Apidologie

, Volume 45, Issue 3, pp 364–374 | Cite as

The architecture of the pollen hoarding syndrome in honey bees: implications for understanding social evolution, behavioral syndromes, and selective breeding

Review article

Abstract

Social evolution has influenced every aspect of contemporary honey bee biology, but the details are difficult to reconstruct. The reproductive ground plan hypothesis of social evolution proposes that central regulators of the gonotropic cycle of solitary insects have been co-opted to coordinate social complexity in honey bees, such as the division of labor among workers. The predicted trait associations between reproductive physiology and social behavior have been identified in the context of the pollen hoarding syndrome, a larger suite of interrelated traits. The genetic architecture of this syndrome is characterized by a partially overlapping genetic architecture with several consistent, pleiotropic quantitative trait loci (QTL). Despite these central QTL and an integrated hormonal regulation, separate aspects of the pollen hoarding syndrome may evolve independently due to peripheral QTL and additionally segregating genetic variance. The characterization of the pollen hoarding syndrome has also demonstrated that this syndrome involves many non-behavioral traits, which may be the case for numerous “behavioral” syndromes. Furthermore, the genetic architecture of the pollen hoarding syndrome has implications for breeding programs for improving honey health and other desirable traits: if these traits are comparable to the pollen hoarding syndrome, consistent pleiotropic QTL will enable marker-assisted selection, while sufficient additional genetic variation may permit the dissociation of trade-offs for efficient multiple trait selection.

Keywords

Apis mellifera pleiotropy behavioral syndrome honey bee health social behavior correlated evolution artificial selection ovary 

