H.M. (1988) o-Aminoaeetophenone, a pheromone that repels honeybees (Apis mellifera L.). Experientia 44(3), 270–271PubMedCrossRefGoogle Scholar
  105. Page Jr., R.E., Rueppell, O., Amdam, G.V. (2012) Genetics of reproduction and regulation of honeybee (Apis mellifera L.) social behavior. Annu. Rev. Genet. 46, 97–119PubMedCrossRefGoogle Scholar
  106. Painter-Kurt, S., Schneider, S.S. (1998) Age and behavior of honey bees, Apis mellifera (Hymenoptera: Apidae), that perform vibration signals on queens and queen cells. Ethology 104, 475–485CrossRefGoogle Scholar
  107. Peeters, C., Ito, F. (2001) Colony dispersal and the evolution of queen morphology in social Hymenoptera. Annu. Rev. Entomol. 46, 601–630PubMedCrossRefGoogle Scholar
  108. Pettis, J.S., Higo, H.A., Pankiw, T., Winston, M.L. (1997) Queen rearing suppression in the honey bee—evidence for a fecundity signal. Insectes Soc. 44, 311–322CrossRefGoogle Scholar
  109. Pickett, J.A., Williams, I.H., Martin, A.P., Smith, M.C. (1980) Nasonov pheromone of the honey bee, Apis mellifera L. (Hymenoptera: Apidae) Part I. Chemical characterization. J. Chem. Ecol. 6, 425–434CrossRefGoogle Scholar
  110. Pierce, A.L., Lewis, L.A., Schneider, S.S. (2007) The use of the vibration signal and working piping behavior during swarming in honey bees, Apis mellifera. Ethology 113(3), 267–275CrossRefGoogle Scholar
  111. Queller, D.C. (2008) Behavioural ecology: the social side of wild yeast. Nature 456, 589–590PubMedCrossRefGoogle Scholar
  112. Rangel, J., Seeley, T.D. (2008) The signals initiating the mass exodus of a honeybee swarm from its nest. Anim. Behav. 76, 1943–1952CrossRefGoogle Scholar
  113. Rangel, J., Seeley, T.D. (2012) Colony fissioning in honey bees: size and significance of the swarm fraction. Insectes Soc. 59, 453–462CrossRefGoogle Scholar
  114. Rangel, J., Mattila, H.R., Seeley, T.D. (2009) No intracolonial nepotism during colony fissioning in honey bees. Proc. R. Soc. Lond., Biol. Sci. 276, 3895–3900CrossRefGoogle Scholar
  115. Rangel, J., Griffin, S.R., Seeley, T.D. (2010) An oligarchy of nest-site scouts triggers a honeybee swarm's departure from the hive. Behav. Ecol. Sociobiol. 64(6), 979–987CrossRefGoogle Scholar
  116. Rittschof, C.C., Seeley, T.D. (2008) The buzz-run: how honeybees signal 'Time to go! Anim. Behav. 75, 189–197CrossRefGoogle Scholar
  117. Robinson, G.E. (1992) Regulation of division of labor in insect societies. Annu. Rev. Entomol. 37, 637–665PubMedCrossRefGoogle Scholar
  118. Robinson, G.E., Fernald, R.D., Clayton, D.F. (2008) Genes and social behavior. Science 322(5903), 896–900PubMedPubMedCentralCrossRefGoogle Scholar
  119. Roubik, D.W. (2006) Stingless bee nesting biology. Apidologie 37, 124–143CrossRefGoogle Scholar
  120. Ruttner, F. (1987) Biogeography and taxonomy of honeybees. Springer, New YorkGoogle Scholar
  121. Schmidt, J.O. (2001) Hierarchy of attractants for honey bee swarms. J. Insect Behav. 14, 469–477CrossRefGoogle Scholar
  122. Schmidt, J.O., Slessor, K.N., Winston, M.L. (1993) Roles of Nasonov and queen pheromones in attraction of honeybee swarms. Naturwissenschaften 80, 573–575CrossRefGoogle Scholar
  123. Schmitt, U., Lubke, G., Francke, W. (1991) Tarsal secretion marks food sources in bumblebees (Hymenoptera: Apidae). Chemoecology 2(1), 35–40CrossRefGoogle Scholar
  124. Schneider, S.S. (1987) The modulation of worker activity by the vibration dance of the honeybee, Apis mellifera. Ethology 74(3), 211–218CrossRefGoogle Scholar
  125. Schneider, S.S. (1990a) Queen behavior and worker queen interactions in absconding and swarming colonies of the African honey bee, Apis mellifera scutellata (Hymenoptera, Apidae). J. Kansas Entomol. Soc. 63(1), 179–186Google Scholar
