Apidologie

, Volume 45, Issue 2, pp 276–283 | Cite as

Cuticular hydrocarbons distinguish cryptic sibling species in Euglossa orchid bees

  • Tamara Pokorny
  • Klaus Lunau
  • J. Javier G. Quezada-Euan
  • Thomas Eltz
Original article

Abstract

Cuticular lipid profiles have been shown to be species specific within many insect genera, allowing a chemotaxonomic classification of individuals. In this study, we analysed the cuticular lipids of the orchid bees Euglossa viridissima Friese and Euglossa dilemma Bembé & Eltz, cryptic sibling species whose taxonomic status has only recently been clarified. Male individuals of both species were obtained from two locations on the Yucatán Peninsula, Mexico, both in the dry and wet seasons. Their hydrocarbon profiles proved to be species specific, irrespective of location and season. They also allowed a correct assignment of a rare morph of E. viridissima which had long obscured the distinction of the two species. Our results suggest that cuticular hydrocarbon profiles may be suited for chemical taxonomy of orchid bees and might provide an additional clue for difficult species distinctions.

Keywords

cuticular hydrocarbons Apidae Euglossa orchid bee chemotaxonomy 

References

  1. Adams, R.P. (2001) Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. Allured Publishing, Carol StreamGoogle Scholar
  2. Bagnères, A.G., Wicker-Thomas, C. (2010) Chemical taxonomy with hydrocarbons. In: Blomquist, G.J., Bagnères, A.G. (eds.) Insect Hydrocarbons. Biology, Biochemistry and Chemical Ecology, pp. 121–162. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. Blomquist, G.J., Bagnères, A.G. (2010) Insect hydrocarbons. Biology, biochemistry, and chemical ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. Buczkowski, G., Kumar, R., Suib, S.L., Silverman, J. (2005) Diet-related modification of cuticular hydrocarbon profiles of the argentine ant, Linepithema humile, diminishes intercolony aggression. J. Chem. Ecol. 31(4), 829–843PubMedCrossRefGoogle Scholar
  5. Carlson, D.A., Roan, C.-S., Yost, R.A., Hector, J. (1989) Dimethyl disulfide derivatives of long chain alkenes, alkadienes, and alkatrienes for gas chromatography/mass spectrometry. Anal. Chem. 61, 1564–1571CrossRefGoogle Scholar
  6. Clarke, K.R. (1993) Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143CrossRefGoogle Scholar
  7. Clarke, K.R., Gorley, R.N. (2006) PRIMER v6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  8. Dapporto, L. (2007) Cuticular lipid diversification in Lasiommata megera and Lasiommata paramegaera: the influence of species, sex and population (Lepidoptera: Nymphalidae). Biol. J. Linn. Soc. 91, 703–710CrossRefGoogle Scholar
  9. Dressler, R.L. (1982) Biology of the orchid bees (Euglossini). Ann. Rev. Ecol. Syst. 13, 373–394CrossRefGoogle Scholar
  10. Eltz, T., Roubik, D.W., Lunau, K. (2005) Experience-dependent choices ensure species-specific fragrance accumulation in male orchid bees. Behav. Ecol. Sociobiol. 59, 149–156CrossRefGoogle Scholar
  11. Eltz, T., Zimmermann, Y., Haftmann, J., Twele, R., Francke, W., Quezada-Euan, J.J.G., Lunau, K. (2007) Enfleurage, lipid recycling and the origin of perfume collection in orchid bees. Proc. R. Soc. B 274, 2843–2848PubMedCrossRefGoogle Scholar
  12. Eltz, T., Zimmermann, Y., Pfeiffer, C., Ramirez-Pech, J., Twele, R., Francke, W., Quezada-Euan, J.J.G., Lunau, K. (2008) An olfactory shift is associated with male perfume differentiation and species divergence in orchid bees. Curr. Biol. 18, 1844–1848PubMedCrossRefGoogle Scholar
  13. Eltz, T., Fritzsch, F., Ramirez-Pech, J., Zimmermann, Y., Quezada-Euan, J.J.G., Ramírez, S.R., Bembé, B. (2011) Characterization of the orchid bee Euglossa viridissima (Apidae: Euglossini) and a novel cryptic sibling species, by morphological, chemical, and genetic characters. Zool. J. Linn. Soc. 163, 1064–1076CrossRefGoogle Scholar
  14. Howard, R.W. (1993) Cuticular hydrocarbons and chemical communication. In: Stanley-Samuelson, D.W., Nelson, D.R. (eds.) Insect Lipids: Chemistry, Biochemistry and Biology, pp. 179–226. University of Nebraska Press, LincolnGoogle Scholar
  15. Howard, R.W., Blomquist, G.J. (2005) Ecological, behavioural, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50, 371–393PubMedCrossRefGoogle Scholar
  16. Kather, R., Martin, S.J. (2012) Cuticular hydrocarbon profiles as a taxonomic tool: advantages, limitations and technical aspects. Physiol. Entomol. 37, 25–32CrossRefGoogle Scholar
  17. Liang, D., Silverman, J. (2000) “You are what you eat”: diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften 87, 412–416PubMedCrossRefGoogle Scholar
  18. Liu, Z.B., Bagnères, A.G., Yamane, S., Wang, Q.C., Kojima, J. (2001) Intra-colony, inter-colony and seasonal variations of cuticular hydrocarbon profiles in Formica japonica (Hymenoptera, Formicidae). Insect. Soc. 48, 342–346CrossRefGoogle Scholar
  19. Martin, S.J., Shemilt, S., Drijfhout, F.P. (2012) Effect of time on colony odour stability in the ant Formica exsecta. Naturwissenschaften 99, 327–331PubMedCrossRefGoogle Scholar
  20. Roubik, D.W., Hanson, P.E. (2004) Orchid bees of tropical America. Instituto Nacional de Biodiversidad (INBio), HerediaGoogle Scholar
  21. Seppä, P., Helanterä, H., Trontti, K., Punttila, P., Chernenko, A., Martin, S.J., Sundström, L. (2011) The many ways to delimit species: hairs, genes and surface chemistry. Myrmecol. News 15, 31–41Google Scholar
  22. Zimmermann, Y., Ramírez, S.R., Eltz, T. (2009) Chemical niche differentiation among sympatric species of orchid bees. Ecology 90(11), 2994–3008PubMedCrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France 2013

Authors and Affiliations

  • Tamara Pokorny
    • 1
    • 2
  • Klaus Lunau
    • 2
  • J. Javier G. Quezada-Euan
    • 3
  • Thomas Eltz
    • 1
  1. 1.Department of Animal Ecology, Evolution and BiodiversityUniversity of BochumBochumGermany
  2. 2.Institute of Sensory EcologyUniversity of DüsseldorfDüsseldorfGermany
  3. 3.Departamento de ApiculturaUniversidad Autónoma de YucatánMéridaMexico

Personalised recommendations