References

  1. Agrawal, A.F., Stinchcombe, J.R. (2009) How much do genetic covariances alter the rate of adaptation? Proc. R. Soc. B-Biol. Sci. 276(1659), 1183–1191CrossRefGoogle Scholar
  2. Amdam, G.V., Csondes, A., Fondrk, M.K., Page, R.E. (2006a) Complex social behaviour derived from maternal reproductive traits. Nature 439, 76–78PubMedCentralPubMedCrossRefGoogle Scholar
  3. Amdam, G.V., Nilsen, K.A., Norberg, K., Fondrk, M.K., Hartfelder, K. (2007) Variation in endocrine signaling underlies variation in social life history. Am. Nat. 170(1), 37–46PubMedCentralPubMedCrossRefGoogle Scholar
  4. Amdam, G.V., Norberg, K., Fondrk, M.K., Page, R.E. (2004) Reproductive ground plan may mediate colony-level selection effects on individual foraging behavior in honey bees. Proc. Natl. Acad. Sci. U. S. A. 101(31), 11350–11355PubMedCentralPubMedCrossRefGoogle Scholar
  5. Amdam, G.V., Norberg, K., Hagen, A., Omholt, S.W. (2003) Social exploitation of vitellogenin. Proc. Natl. Acad. Sci. U. S. A. 100(4), 1799–1802PubMedCentralPubMedCrossRefGoogle Scholar
  6. Amdam, G.V., Norberg, K., Page, R.E., Erber, J., Scheiner, R. (2006b) Downregulation of vitellogenin gene activity increases the gustatory responsiveness of honey bee workers (Apis mellifera). Behav. Brain Res. 169(2), 201–205PubMedCentralPubMedCrossRefGoogle Scholar
  7. Amdam, G.V., Page, R.E. (2010) The developmental genetics and physiology of honeybee societies. Anim. Behav. 79(5), 973–980PubMedCentralPubMedCrossRefGoogle Scholar
  8. Amdam, G.V., Page, R.E., Fondrk, M.K., Brent, C.S. (2010) Hormone response to bidirectional selection on social behavior. Evol. Dev. 12(5), 428–436PubMedCentralPubMedCrossRefGoogle Scholar
  9. Arechavaleta-Velasco, M.E., Alcala-Escamilla, K., Robles-Rios, C., Tsuruda, J.M., Hunt, G.J. (2012) Fine-scale linkage mapping reveals a small set of candidate genes influencing honey bee grooming behavior in response to Varroa mites. PLoS One 7(11), e47269PubMedCentralPubMedCrossRefGoogle Scholar
  10. Arias, M.C., Sheppard, W.S. (2005) Phylogenetic relationships of honey bees (Hymenoptera:Apinae:Apini) inferred from nuclear and mitochondrial DNA sequence data. Mol. Phylogenet. Evol. 37(1), 25–35PubMedCrossRefGoogle Scholar
  11. Bailey, L., Ball, B.V. (1991) Honey Bee Pathology. Academic, LondonGoogle Scholar
  12. Behrens, D., Huang, Q., Gessner, C., Rosenkranz, P., Frey, E., Locke, B., Moritz, R.F., Kraus, F.B. (2011) Three QTL in the honey bee Apis mellifera L. suppress reproduction of the parasitic mite Varroa destructor. Ecol. Evol. 1(4), 451–458PubMedCentralPubMedCrossRefGoogle Scholar
  13. Bourgeois, A.L., Rinderer, T.E. (2009) Genetic characterization of Russian Honey Bee stock selected for improved resistance to Varroa destructor. J. Econ. Entomol. 102(3), 1233–1238PubMedCrossRefGoogle Scholar
  14. Camazine, S. (1986) Differential reproduction of the mite, Varroa jacobsoni (Mesostigmata, Varroidae), on Africanized and European honey bees (Hymenoptera, Apidae). Ann. Entomol. Soc. Am. 79(5), 801–803Google Scholar
  15. Conner, J.K. (2003) Artificial selection: a powerful tool for ecologists. Ecology 84(7), 1650–1660CrossRefGoogle Scholar
  16. Delph, L.F., Arntz, A.M., Scotti-Saintagne, C., Scotti, I. (2010) The genomic architecture of sexual dimorphism in the dioecious plant Silene latifolia. Evolution 64(10), 2873–2886PubMedGoogle Scholar
  17. Dixon, L.R., McQuage, M.R., Lonon, E.J., Buehler, D., Seck, O., Rueppell, O. (2012) Pleiotropy of segregating genetic variants that affect honey bee worker life expectancy. Exp. Gerontol. 47(8), 631–637PubMedCentralPubMedCrossRefGoogle Scholar
  18. Dreller, C., Page, R.E., Fondrk, M.K. (1999) Regulation of pollen foraging in honeybee colonies: effects of young brood, stored pollen, and empty space. Behav. Ecol. Sociobiol. 45, 227–233CrossRefGoogle Scholar
