Apidologie

, Volume 45, Issue 1, pp 1–9

Hybridization and asymmetric introgression between Tetragonisca angustula and Tetragonisca fiebrigi

  • Flávio O. Francisco
  • Leandro R. Santiago
  • Rute M. Brito
  • Benjamin P. Oldroyd
  • Maria C. Arias
Original article

Abstract

The broadly distributed Neotropical stingless bee Tetragonisca angustula was once regarded as having two subspecies, T. angustula angustula and T. angustula fiebrigi. In a recent taxonomic revision, these subspecies were elevated to species status (T. angustula and Tetragonisca fiebrigi) based on morphology and distribution. While molecular studies show two well-delineated subgroups within the Tetragonisca, they are inconclusive as to whether there is gene flow between T. angustula and T. fiebrigi. We characterize 1,003 specimens from southern and southeastern Brazil using mitochondrial DNA and microsatellite analysis and demonstrate that there is ongoing hybridization and introgression between T. angustula and T. fiebrigi and suggest that they may be better regarded as subspecies.

Keywords

species subspecies mitochondrial DNA microsatellites Meliponini 

Supplementary material

13592_2013_224_MOESM1_ESM.pdf (667 kb)
ESM 1(PDF 666 kb)

References

  1. Anderson, E. (1948) Hybridization of the habitat. Evolution 2, 1–9CrossRefGoogle Scholar
  2. Arias, M.C., Silvestre, D., Francisco, F.O., Weinlich, R., Sheppard, W.S. (2008) An oligonucleotide primer set for PCR amplification of the complete honey bee mitochondrial genome. Apidologie 39, 475–480CrossRefGoogle Scholar
  3. Baitala, T.V., Mangolin, C.A., Toledo, V.A.A., Ruvolo-Takasusuki, M.C.C. (2006) RAPD polymorphism in Tetragonisca angustula (Hymenoptera; Meliponinae, Trigonini) populations. Sociobiology 48, 1–13Google Scholar
  4. Barth, A., Fernandes, A., Pompolo, S.G., Costa, M.A. (2011) Occurrence of B chromosomes in Tetragonisca Latreille, 1811 (Hymenoptera, Apidae, Meliponini): a new contribution to the cytotaxonomy of the genus. Genet Mol Biol. 34, 77–79PubMedCentralPubMedCrossRefGoogle Scholar
  5. Brito, R.M., Arias, M.C. (2010) Genetic structure of Partamona helleri (Apidae, Meliponini) from Neotropical Atlantic rainforest. Insect. Soc. 57, 413–419CrossRefGoogle Scholar
  6. Brito, R.M., Costa, M.A., Pompolo, S.G. (1997) Characterization and distribution of supernumerary chromosomes in 23 colonies of Partamona helleri (Hymenoptera, Apidae, Meliponinae). Braz. J. Genet. 20, 185–188Google Scholar
  7. Brito, R.M., Francisco, F.O., Domingues-Yamada, A.M.T., Gonçalves, P.H.P., Pioker, F.C., Soares, A.E.E., Arias, M.C. (2009) Characterization of microsatellite loci of Tetragonisca angustula (Hymenoptera, Apidae, Meliponini). Conserv. Genet. Resour. 1, 183–187CrossRefGoogle Scholar
  8. Camargo, J.M.F., Pedro, S.R.M. (2008) Meliponini Lepeletier, 1836, in: Moure, J.S., Urban, D., Melo, G.A.R. (Orgs.), Catalogue of bees (Hymenoptera, Apoidea) in the Neotropical Region. http://www.moure.cria.org.br/catalogue. Accessed 11 April 2012
  9. Castanheira, E.B., Contel, E.P. (1995) Isoenzymes related to flight activity in Tetragonisca angustula (Hymenoptera: Apidae: Meliponinae): evidence of postranslational modification of the hexokinase and detection of new glycerol-3-phosphate dehydrogenase variants. Biochem. Genet. 33, 365–375PubMedCrossRefGoogle Scholar
