, Volume 45, Issue 1, pp 106–115 | Cite as

Elemental and non-elemental olfactory learning using PER conditioning in the bumblebee, Bombus terrestris

  • Frank M. J. SommerlandtEmail author
  • Wolfgang Rössler
  • Johannes Spaethe
Original article


Learning olfactory stimuli and their implications is essential in bumblebees for orientation and recognition of nest sites and food sources. To evaluate associative learning abilities in bees under controlled environmental conditions, the proboscis extension response (PER) assay is a well-established method used in honeybees and has recently been successfully adapted to bumblebees. In this study, we examined the cognitive abilities of workers of the eusocial bumblebee, Bombus terrestris, by training individuals in different olfactory learning tasks using classical PER conditioning. We compared learning performance for four different floral odors. Individuals were able to solve absolute (A+) and differential (A+ vs. B−) conditioning tasks, and no differences were found between single odors and odor combinations, respectively. Furthermore, bumblebees performed well on a positive pattern discrimination task (A−, B− vs. AB+), but failed to solve the negative pattern discrimination (A+, B+ vs. AB−). Our results indicate that workers of B. terrestris possess elemental olfactory learning abilities, but, in contrast to previous findings in honeybees, fail in more complex tasks, such as negative pattern discrimination. We discuss possible ultimate causes that have led to the difference in learning capabilities between bumblebees and honeybees.


elemental learning Bombus terrestris proboscis extension conditioning bumblebee configural associations 



We would like to thank Karin Möller for rearing the bumblebees. We also thank two anonymous reviewers for their helpful comments on an earlier draft of this manuscript. This work was supported by a PhD research scholarship offered by the Free State of Bavaria (Elitenetzwerk Bayern) to FMJS.

Supplementary material

13592_2013_227_MOESM1_ESM.pdf (178 kb)
ESM 1 (PDF 178 kb)