  19. Dreller, C., Tarpy, D.R. (2000) Perception of the pollen need by foragers in a honeybee colony. Anim. Behav. 59(1), 91–96PubMedCrossRefGoogle Scholar
  20. Engel, M.S. (1998) Fossil honey bees and evolution in the genus Apis (Hymenoptera : Apidae). Apidologie 29(3), 265–281CrossRefGoogle Scholar
  21. Fewell, J.H., Page, R.E. (1993) Genotypic variation in foraging responses to environmental stimuli by honey bees, Apis mellifera. Experientia 49(12), 1106–1112CrossRefGoogle Scholar
  22. Fewell, J.H., Winston, M.L. (1992) Colony state and regulation of pollen foraging in the honey-bee, Apis mellifera L. Behav. Ecol. Sociobiol. 30, 387–393CrossRefGoogle Scholar
  23. Fewell, J.H., Winston, M.L. (1996) Regulation of nectar collection in relation to honey storage levels by honey bees, Apis mellifera. Behav. Ecol. 7(3), 286–291CrossRefGoogle Scholar
  24. Gadagkar, R. (1997) The evolution of caste polymorphism in social insects: genetic release followed by diversifying evolution. J. Genet. 76(3), 167–179CrossRefGoogle Scholar
  25. Goode, K., Huber, Z., Mesce, K.A., Spivak, M. (2006) Hygienic behavior of the honey bee (Apis mellifera) is independent of sucrose responsiveness and foraging ontogeny. Horm. Behav. 49(3), 391–397PubMedCrossRefGoogle Scholar
  26. Graham, A.M., Munday, M.D., Kaftanoglu, O., Page, R.E., Amdam, G.V., Rueppell, O. (2011) Support for the reproductive ground plan hypothesis of social evolution and major QTL for ovary traits of Africanized worker honey bees (Apis mellifera L.). BMC Evol. Biol. 11, 95PubMedCentralPubMedCrossRefGoogle Scholar
  27. Harris, J.W. (2007) Bees with Varroa sensitive hygiene preferentially remove mite infested pupae aged < = five days post capping. J. Apic. Res. 46(3), 134–139CrossRefGoogle Scholar
  28. Hellmich, R.L., Kulincevic, J.M., Rothenbuhler, W.C. (1985) Selection for high and low pollen-hoarding honey bees. J. Hered. 76(3), 155–158Google Scholar
  29. Holloway, B., Sylvester, H.A., Bourgeois, L., Rinderer, T.E. (2012) Association of single nucleotide polymorphisms to resistance to chalkbrood in Apis mellifera. J. Apic. Res. 51(2), 154–163CrossRefGoogle Scholar
  30. Huang, Q., Kryger, P., Le Conte, Y., Moritz, R.F. (2012) Survival and immune response of drones of a Nosemosis tolerant honey bee strain towards N. ceranae infections. J. Invertebr. Pathol. 109(3), 297–302PubMedCrossRefGoogle Scholar
  31. Humann, F.C., Hartfelder, K. (2011) Representational Difference Analysis (RDA) reveals differential expression of conserved as well as novel genes during caste-specific development of the honey bee (Apis mellifera L.) ovary. Insect Biochem. Mol. 41(8), 602–612CrossRefGoogle Scholar
  32. Humphries, M.A., Fondrk, M.K., Page, R.E. (2005) Locomotion and the pollen hoarding behavioral syndrome of the honeybee (Apis mellifera L.). J. Comp. Physiol. A. 191(7), 669–674CrossRefGoogle Scholar
  33. Humphries, M.A., Muller, U., Fondrk, M.K., Page, R.E. (2003) PKA and PKC content in the honey bee central brain differs in genotypic strains with distinct foraging behavior. J. Comp. Physiol. A. 189(7), 555–562CrossRefGoogle Scholar
  34. Hunt, G.J., Amdam, G.V., Schlipalius, D., Emore, C., Sardesai, N., et al. (2007) Behavioral genomics of honeybee foraging and nest defense. Naturwissenschaften 94(4), 247–267PubMedCentralPubMedCrossRefGoogle Scholar
  35. Hunt, G.J., Page Jr., R.E., Fondrk, M.K., Dullum, C.J. (1995) Major quantitative trait loci affecting honey bee foraging behavior. Genetics 141, 1537–1545PubMedCentralPubMedGoogle Scholar
  36. Ihle, K.E., Page, R.E., Frederick, K., Fondrk, M.K., Amdam, G.V. (2010) Genotype effect on regulation of behaviour by vitellogenin supports reproductive origin of honeybee foraging bias. Anim. Behav. 79(5), 1001–1006PubMedCentralPubMedCrossRefGoogle Scholar