  126. Schneider, S.S. (1990b) Nest characteristics and recruitment behavior of absconding colonies of the African honey bee, Apis mellifera scutellata, in Africa. J. Insect Behav. 3(2), 225–240CrossRefGoogle Scholar
  127. Schneider, S.S. (1991) Modulation of queen activity by the vibration dance in swarming colonies of the African honey bee, Apis mellifera scutellata (Hymenoptera, Apidae). J. Kansas Entomol. Soc. 64(3), 269–278Google Scholar
  128. Schneider, S.S., DeGrandi-Hoffman, G. (2008) Queen replacement in African and European honey bee colonies with and without afterswarms. Insectes Soc. 55(1), 79–85CrossRefGoogle Scholar
  129. Schneider, S.S., Lewis, L.A. (2004) The vibration signal, modulatory communication and the organization of labor in honey bees, Apis mellifera. Apidologie 35, 117–131CrossRefGoogle Scholar
  130. Schneider, S.S., McNally, L.C. (1991) The vibration dance behavior of queenless workers of the honey bee, Apis mellifera (Hymenoptera: Apidae). J. Insect Behav. 4(3), 319–332CrossRefGoogle Scholar
  131. Schneider, S.S., McNally, L.C. (1992) Factors influencing seasonal absconding in colonies of the African honey bee, Apis mellifera scutellata. Insectes Soc. 39(4), 403–423CrossRefGoogle Scholar
  132. Schneider, S.S., McNally, L.C. (1994) Waggle dance behavior associated with seasonal absconding in colonies of the African honey bee, Apis mellifera scutellata. Insectes Soc. 41, 115–127CrossRefGoogle Scholar
  133. Schneider, S.S., Stamps, J.A., Gary, N.E. (1986) The vibration dance of the honey bee. I Communication regulating foraging on two time scales. Anim. Behav. 34, 377–385CrossRefGoogle Scholar
  134. Schneider, S.S., Visscher, P.K., Camazine, S. (1998) Vibration signal behavior of waggle-dancers in swarms of the honey bee, Apis mellifera (Hymenoptera: Apidae). Ethology 104, 963–972CrossRefGoogle Scholar
  135. Schneider, S.S., Painter-Kurt, S., DeGrandi-Hoffman, G. (2001) The role of the vibration signal during queen competition in colonies of the honeybee, Apis mellifera. Anim. Behav. 61, 1173–1180CrossRefGoogle Scholar
  136. Schultz, K.M., Passino, K.M., Seeley, T.D. (2008) The mechanism of flight guidance in honeybee swarms: subtle guides or streaker bees? J. Exp. Bio. 211, 3287–3295CrossRefGoogle Scholar
  137. Seeley, T.D. (1979) Queen substance dispersal by messenger workers in honeybee colonies. Behav. Ecol. Sociobiol. 5, 391–415CrossRefGoogle Scholar
  138. Seeley, T.D. (1982) Adaptive significance of the age polyethism schedule in honeybee colonies. Behav. Ecol. Sociobiol. 11, 287–293CrossRefGoogle Scholar
  139. Seeley, T.D. (1995) The wisdom of the hive: the social physiology of honey bee colonies. Harvard University Press, CambridgeGoogle Scholar
  140. Seeley, T.D. (2010) Honeybee democracy. Princeton University Press, PrincetonGoogle Scholar
  141. Seeley, T.D., Buhrman, S.C. (1999) Group decision making in swarms of honey bees. Behav. Ecol. Sociobiol. 45, 19–31CrossRefGoogle Scholar
  142. Seeley, T.D., Fell, R.D. (1981) Queen substance production in honey bee (Apis mellifera) colonies preparing to swarm (Hymenoptera: Apidae). J. Kansas Entomol. Soc. 54(1), 192–196Google Scholar
  143. Seeley, T.D., Tautz, J. (2001) Worker piping in honey bee swarms and its role in preparing for liftoff. J. Comp. Physiol. A. 187(8), 667–676PubMedCrossRefGoogle Scholar
  144. Seeley, T.D., Visscher, P.K. (2004) Group decision making in nest-site selection by honey bees. Apidologie 35(2), 101–116CrossRefGoogle Scholar
  145. Seeley, T.D., Morse, R.A., Visscher, P.K. (1979) The natural history of the flight of honey bee swarms. Psyche 86(2–3), 103–114CrossRefGoogle Scholar
  146. Seeley, T.D., Weidenmüller, A., Kühnholz, S. (1998) The shaking signal of the honey bee informs workers to prepare for greater activity. Ethology 104, 10–26CrossRefGoogle Scholar