  1. Anfora, G., Rigosi, E., Frasnelli, E., Ruga, V., Trona, F., Vallortigara, G. (2011) Lateralization in the invertebrate brain: left-right asymmetry of olfaction in bumble bee, Bombus terrestris. PLoS One 6(4), e18903PubMedCrossRefPubMedCentralGoogle Scholar
  2. Bhagavan, S., Smith, B.H. (1997) Olfactory conditioning in the honeybee, Apis mellifera: effects of odor intensity. Physiol. Behav. 61(1), 107–117PubMedCrossRefGoogle Scholar
  3. Bitterman, M.E., Menzel, R., Fietz, A., Schäfer, S. (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J. Comp. Psychol. 97(2), 107–119PubMedCrossRefGoogle Scholar
  4. Brill, M.F., Rosenbaum, T., Reus, I., Kleineidam, C.J., Nawrot, M.P., Rössler, W. (2013) Parallel processing via a dual olfactory pathway in the honeybee. J. Neurosci. 33(6), 2443–2456PubMedCrossRefGoogle Scholar
  5. Couvillon, P.A., Bitterman, M.E. (1988) Compound-component and conditional discrimination of colors and odors by honeybees: Further tests of a continuity model. Anim. Learn. Behav. 16(1), 67–74CrossRefGoogle Scholar
  6. Dacher, M., Smith, B.H. (2008) Olfactory interference during inhibitory backward pairing in honeybees. PLoS One 3(10), e3513PubMedCrossRefPubMedCentralGoogle Scholar
  7. Deisig, N., Lachnit, H., Giurfa, M. (2001) Configural olfactory learning in honeybees: negative and positive patterning discrimination. Learn. Mem. 8, 70–78PubMedCrossRefGoogle Scholar
  8. Deisig, N., Lachnit, H., Giurfa, M. (2002) The effect of similarity between elemental stimuli and compounds in olfactory patterning discriminations. Learn. Mem. 9(3), 112–121PubMedCrossRefGoogle Scholar
  9. Deisig, N., Lachnit, H., Sandoz, J.C., Lober, K., Giurfa, M. (2003) A modified version of the unique cue theory accounts for olfactory compound processing in honeybees. Learn. Mem. 10(3), 199–208PubMedCrossRefGoogle Scholar
  10. Dukas, R. (2008) Evolutionary biology of insect learning. Annu. Rev. Entomol. 53, 145–160PubMedCrossRefGoogle Scholar
  11. Fauria, K., Dale, K., Colborn, M., Collett, T. (2002) Learning speed and contextual isolation in bumblebees. J. Exp. Biol. 205, 1009–1018PubMedGoogle Scholar
  12. Free, J.B. (1970) The flower constancy of bumblebees. J. Anim. Ecol. 39(2), 395–402CrossRefGoogle Scholar
  13. Giurfa, M. (2003) Cognitive neuroethology: dissecting non-elemental learning in a honeybee brain. Curr. Opin. Neurobiol. 13(6), 726–735PubMedCrossRefGoogle Scholar
  14. Giurfa, M. (2007) Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J. Comp. Physiol. A .Neuroethol. Sens. Neural. Behav. Physiol. 193(8), 801–824PubMedCrossRefGoogle Scholar
  15. Giurfa, M., Sandoz, J.C. (2012) Invertebrate learning and memory: fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learn. Mem. 19(2), 54–66PubMedCrossRefGoogle Scholar
  16. Grant, V. (1950) The flower constancy of bees. Bot. Rev. 16(7), 379–398CrossRefGoogle Scholar
  17. Gumbert, A. (2000) Color choices by bumble bees (Bombus terrestris): innate preferences and generalization after learning. Behav. Ecol. Sociobiol. 48, 36–43CrossRefGoogle Scholar
  18. Hussaini, S.A., Komischke, B., Menzel, R., Lachnit, H. (2007) Forward and backward second-order Pavlovian conditioning in honeybees. Learn. Mem. 14(10), 678–683PubMedCrossRefGoogle Scholar
  19. Jakobsen, H.B., Kristjánsson, K., Rohde, B., Terkildsen, M., Olsen, C.E. (1995) Can social bees be influenced to choose a specific feeding station by adding the scent of the station to the hive air? J. Chem. Ecol. 21(11), 1635–1648PubMedCrossRefGoogle Scholar
  20. Kapustjanskij, A., Streinzer, M., Paulus, H.F., Spaethe, J. (2007) Bigger is better: implications of body size for flight ability under different light conditions and the evolution of alloethism in bumblebees. Funct. Ecol. 21(6), 1130–1136CrossRefGoogle Scholar
  21. Knudsen, J.T., Tollsten, L., Bergström, L.G. (1993) Floral Scents—a checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33(2), 253–280CrossRefGoogle Scholar
  22. Komischke, B., Sandoz, J.-C., Lachnit, H., Giurfa, M. (2003) Non-elemental processing in olfactory discrimination tasks needs bilateral input in honeybees. Behav. Brain Res. 145(1–2), 135–143PubMedCrossRefGoogle Scholar
  23. Kuwabara, M. (1957) Bildung des bedingten Reflexes von Pavlovs Typus bei der Honigbiene Apis mellifera. J. Fac. Scie. Hokkaido Univ. Ser. VI Zool. 13, 458–464Google Scholar
  24. Laloi, D., Bailez, O., Blight, M.M., Roger, B., Pham-Delègue, M.H., Wadhams, L.J. (2000) Recognition of complex odors by restrained and free-flying honeybees, Apis mellifera. J. Chem. Ecol. 26(10), 2307–2319CrossRefGoogle Scholar
  25. Laloi, D., Pham-Delègue, M.H. (2004) Bumblebees show asymmetrical discrimination between two odors in a classical conditioning procedure. J. Insect Behav. 17(3), 385–396CrossRefGoogle Scholar
  26. Laloi, D., Sandoz, J.C., Picard-Nizou, A.L., Marchesi, A., Pouvreau, A., Taséi, J.N., Poppy, G., Pham-Delègue, M.H. (1999) Olfactory conditioning of the proboscis extension in bumble bees. Entomol. Exper. Appl. 90, 123–129CrossRefGoogle Scholar