  37. Jandt, J.M., Bengston, S. Pinter-Wollman, N. Pruitt, J.N., Raine, N.E., Dornhaus, A. Sih A. (2013) Behavioural syndromes and social insects: personality at multiple levels. Biol. Rev. Online. In press.Google Scholar
  38. Kulincevic, J.M., Rothenbuhler, W.C. (1975) Selection for resistance and susceptibility to hairless-black syndrome in the honeybee. J. Invertebr. Pathol. 25(3), 289–295PubMedCrossRefGoogle Scholar
  39. Laidlaw, H.H., Page, R.E. (1997) Queen rearing and bee breeding. Wicwas Press, CheshireGoogle Scholar
  40. Lande, R. (1982) A quantitative genetic theory of life history evolution. Ecology 63(3), 607–615CrossRefGoogle Scholar
  41. Lande, R. (1984) The genetic correlation between characters maintained by selection, linkage and inbreeding. Genet. Res. 44(3), 309–320PubMedGoogle Scholar
  42. Lapidge, K.L., Oldroyd, B.P., Spivak, M. (2002) Seven suggestive quantitative trait loci influence hygienic behavior of honey bees. Naturwissenschaften 89(12), 565–568PubMedGoogle Scholar
  43. Le Conte, Y., Alaux, C., Martin, J.F., Harbo, J.R., Harris, J.W., Dantec, C., Severac, D., Cros-Arteil, S., Navajas, M. (2011) Social immunity in honeybees (Apis mellifera): transcriptome analysis of varroa-hygienic behaviour. Insect Mol. Biol. 20(3), 399–408PubMedCrossRefGoogle Scholar
  44. Linksvayer, T.A., Fondrk, M.K., Page, R.E. (2009a) Honeybee social regulatory networks are shaped by colony-level selection. Am. Nat. 173(3), E99–E107PubMedCrossRefGoogle Scholar
  45. Linksvayer, T.A., Rueppell, O., Siegel, A., Kaftanoglu, O., Page, R.E., Amdam, G.V. (2009b) The genetic basis of transgressive ovary size in honey bee workers. Genetics 183, 693–707PubMedCentralPubMedCrossRefGoogle Scholar
  46. Mutti, N.S., Dolezal, A.G., Wolschin, F., Mutti, J.S., Gill, K.S., Amdam, G.V. (2011) IRS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate. J. Exp. Biol. 214(23), 3977–3984PubMedCentralPubMedCrossRefGoogle Scholar
  47. Nelson, C.M., Ihle, K.E., Fondrk, M.K., Page, R.E., Amdam, G.V. (2007) The gene vitellogenin has multiple coordinating effects on social organization. Plos Biol. 5(3), e62PubMedCentralPubMedCrossRefGoogle Scholar
  48. Nilsen, K.A., Ihle, K.E., Frederick, K., Fondrk, M.K., Smedal, B., Hartfelder, K., Amdam, G.V. (2011) Insulin-like peptide genes in honey bee fat body respond differently to manipulation of social behavioral physiology. J. Exp. Biol. 214(9), 1488–1497PubMedCentralPubMedCrossRefGoogle Scholar
  49. O'Hagan, S.J., Knowles, D.B., Kell (2012) Exploiting genomic knowledge in optimising molecular breeding programmes: algorithms from evolutionary computing. PLoS One 7(11). In press.Google Scholar
  50. Oxley, P.R., Spivak, M., Oldroyd, B.P. (2010) Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera). Mol. Ecol. 19(7), 1452–1461PubMedCrossRefGoogle Scholar
  51. Page, R.E., Amdam, G.V. (2007) The making of a social insect: developmental architectures of social design. Bioessays 29, 334–343PubMedCentralPubMedCrossRefGoogle Scholar
  52. Page, R.E., Erber, J. (2002) Levels of behavioral organization and the evolution of division of labor. Naturwissenschaften 89, 91–106PubMedCrossRefGoogle Scholar
  53. Page, R.E., Fondrk, M.K. (1995) The effects of colony level selection on the social organization of honey bee (Apis mellifera L) colonies - colony level components of pollen hoarding. Behav. Ecol. Sociobiol. 36(2), 135–144CrossRefGoogle Scholar
  54. Page, R.E., Fondrk, M.K., Hunt, G.J., Guzman-Novoa, E., Humphries, M.A., Nguyen, K., Greene, A.S. (2000) Genetic dissection of honeybee (Apis mellifera L.) foraging behavior. J Hered. 91(6), 474–479PubMedCrossRefGoogle Scholar