  10. Castanheira, E.B., Contel, E.P. (2005) Geographic variation in Tetragonisca angustula (Hymenoptera, Apidae, Meliponinae). J. Apicult. Res. 44, 101–105Google Scholar
  11. Clarke, K.E., Rinderer, T.E., Franck, P., Quezada-Euán, J.J.G., Oldroyd, B.P. (2002) The Africanization of honeybees (Apis mellifera L.) of the Yucatan: a study of a massive hybridization event across time. Evolution 56, 1462–1474PubMedGoogle Scholar
  12. Cortopassi-Laurino, M., Imperatriz-Fonseca, V.L., Roubik, D.W., Dollin, A., Heard, T., Aguilar, I.B., Venturieri, G.C., Eardley, C., Nogueira-Neto, P. (2006) Global meliponiculture: challenges and opportunities. Apidologie 37, 1–18CrossRefGoogle Scholar
  13. Coyne, J.A. (1992) Genetics and speciation. Nature 355, 511–515PubMedCrossRefGoogle Scholar
  14. De la Rúa, P., Jaffé, R., Dall'Olio, R., Muñoz, I., Serrano, J. (2009) Biodiversity, conservation and current threats to European honeybees. Apidologie 40, 263–284CrossRefGoogle Scholar
  15. de Queiroz, K. (2005) Ernst Mayr and the modern concept of species. P. Natl. Acad. Sci. USA 102, 6600–6607CrossRefGoogle Scholar
  16. Dieckmann, U. (1997) Can adaptive dynamics invade? Trends Ecol Evol 12, 128–131PubMedCrossRefGoogle Scholar
  17. Dieckmann, U., Doebeli, M. (1999) On the origin of species by sympatric speciation. Nature 400, 354–357PubMedCrossRefGoogle Scholar
  18. Dieckmann, U., Law, R. (1996) The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34, 579–612PubMedCrossRefGoogle Scholar
  19. Drummond, A.J., Ashton, B., Buxton, S., Cheung, M., Cooper, A., et al. (2010) Geneious v5.1. http://www.geneious.com
  20. Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797PubMedCentralPubMedCrossRefGoogle Scholar
  21. Falush, D., Stephens, M., Pritchard, J.K. (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587PubMedCentralPubMedGoogle Scholar
  22. Franck, P., Cameron, E., Good, G., Rasplus, J.-Y., Oldroyd, B.P. (2004) Nest architecture and genetic differentiation in a species complex of Australian stingless bees. Molecular Ecology 13, 2317–2331PubMedCrossRefGoogle Scholar
  23. Francisco, F.O., Arias, M.C. (2010) Inferences of evolutionary and ecological events that influenced the population structure of Plebeia remota, a stingless bee from Brazil. Apidologie 41, 216–224CrossRefGoogle Scholar
  24. Francisco, F.O., Brito, R.M., Santiago, L.R., Gonçalves, P.H.P., Pioker, F.C., Domingues-Yamada, A.M.T., Arias, M.C. (2011) Isolation and characterization of 15 microsatellite loci in the stingless bee Plebeia remota (Apidae: Meliponini). Conserv. Genet. Resour. 3, 417–419CrossRefGoogle Scholar
  25. Geritz, S.A.H., Kisd, É., Meszéna, G., Metz, J.A.J. (1998) Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12, 35–57CrossRefGoogle Scholar
  26. Hall, H.G. (1990) Parental analysis of introgressive hybridization between African and European honeybees using nuclear DNA RFLPs. Genetics 125, 611–621PubMedCentralPubMedGoogle Scholar
  27. Heady, S.E., Madden, L.V., Nault, L.R. (1989) Courtship behavior and experimental asymmetrical hybridization in Dalbulus leafhoppers (Homoptera: Cicadellidae) with evolutionary inferences. Ann. Entomol. Soc. Am. 82, 535–543Google Scholar