  27. Matsumoto, Y., Menzel, R., Sandoz, J.C., Giurfa, M. (2012) Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: a step toward standardized procedures. J. Neurosci. Methods 211(1), 159–167PubMedCrossRefGoogle Scholar
  28. Mc Cabe, S.I., Farina, W.M. (2010) Olfactory learning in the stingless bee Tetragonisca angustula (Hymenoptera, Apidae, Meliponini). J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 196(7), 481–490PubMedCrossRefGoogle Scholar
  29. Menzel, R., Giurfa, M., Gerber, B., Hellstern, F. (1999) Elementary and configural forms of memory in an insect: the honeybee. In: Friederici, A.D., Menzel, R. (eds.) Learning: Rule Extraction and Representation, pp. 259–282. Walter de Gruyter, Berlin, New YorkGoogle Scholar
  30. Menzel, R., Müller, U. (1996) Learning and memory in honeybees: from behavior to neural substrates. Annu. Rev. Neurosci. 19, 379–404PubMedCrossRefGoogle Scholar
  31. Morawetz, L., Spaethe, J. (2012) Visual attention in a complex search task differs between honeybees and bumblebees. J. Exp. Biol. 215(Pt 14), 2515–2523PubMedCrossRefGoogle Scholar
  32. Pearce, J.M. (1987) A Model for stimulus generalization in Pavlovian conditioning. Psychol. Rev. 94(1), 61–73PubMedCrossRefGoogle Scholar
  33. Pearce, J.M., Bouton, M.E. (2001) Theories of associative learning in animals. Annu. Rev. Psychol. 52, 111–139PubMedCrossRefGoogle Scholar
  34. Pelz, C., Gerber, B., Menzel, R. (1996) Odorant intensity as a determinant for olfactory conditioning in honeybees: roles in discrimination, over-shadowing, and memory consolidation. J. Exp. Biol. 200, 837–847Google Scholar
  35. Raine, N.E., Chittka, L. (2007). Flower Constancy and memory dynamics in bumblebees (Hymenoptera: Apidae: Bombus). Entomol. Gen. 29(2–4), 179–199Google Scholar
  36. Raine, N.E., Chittka, L. (2008) The correlation of learning speed and natural foraging success in bumblebees. Proc. Biol. Sci. 275(1636), 803–808PubMedCrossRefPubMedCentralGoogle Scholar
  37. Reinhard, J., Sinclair, M., Srinivasan, M.V., Claudianos, C. (2010) Honeybees learn odor mixtures via a selection of key odorants. PLoS One 5(2), e9110PubMedCrossRefPubMedCentralGoogle Scholar
  38. Rescorla, R.A. (1972) "Configural" conditioning in discrete-trial bar pressing. J. Comp. Physiol. Psychol. 79(2), 307–317PubMedCrossRefGoogle Scholar
  39. Rescorla, R.A., Wagner, A.R. (1972) A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and non-reinforcement. In: Black, A.H., Prokasy, W.F. (eds.) Classical Conditioning 2: Current research and theory, pp. 64–99. Appleton, New YorkGoogle Scholar
  40. Riveros, A.J., Gronenberg, W. (2009a) Learning from learning and memory in bumblebees. Commun. Integr. Biol. 2(5), 437–440PubMedCrossRefGoogle Scholar
  41. Riveros, A.J., Gronenberg, W. (2009b) Olfactory learning and memory in the bumblebee Bombus occidentalis. Naturwissenschaften 96(7), 851–856PubMedCrossRefGoogle Scholar
  42. Rudy, J.W., Sutherland, R.J. (1992) Configural and elemental associations and the memory coherence problem. J. Cogn. Neurosci. 4(3), 208–216PubMedCrossRefGoogle Scholar
  43. Sandoz, J.C., Pham-Delègue, M.H., Renou, M., Wadhams, L.J. (2001) Asymmetrical generalization between pheromonal and floral odors in appetitive olfactory conditioning of the honeybee (Apis mellifera L.). J. Comp. Physiol. A 187, 559–568PubMedCrossRefGoogle Scholar
  44. Spaethe, J., Brockmann, A., Halbig, C., Tautz, J. (2007) Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers. Naturwissenschaften 94(9), 733–739PubMedCrossRefGoogle Scholar
  45. Spaethe, J., Chittka, L. (2003) Interindividual variation of eye optics and single object resolution in bumblebees. J. Exper. Biol. 206(19), 3447–3453CrossRefGoogle Scholar
  46. Toda, N.R., Song, J., Nieh, J.C. (2009) Bumblebees exhibit the memory spacing effect. Naturwissenschaften 96(10), 1185–1191PubMedCrossRefPubMedCentralGoogle Scholar
  47. Wagner, A.R., Rescorla, R.A. (1972) Inhibition in Pavlovian conditioning: application of a theory. In: Halliday, M.S., Boakes, R.A. (eds.) Inhibition and learning, pp. 301–336. Academic, LondonGoogle Scholar
  48. Worden, B.D., Skemp, A.K., Papaj, D.R. (2005) Learning in two contexts: the effects of interference and body size in bumblebees. J. Exp. Biol. 208(Pt 11), 2045–2053PubMedCrossRefGoogle Scholar
  49. Wright, G.A., Carlton, M., Smith, B.H. (2009) A honeybee's ability to learn, recognize, and discriminate odors depends upon odor sampling time and concentration. Behav. Neurosci. 123(1), 36–43PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France 2013

Authors and Affiliations

  • Frank M. J. Sommerlandt
    • 1
    Email author
  • Wolfgang Rössler
    • 1
  • Johannes Spaethe
    • 1
  1. 1.Department of Behavioral Physiology and Sociobiology, BiozentrumUniversity of WürzburgWürzburgGermany

Personalised recommendations