  55. Page, R.E., Fondrk, M.K., Rueppell, O. (2012a) Complex pleiotropy characterizes the pollen hoarding syndrome in honey bees (Apis mellifera L.). Behav. Ecol. Sociobiol. 66(11), 1459–1466PubMedCentralPubMedCrossRefGoogle Scholar
  56. Page, R.E., Rueppell, O., Amdam, G.V. (2012b) Genetics of reproduction and regulation of honeybee (Apis mellifera L.) social behavior. Annu. Rev. Genet. 46, 97–119PubMedCrossRefGoogle Scholar
  57. Palmer, K.A., Oldroyd, B.P. (2003) Evidence for intra-colonial genetic variance in resistance to American foulbrood of honey bees (Apis mellifera): further support for the parasite/pathogen hypothesis for the evolution of polyandry. Naturwissenschaften 90(6), 265–268PubMedCrossRefGoogle Scholar
  58. Pankiw, T. (2003) Directional change in a suite of foraging behaviors in tropical and temperate evolved honey bees (Apis mellifera L.). Behav. Ecol. Sociobiol. 54(5), 458–464CrossRefGoogle Scholar
  59. Pankiw, T., Page, R.E. (2001) Genotype and colony environment affect honeybee (Apis mellifera L.) development and foraging behavior. Behav. Ecol. Sociobiol. 51, 87–94CrossRefGoogle Scholar
  60. Pianka, E.R. (1970) On r- and K-selection. Am. Nat. 104(940), 592–597CrossRefGoogle Scholar
  61. Price, T., Langen, T. (1992) Evolution of correlated characters. Trends Ecol. Evol. 7(9), 307–310PubMedCrossRefGoogle Scholar
  62. Rinderer, T.E., Harris, J.W., Hunt, G.J., de Gusman, L.I. (2010) Breeding for resistance to Varroa destructor in North America. Apidologie 41(3), 409–424CrossRefGoogle Scholar
  63. Roff, D.A. (2011) Genomic insights into life history evolution. In: Flatt, T., Heyland, A. (eds.) Mechanisms of Life History Evolution, pp. 11–25. Oxford University Press, OxfordCrossRefGoogle Scholar
  64. Rueppell, O. (2009) Characterization of quantitative trait loci for the age of first foraging in honey bee workers. Behav. Genet. 39, 541–553PubMedCrossRefGoogle Scholar
  65. Rueppell, O., Bachelier, C., Fondrk, M.K., Page, R.E. (2007) Regulation of life history determines lifespan of worker honey bees (Apis mellifera L.). Exp. Gerontol. 42, 1020–1032PubMedCentralPubMedCrossRefGoogle Scholar
  66. Rueppell, O., Chandra, S.B.C., Pankiw, T., Fondrk, M.K., Beye, M., Hunt, G.J., Page, R.E. (2006a) The genetic architecture of sucrose responsiveness in the honey bee (Apis mellifera L.). Genetics 172, 243–251PubMedCentralPubMedCrossRefGoogle Scholar
  67. Rueppell, O., Fondrk, M.K., Page, R.E. (2006b) Male maturation response to selection of the pollen-hoarding syndrome in honey bees (Apis mellifera L.). Anim. Behav. 71, 227–234PubMedCentralPubMedCrossRefGoogle Scholar
  68. Rueppell, O., Hunggims, E., Tingek, S. (2008) Association between larger ovaries and pollen foraging in queenless Apis cerana workers supports the reproductive ground-plan hypothesis of social evolution. J. Insect Behav. 21, 317–321CrossRefGoogle Scholar
  69. Rueppell, O., Metheny, J.D., Linksvayer, T.A., Fondrk, M.K., Page, R.E., Amdam, G.V. (2011) Genetic architecture of ovary size and asymmetry in European honeybee workers. Heredity 106, 894–903PubMedCentralPubMedCrossRefGoogle Scholar
  70. Rueppell, O., Pankiw, T., Nielsen, D.I., Fondrk, M.K., Beye, M., Page, R.E. (2004) The genetic architecture of the behavioral ontogeny of foraging in honey bee workers. Genetics 167, 1767–1779PubMedCentralPubMedCrossRefGoogle Scholar
  71. Rüppell, O., Pankiw, T., Nielson, D.I., Fondrk, M.K., Beye, M., Page, R.E. (2004) Pleiotropy, epistasis and new QTL: the genetic architecture of honey bee foraging behavior. J. Hered. 95, 481–491PubMedCrossRefGoogle Scholar
  72. Scheiner, R., Page, R.E., Erber, J. (2001) The effects of genotype, foraging role, and sucrose responsiveness on the tactile learning performance of honey bees (Apis mellifera L.). Neurobiol. Learn. Mem. 76(2), 138–150PubMedCrossRefGoogle Scholar