  147. Seeley, T.D., Kleinhenz, M., Bujok, B., Tautz, J. (2003) Thorough warm-up before take-off in honey bee swarms. Naturwissenschaften 90(6), 256–260PubMedCrossRefGoogle Scholar
  148. Seeley, T.D., Visscher, P.K., Passino, K.M. (2006) Group decision making in honey bee swarms. Am. Sci. 94(3), 220–229CrossRefGoogle Scholar
  149. Seeley, T.D., Visscher, P.K., Schlegel, T., Hogan, P.M., Franks, N.R., Marshall, J.A.R. (2012) Stop signals provide cross inhibition in collective decision-making by honeybee swarms. Science 335(6064), 108–111PubMedCrossRefGoogle Scholar
  150. Sihag, R.C. (1998) Ecobiology of the little honeybee (Apis florea) in semi-arid subtropical climates of India. In: M. Matsuka, L. R. Verma, S. Wongsiri, K. K. Shrestha and U. Partap (eds) Asian bees and beekeeping: progress of research and development. Science Publishers, Enfield, NY, pp. 50–52Google Scholar
  151. Simpson, J. (1957a) Observations on colonies of honey-bees subjected to treatments designed to induce swarming. Proc. R. Entomol. Soc. London A. 32(10–12), 185–192Google Scholar
  152. Simpson, J. (1957b) The incidence of swarming among colonies of honey-bees in England. J. Agr. Sci. 49, 387–393CrossRefGoogle Scholar
  153. Simpson, J. (1958) The factors which cause colonies of Apis mellifera to swarm. Insectes Soc. 5(1), 77–95CrossRefGoogle Scholar
  154. Simpson, J. (1959) Variation in the incidence of swarming among colonies of Apis mellifera throughout the summer. Insectes Soc. 6(1), 85–99CrossRefGoogle Scholar
  155. Simpson, J. (1963) Queen perception by honeybee swarms. Nature 199, 94–95CrossRefGoogle Scholar
  156. Simpson, J., Riedel, I.B.M. (1964) The emergence of swarms from Apis mellifera colonies. Behaviour 23, 140–148CrossRefGoogle Scholar
  157. Slessor, K.N., Kaminski, L.-A., King, G.S.S., Borden, J., Winston, M.L. (1988) Semiochemical basis of the retinue response to queen honey bees. Nature 332, 354–356CrossRefGoogle Scholar
  158. Slessor, K.N., Winston, M.L., Le Conte, Y. (2005) Pheromone communication in the honeybee (Apis mellifera L.). J. Chem. Ecol. 31(11), 2731–2745PubMedCrossRefGoogle Scholar
  159. Smith, C.R., Toth, A.L., Suarez, A.V., Robinson, G.E. (2008) Genetic and genomic analyses of the division of labour in insect societies. Nat. Rev. Genet. 9(10), 735–748PubMedCrossRefGoogle Scholar
  160. Sullivan, J.P., Jassim, O., Fahrback, S.E., Robinson, G.E. (2000) Juvenile hormone paces behavioral development in the adult worker honey bee. Horm. Behav. 37, 1–14PubMedCrossRefGoogle Scholar
  161. Sumpter, D.J.T. (2006) The principles of collective animal behaviour. Phil. Trans. R. Soc. B 361(1465), 5–22PubMedPubMedCentralCrossRefGoogle Scholar
  162. Tarpy, D.R., Fletcher, D.J.C. (2003) “Spraying” behavior during queen competition in honey bees. J. Insect Behav. 16, 425–437CrossRefGoogle Scholar
  163. Toth, A.L., Robinson, G.E. (2005) Worker nutrition and division of labour in honeybees. Anim. Behav. 69, 427–435CrossRefGoogle Scholar
  164. Toth, A.L., Robinson, G.E. (2007) Evo-devo and the evolution of social behavior. Trends Genet. 23(7), 334–341PubMedCrossRefGoogle Scholar
  165. Velicer, G.J., Yu, Y.T. (2003) Evolution of novel cooperative swarming in the bacterium Myxococcus xanthus. Nature 425(6953), 75–78PubMedCrossRefGoogle Scholar
  166. Venkatesh, G., Reddy, C.C. (1989) Rates of swarming and absconding in the giant honey bee, Apis dorsata F. Proc. Indian Acad. Sci. (Anim. Sci.) 98(6), 425–430CrossRefGoogle Scholar
  167. Villella, A., Hall, J.C. (2008) Neurogenetics of courtship and mating in Drosophila. Adv. Genet. 62, 67–187PubMedCrossRefGoogle Scholar
  168. Visscher, P.K., Seeley, T.D. (2007) Coordinating a group departure: who produces the piping signals on honey bee swarms? Behav. Ecol. Sociobiol. 61, 1615–1621CrossRefGoogle Scholar
