, Volume 44, Issue 6, pp 673–683 | Cite as

Amazonian species within the Cerrado savanna: new records and potential distribution for Aglae caerulea (Apidae: Euglossini)

  • Daniel P. Silva
  • Antonio J. C. Aguiar
  • Gabriel A. R. Melo
  • Evandson J. Anjos-Silva
  • Paulo De MarcoJr
Original article


Given human-related changes, quality distributional data are required for consistent conservation. Still, the lack of proper biogeographic information is a major setback for many groups. Here, we use new occurrences for Aglae caerulea in the Cerrado to model its potential distribution. We used Maximum Entropy (MaxEnt) and Genetic Algorithm for Rule-Set Production (GARP) algorithms in different modeling runs and both previous and new A. caerulea occurrences to predict this species distribution. Models which used only the previous A. caerulea’s records did not predicted the new Cerrado records, while those where we used the latter did predict the new ones as minimally suitable. A. caerulea distribution significantly increased towards the Cerrado according to both MaxEnt and GARP algorithms. Gallery forests are important dispersal alternatives for several species dwelling the Amazon and the Atlantic forest. Niche models of other rare Euglossini bees are advised to better evaluate their distributions.


Aglae caerulea Amazon Cerrado dispersal corridor Wallacean shortfall species distribution modeling 



We would like to acknowledge John S. Ascher, from the American Museum of Natural History, and Eduardo Almeida, from Coleção Camargo USP-RP, and Kelli Ramos, from Museu de Zoologia da USP, which provided us with several A. caerulea occurrence records. We are also grateful to two anonymous reviewers which provided valuable comment to a previous version of this manuscript. DPS received a doctorate scholarship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). PDM and GARM have been continuously supported by CNPq grants. EJAS was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; PQI 0053/02-3), CNPq (473857/03-0), and FAPEMAT (737955/2008; 258060/2010). DPS and PDM would also like to thank the Fundação “O Boticário” de Proteção à Natureza, CNPq, and Whitley Wildlife Conservation Trust for the resources which allowed them to execute the field surveys and discover the three new occurrences for A. caerulea in the Cerrado savanna.

Supplementary material

13592_2013_216_MOESM1_ESM.doc (370 kb)
ESM 1 (DOC 370 kb)