  73. Schmid-Hempel, P. (1998) Parasites in social insects. Princeton University Press, PrincetonGoogle Scholar
  74. Sih, A., Bell, A., Johnson, J.C. (2004) Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378PubMedCrossRefGoogle Scholar
  75. Spivak, M., Gilliam, M. (1998) Hygienic behaviour of honey bees and its application for control of brood diseases and Varroa Part I. Hygienic behaviour and resistance to American foulbrood. Bee World 79(3), 124–134. 169–186Google Scholar
  76. Spivak, M., Reuter, G.S., Lee, K., Ranum, B. (2009) The future of the MN hygienic stock of bees is in good hands! Am. Bee J. 149(10), 965–967Google Scholar
  77. Stearns, S.C. (1989) Trade-offs in life-history evolution. Funct. Ecol. 3(3), 259–268CrossRefGoogle Scholar
  78. Toth, A.L., Robinson, G.E. (2007) Evo-devo and the evolution of social behavior. Trends Genet. 23(7), 334–341PubMedCrossRefGoogle Scholar
  79. Tsuruda, J.M., Harris, J.W., Bourgeois, L., Danka, R.G., Hunt, G.J. (2012) High-resolution linkage analyses to identify genes that influence Varroa sensitive hygiene behavior in honey bees. PLoS One 7(11)Google Scholar
  80. Tsuruda, J.M., Page, R.E. (2009) The effects of foraging role and genotype on light and sucrose responsiveness in honey bees (Apis mellifera L.). Behav Brain Res. 205(1), 132–137PubMedCrossRefGoogle Scholar
  81. vanEngelsdorp, D., Evans, J.D., Saegerman, C., Mullin, C., Haubruge, E., et al. (2009) Colony collapse disorder: a descriptive study. PLoS ONE 4(8), e6481PubMedCentralPubMedCrossRefGoogle Scholar
  82. vanEngelsdorp, D., Meixner, M.D. (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 103, S80–S95PubMedCrossRefGoogle Scholar
  83. vanEngelsdorp, D., Tarpy, D.R., Lengerich, E.J., Pettis, J.S. (2013) Idiopathic brood disease syndrome and queen events as precursors of colony mortality in migratory beekeeping operations in the eastern United States. Prev. Vet. Med. 108(2–3), 225–233PubMedCrossRefGoogle Scholar
  84. Waddington, K.D., Nelson, M., Page, R.E. (1998) Effects of pollen quality and genotype on the dance of foraging honey bees. Anim. Behav. 56, 35–39PubMedCrossRefGoogle Scholar
  85. Wang, Y., Amdam, G.V., Rueppell, O., Wallrichs, M.A., Fondrk, M.K., Kaftanoglu, O., Page, R.E. (2009) PDK1 and HR46 gene homologs tie social behavior to ovary signals. PLoS ONE 4(4), e4899PubMedCentralPubMedCrossRefGoogle Scholar
  86. Wang, Y., Kocher, S.D., Linksvayer, T.A., Grozinger, C.M., Page, R.E., Amdam, G.V. (2012) Regulation of behaviorally associated gene networks in worker honey bee ovaries. J. Exp. Biol. 215(1), 124–134PubMedCentralPubMedCrossRefGoogle Scholar
  87. Wang, Y., Mutti, N.S., Ihle, K.E., Siegel, A., Dolezal, A.G., Kaftanoglu, O., Amdam, G.V. (2010) Down-regulation of honey bee IRS gene biases behavior toward food rich in protein. PLoS Genet. 6(4), e1000896PubMedCentralPubMedCrossRefGoogle Scholar
  88. Whitfield, C.W., Ben-Shahar, Y., Brillet, C., Leoncini, I., Crauser, D., Le Conte, Y., Rodriguez-Zas, S., Robinson, G.E. (2006) Genomic dissection of behavioral maturation in the honey bee. Proc. Natl. Acad. Sci. U. S. A. 103(44), 16068–16075PubMedCentralPubMedCrossRefGoogle Scholar
  89. Williams, G.C. (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398–411CrossRefGoogle Scholar
  90. Zsolt Garamszegi, L., Marko, G., Herczeg, G. (2012) A meta-analysis of correlated behaviours with implications for behavioural syndromes: mean effect size, publication bias, phylogenetic effects and the role of mediator variables. Evol. Ecol. 26(5), 1213–1235CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France 2013

Authors and Affiliations

  1. 1.Department of BiologyThe University of North Carolina at GreensboroGreensboroUSA

Personalised recommendations