  28. Jakobsson, M., Rosenberg, N.A. (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806PubMedCrossRefGoogle Scholar
  29. Koling, D.F., Moretto, G. (2010) Mitochondrial discrimination of stingless bees Tetragonisca angustula (Apidae: Meliponini) from Santa Catarina state, Brazil. Apidologie 41, 454–462CrossRefGoogle Scholar
  30. Kraus, F.B., Franck, P., Vandame, R. (2007) Asymmetric introgression of African genes in honeybee populations (Apis mellifera L.) in Central Mexico. Heredity 99, 233–240PubMedCrossRefGoogle Scholar
  31. Lajbner, Z., Slechtová, V., Slechta, V., Svátora, M., Berrebi, P., Kotlík, P. (2009) Rare and asymmetrical hybridization of the endemic Barbus carpathicus with its widespread congener Barbus barbus. J. Fish Biol. 74, 418–436PubMedCrossRefGoogle Scholar
  32. Lamb, T., Avise, J.C. (1986) Directional introgression of mitochondrial DNA in a hybrid population of tree frogs: the influence of mating behavior. P. Natl. Acad. Sci. USA 83, 2526–2530CrossRefGoogle Scholar
  33. Librado, P., Rozas, J. (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452PubMedCrossRefGoogle Scholar
  34. Lobo, J.A. (1995) Morphometric, isozymic and mitochondrial variability of Africanized honeybees in Costa Rica. Heredity 75, 133–141CrossRefGoogle Scholar
  35. May-Itzá, W.J., Quezada-Euán, J.J.G., De la Rúa, P. (2009) Intraspecific variation in the stingless bee Melipona beecheii assessed with PCR-RFLP of the ITS1 ribosomal DNA. Apidologie 40, 549–555CrossRefGoogle Scholar
  36. May-Itzá, W.J., Quezada-Euán, J.J.G., Ayala, R., De la Rúa, P. (2012) Morphometric and genetic analyses differentiate Mesoamerican populations of the endangered stingless bee Melipona beecheii (Hymenoptera: Meliponidae) and support their conservation as two separate units. J. Insect. Conserv. 16, 723–731CrossRefGoogle Scholar
  37. Mayr, E. (1942) Systematics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  38. Mayr, E. (1963) Animal species and evolution. Belknap, CambridgeGoogle Scholar
  39. Michener, C.D. (2007) The bees of the world. Johns Hopkins University Press, BaltimoreGoogle Scholar
  40. Moritz, C. (1994) Defining “Evolutionarily Significant Units” for conservation. Trends Ecol. Evol. 9, 373–375PubMedCrossRefGoogle Scholar
  41. Nascimento, V.A., Matusita, S.H., Kerr, W.E. (2000) Evidence of hybridization between two species of Melipona bees. Genet. Mol. Biol. 23, 79–81CrossRefGoogle Scholar
  42. Nogueira-Neto, P. (1954) Notas bionômicas sobre meliponíneos: III—Sobre a enxameagem. Arq. Mus. Nac. 42, 419–451Google Scholar
  43. Nogueira-Neto, P. (1997) Vida e Criação de Abelhas Indígenas Sem Ferrão. Editora Nogueirapis, São PauloGoogle Scholar
  44. Oliveira, R.C., Nunes, F.M.F., Campos, A.P.S., Vasconcelos, S.M., Roubik, D., Goulart, L.R., Kerr, W.E. (2004) Genetic divergence in Tetragonisca angustula Latreille, 1811 (Hymenoptera, Meliponinae, Trigonini) based on RAPD markers. Genet. Mol. Biol. 27, 181–186Google Scholar
  45. Peakall, R., Smouse, P.E. (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295CrossRefGoogle Scholar
  46. Peakall, R., Smouse, P.E. (2012) GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539PubMedCentralPubMedCrossRefGoogle Scholar
  47. Pritchard, J.K., Stephens, M., Donnelly, P. (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945–959PubMedCentralPubMedGoogle Scholar