  1. Ab’Saber, A.N. (1977) Os domínios morfoclimáticos da América do Sul. Primeira Aproximação. Geomorfologia 52, 1–21Google Scholar
  2. Aguiar, A.J.C., Melo, G.A.R. (2007) Taxonomic revision, phylogenetic analysis, and biogeography of the bee genus Tropidopedia (Hymenoptera, Apidae, Tapinotaspidini). Zool. J. Linn. Soc. 151, 511–554CrossRefGoogle Scholar
  3. Allouche, O., Tsoar, A., Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232CrossRefGoogle Scholar
  4. Almeida, M.C., Côrtes, L.G., De Marco Jr, P. (2010) New records and a niche model for the distribution of two Neotropical damselflies: Schistolobos boliviensis and Tuberculobasis inversa (Odonata: Coenagrionidae). Insect Conserv. Divers. 3, 252–256CrossRefGoogle Scholar
  5. Anjos-Silva, E.J. (2008) Discovery of Euglossa cognata Moure (Apidae: Euglossini) in the Platina Basin, Mato Grosso State, Brazil. Biota Neotropical 8, 80–83Google Scholar
  6. Anjos-Silva, E.J., Camillo, E., Garófalo, C.A. (2006) Occurrence of Aglae caerulea Lepeletier & Serville (Hymenoptera: Apidae: Euglossini) in the Parque Nacional da Chapada dos Guimarães, Mato Grosso State. Brazil. Neotrop. Entomol. 35, 868–870CrossRefGoogle Scholar
  7. Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberón, J., Villalobos, F. (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819CrossRefGoogle Scholar
  8. Bawa, K.S., Kress, W.J., Nadkarni, N.M. (2004) Beyond paradise—meeting the challenges in tropical biology in the 21st century. Biotropica 36, 276–284Google Scholar
  9. Bini, L.M., Diniz-Filho, J.A.F., Rangel, T.F., Bastos, R.P., Pinto, M.P. (2006) Challenging Wallacean and Linnean shortfalls: knowledge gradients and conservation planning in a biodiversity hotspot. Divers. Distrib. 12, 475–482CrossRefGoogle Scholar
  10. Brooks, T.M., Mittermeier, R.A., Da Fonseca, G.A.B., Gerlach, J., Hoffmann, M., et al. (2006) Global biodiversity conservation priorities. Science 313, 58–61PubMedCrossRefGoogle Scholar
  11. Brown Jr., K.S. (1987) Biogeography and evolution of Neotropical butterflies. In: Whitmore, T., Prance, G. (eds.) Biogeography and Quaternary History in Tropical America, pp. 66–104. Oxford University Press, OxfordGoogle Scholar
  12. Brown Jr., K.S. (1992) Habitat alteration and species loss in Brazilian forests. In: Whitmore, T., Sayer, J. (eds.) Tropical Deforestation and Species Extinction, pp. 119–142. Chapman & Hall, LondonGoogle Scholar
  13. Cáceres, N.C., Casella, J., Vargas, C.F., Prates, L.Z., Tombini, A.A.M., et al. (2008) Distribuição geográfica de pequenos mamíferos não voadores nas bacias dos rios Araguaia e Paraná, região centro-sul do Brasil. Iheringia. Sér. Zool. 98, 173–180CrossRefGoogle Scholar
  14. Cameron, S.A. (2004) Phylogeny and biology of Neotropical orchid bees (Euglossini). Annu. Rev. Entomol. 49, 404CrossRefGoogle Scholar
  15. Cardoso, P., Erwin, T.L., Borges, P.A.V., New, T.R. (2011) The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655CrossRefGoogle Scholar
  16. De Siqueira, M.F., Durigan, G., De Marco, P.J., Peterson, A.T. (2009) Something from nothing: using landscape similarity and ecological niche modeling to find rare plant species. J. Nat. Conserv. 17, 25–32CrossRefGoogle Scholar
  17. Diniz-Filho, J.A.F., De Marco, P.J., Hawkins, B.A. (2010a) Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conserv. Divers. 3, 172–179Google Scholar
  18. Diniz-Filho, J.A.F., Nabout, J.C., Bini, L.M., Loyola, R.D., Rangel, T.F.L.V., et al. (2010b) Ensemble forecasting shifts in climatically suitable areas for Tropidacris cristata (Orthoptera: Acridoidea: Romaleidae). Insect Conserv. Divers. 3, 213–221Google Scholar
  19. Dobrovolski, R., Diniz-Filho, J.A.F., Loyola, R.D., De Marco, P.J. (2011) Agricultural expansion and the fate of global conservation priorities. Biodivers. Conserv. 20, 2445–2459CrossRefGoogle Scholar
  20. Dressler, R.L. (1982) Biology of the orchid bees (Euglossini). Annu. Rev. Ecol. System. 13, 373–394CrossRefGoogle Scholar
  21. Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., et al. (2011) A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57CrossRefGoogle Scholar
  22. Giannini, T.C., Acosta, A.L., Garófalo, C.A., Saraiva, A.M., Alves-dos-Santos, I., et al. (2012) Pollination services at risk: bee habitats will decrease owing to climate change in Brazil. Ecol. Modell. 244, 127–131CrossRefGoogle Scholar
  23. Google Inc. (2012) Google Earth, Google IncGoogle Scholar
  24. Guisan, A., Broennimann, O., Engler, R., Vust, M., Yoccoz, N.G., et al. (2006) Using niche-based models to improve the sampling of rare species. Conserv. Biol. 20, 501–511PubMedCrossRefGoogle Scholar
  25. Guisan, A., Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. Ecol. Modell. 135, 147–186CrossRefGoogle Scholar
  26. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978CrossRefGoogle Scholar
  27. Hinojosa-Díaz, I.A., Feria-Arroyo, T.P., Engel, M.S. (2009) Potential distribution of orchid bees outside their native range: the cases of Eulaema polychroma (Mocsáry) and Euglossa viridissima Friese in the USA (Hymenoptera: Apidae). Divers. Distrib. 15, 421–428CrossRefGoogle Scholar
  28. Hong, S.K., Lee, J.A. (2006) Global environmental changes in terrestrial ecosystems. International issues and strategic solutions: introduction. Ecol. Res. 21, 783–787CrossRefGoogle Scholar