  169. Visscher, P.K., Shepardson, J., McCart, L., Camazine, S. (1999) Vibration signal modulates the behavior of house-hunting honey bees (Apis mellifera). Ethology 105, 759–769CrossRefGoogle Scholar
  170. West-Eberhard, M.J. (1982) The nature and evolution of swarming in tropical social wasps (Vespidae, Polistinae, Polybiini). In: P. Jaisson (ed) Social insects in the tropics, vol. I, pp. 97–128. Univ. Paris XIII Press, ParisGoogle Scholar
  171. Whitfield, C.W., Behura, S.K., Berlocher, S.H., Clark, A.G., Johnston, J.S., Sheppard, W.S., Smith, D.R., Suarez, A.V., Weaver, D., Tsutsui, N.D. (2006a) Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera. Science 314, 642–645PubMedCrossRefGoogle Scholar
  172. Whitfield, C.W., Ben-Shahar, Y., Brillet, C., Leoncini, I., Crauser, D., Le Conte, Y., Rodriguez-Zas, S., Robinson, G.E. (2006b) Genomic dissection of behavioral maturation in the honey bee. Proc. Natl. Acad. Sci. USA 103(44), 16068–16075PubMedPubMedCentralCrossRefGoogle Scholar
  173. Wilson, E.O. (1971) The insect societies. Harvard University Press, CambridgeGoogle Scholar
  174. Winston, M.L. (1979) Intra-colony demography and reproductive rate of the Africanized honeybee in South America. Behav. Ecol. Sociobiol. 4, 279–292CrossRefGoogle Scholar
  175. Winston, M.L. (1980) Swarming, afterswarming, and reproductive rate of unmanaged honeybee colonies (Apis mellifera). Insectes Soc. 27(4), 391–398CrossRefGoogle Scholar
  176. Winston, M.L. (1987) The biology of the honey bee. Harvard University Press, CambridgeGoogle Scholar
  177. Winston, M.L., Taylor, O.R. (1980) Factors preceding queen rearing in the Africanized honeybee (Apis mellifera) in South America. Insectes Soc. 27(4), 289–304CrossRefGoogle Scholar
  178. Winston, M.L., Dropkin, J.A., Taylor, O.R. (1981) Demography and life history characteristics of two honey bee races (Apis mellifera). Oecologia 48(3), 407–413CrossRefGoogle Scholar
  179. Winston, M.L., Slessor, K.N., Smirle, M.J., Kandil, A.A. (1982) The influence of a queen-produced substance, 9HDA, on swarm clustering behavior in the honeybee Apis mellifera L. J. Chem. Ecol. 8(10), 1283–1288PubMedCrossRefGoogle Scholar
  180. Winston, M.L., Slessor, K.N., Willis, L.G., Naumann, K., Higo, H.A., Wyborn, M.H., Kaminski, L.A. (1989) The influence of queen mandibular pheromones on worker attraction to swarm clusters and inhibition of queen rearing in the honey bee (Apis mellifera L.). Insectes Soc. 36(1), 15–27CrossRefGoogle Scholar
  181. Winston, M.L., Higo, H.A., Colley, S.J., Pankiw, T., Slessor, K.N. (1991) The role of queen mandibular pheromone and colony congestion in honey bee (Apis mellifera L.) reproductive swarming (Hymenoptera: Apidae). J. Insect Behav. 4(5), 649–660CrossRefGoogle Scholar
  182. Wossler, T.C., Crewe, R.M. (1999a) Honeybee queen tergal gland secretion affects ovarian development in caged workers. Apidologie 30, 311–320CrossRefGoogle Scholar
  183. Wossler, T.C., Crewe, R.M. (1999b) The releaser effects of the tergal gland secretion of queen honeybees (Apis mellifera L.). J. Insect Behav. 12, 343–350CrossRefGoogle Scholar
  184. Zeng, Z., Huang, Z.H., Qin, Y., Pang, H. (2005) Hemolymph juvenile hormone titers in worker honey bees under normal and preswarming conditions. J. Econ. Entomol. 98(2), 274–278PubMedCrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France 2013

Authors and Affiliations

  • Christina M. Grozinger
    • 1
    Email author
  • Jessica Richards
    • 1
  • Heather R. Mattila
    • 2
  1. 1.Department of Entomology, Center for Pollinator ResearchThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Biological SciencesWellesley CollegeWellesleyUSA

Personalised recommendations