  48. Quezada-Euán, J.J.G., May-Itzá, W.J., Rincón, M., De la Rúa, P., Paxton, R.J. (2012) Genetic and phenotypic differentiation in endemic Scaptotrigona hellwegeri (Apidae: Meliponini): implications for the conservation of stingless bee populations in contrasting environments. Insect Conserv. Diver. 5, 433–443CrossRefGoogle Scholar
  49. Quezada-Euán, J.J.G., Pérez-Castro, E.E., May-Itzá, W.J. (2003) Hybridization between European and African-derived honeybee populations (Apis mellifera) at different altitudes in Perú. Apidologie 34, 217–225CrossRefGoogle Scholar
  50. Rhymer, J.M., Simberloff, D. (1996) Extinction by hybridization and introgression. Annu. Rev. Ecol. Syst. 27, 83–109CrossRefGoogle Scholar
  51. Rinderer, T.E., Stelzer, J.A., Oldroyd, B.P., Buco, S.M., Rubink, W.L. (1991) Hybridization between European and Africanized honey bees in the Neotropical Yucatan Peninsula. Science 253, 309–311PubMedCrossRefGoogle Scholar
  52. Rosenberg, N.A. (2004) Distruct: a program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138CrossRefGoogle Scholar
  53. Schwarz, H.F. (1938) The stingless bees (Meliponidae) of British Guiana and some related forms. Bull. Am. Mus. Nat. Hist. 74, 437–508Google Scholar
  54. Seehausen, O., Takimoto, G., Roy, D., Jokela, J. (2008) Speciation reversal and biodiversity dynamics with hybridization in changing environments. Mol. Ecol. 17, 30–44PubMedCrossRefGoogle Scholar
  55. Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., Flook, P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene-sequences and a compilation of conserved polymerase chain-reaction primers. Ann. Entomol. Soc. Am. 87, 651–701Google Scholar
  56. Stuchi, A.L.P.B., Toledo, V.A.A., Lopes, D.A., Cantagalli, L.B., Ruvolo-Takasusuki, M.C.C. (2012) Molecular marker to identify two stingless bee species: Tetragonisca angustula and Tetragonisca fiebrigi (Hymenoptera, Meliponinae). Sociobiology 59, 123–134Google Scholar
  57. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  58. Tosta, V.C., Fernandes-Salomão, T.M., Tavares, M.G., Pompolo, S.G., Barros, E.G., Campos, L.A.O. (2004) A RAPD marker associated with B chromosomes in Partamona helleri (Hymenoptera, Apidae). Cytogenet. Genome Res. 106, 279–283PubMedCrossRefGoogle Scholar
  59. van Veen, J.W., Sommeijer, M.J. (2000) Colony reproduction in Tetragonisca angustula (Apidae, Meliponini). Insect. Soc. 47, 70–75CrossRefGoogle Scholar
  60. Walsh, P.S., Metzger, D.A., Higuchi, R. (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10, 506–513PubMedGoogle Scholar
  61. Wu, C.-I., Palopoli, M.F. (1994) Genetics of postmating reproductive isolation in animals. Annu. Rev. Genet. 28, 283–308PubMedCrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France 2013

Authors and Affiliations

  • Flávio O. Francisco
    • 1
    • 3
  • Leandro R. Santiago
    • 1
  • Rute M. Brito
    • 2
    • 3
  • Benjamin P. Oldroyd
    • 3
  • Maria C. Arias
    • 1
  1. 1.Departamento de Genética e Biologia Evolutiva, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
  2. 2.Instituto de Genética e BioquímicaUniversidade Federal de UberlândiaUberlândiaBrazil
  3. 3.Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12University of SydneySydneyAustralia

Personalised recommendations