  29. Janzen, D.H. (1971) Euglossine bees as long-distance pollinators of tropical plants. Science 171, 203–205PubMedCrossRefGoogle Scholar
  30. Kamino, L.H.Y., Stehmann, J.R., Amaral, S., De Marco Jr, P., Rangel, T.F., et al. (2011) Challenges and perspectives for species distribution modelling in the neotropics. Biol. Lett. 8, 324–326PubMedCrossRefGoogle Scholar
  31. Liu, C., White, M., Newell, G. (2011) Measuring and comparing the accuracy of species distribution models with presence absence data. Ecography 34, 232–243CrossRefGoogle Scholar
  32. Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R.K., Thuiller, W. (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15, 59–69CrossRefGoogle Scholar
  33. Mata, R.A., Tidon, R., Côrtes, L.G., De Marco Jr, P., Diniz-Filho, J.A.F. (2010) Invasive and flexible: niche shift in the drosophilid Zaprionus indianus (Insecta, Diptera). Biol. Invasions. 12, 1231–1241CrossRefGoogle Scholar
  34. Méio, B.B., Freitas, C.V., Jatobá, L., Silva, M.E.F., Ribeiro, R.P.B. (2003) Influência da flora das florestas Amazônica e Atlântica na vegetação do cerrado sensu stricto. Rev. Bras. Bot 26, 437–444CrossRefGoogle Scholar
  35. Michener, C.D. (2007) The Bees of the World. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  36. Morato, E.F. (2001) Ocorrência de Aglae caerulea Lepelier & Serville (Hymenoptera, Apidae, Apini, Euglossina) no estado do Acre. Brasil. Rev. Bras. Zool. 18, 1031–1034CrossRefGoogle Scholar
  37. Moura, D.C., Schlindwein, C. (2009) Mata Ciliar do Rio São Francisco como Biocorredor para Euglossini (Hymenoptera: Apidae) de Florestas Tropicais Úmidas. Neotrop. Entomol. 38, 281–284PubMedCrossRefGoogle Scholar
  38. Moure, J.S. (1967) A check-list of the known Euglossine bees (Hymenoptera, Apidae). Biota Amazônica 5, 395–415Google Scholar
  39. Munoz, M.E.S., De Giovanni, R., De Siqueira, M.F., Sutton, T., Brewer, P., et al. (2011) openModeller: a generic approach to species’ potential distribution modelling. Geoinformatica 15, 111–135CrossRefGoogle Scholar
  40. Myers, J.G. (1935) Ethological observations on the citrus bee, Trigona silvestriana Vachal, and other Neotropical bees (Hym. Apoidea). Trans. R. Entomol. Soc. Lond. 83, 131–142CrossRefGoogle Scholar
  41. Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A., Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature 403, 853–8PubMedCrossRefGoogle Scholar
  42. Nemésio, A., Silveira, F.A. (2007) Diversity and distribution of orchid bees (Hymenoptera: Apidae) with a revised checklist of species. Neotrop. Entomol. 36, 874–888PubMedCrossRefGoogle Scholar
  43. Newbold, T. (2010) Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Prog. Phys. Geogr. 34, 3–22CrossRefGoogle Scholar
  44. Nóbrega, C.C., De Marco Jr, P. (2011) Unprotecting the rare species: a niche-based gap analysis for odonates in a core Cerrado area. Divers. Distrib. 17, 491–505CrossRefGoogle Scholar
  45. Otero, J.T., Sandino, J.C. (2003) Capture rates of male Euglossine bees across a human intervention gradient, Choco Region, Colombia. Biotropica 35, 520–529Google Scholar
  46. Pearson, R.G., Raxworthy, C.J., Nakamura, M., Peterson, A.T. (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117CrossRefGoogle Scholar
  47. Peres-Neto, P.R., Jackson, D.A., Somers, K.M. (2005) How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Comput. Stat. Data. Anal. 49, 974–997CrossRefGoogle Scholar
  48. Phillips, S.J., Anderson, R.P., Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259CrossRefGoogle Scholar
  49. Phillips, S.J., Dudik, M. (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175CrossRefGoogle Scholar
  50. Pinto, J.R.R., Oliveira-Filho, A.T. (1999) Perfil florístico e estrutura da comunidade arbórea de uma floresta de vale no Parque Nacional da Chapada dos Guimarães, Mato Grosso. Brasil. Rev. Bras. Bot. 22, 53–67CrossRefGoogle Scholar
  51. Pulliam, H.R. (2000) On the relationship between niche and distribution. Ecol. Lett. 3, 349–361CrossRefGoogle Scholar
  52. Pulliam, H.R., Danielson, B.J. (1991) Sources, sinks, and habitat selection: a landscape perspective on population dynamics. Am. Nat. 137, S50–S66CrossRefGoogle Scholar
  53. Raxworthy, C.J., Martinez-Meyer, E., Horning, N., Nussbaum, R.A., Schneider, G.E., et al. (2003) Predicting distributions of known and unknown reptile species in Madagascar. Nature 426, 837–841PubMedCrossRefGoogle Scholar
  54. Redford, K.H., Da Fonseca, G.A.B. (1986) The role of gallery forests in the zoogeography of the Cerrado’s non-volant mammalian fauna. Biotropica 18, 126–135CrossRefGoogle Scholar
  55. Serra, B.D.V., De Marco Jr, P., Nóbrega, C.C., Campos, L.A.O. (2012) Modeling potential geographical distribution of the wild nests of Melipona capixaba Moure & Camargo, 1994 (Hymenoptera, Apidae): conserving isolated populations in mountain habitats. Nat. Conserv. 10, 199–206CrossRefGoogle Scholar
  56. Silva, J.M.C. (1996) Distribution of Amazonian and Atlantic birds in gallery forests of the Cerrado region, South America. Ornitol. Neotrop. 7, 1–18Google Scholar
  57. Silva, O., Rebêlo, J.M.M. (2009) Primeiro Registro de Euglossa stilbonota Dressler (Apidae: Euglossini) fora da Floresta Amazônica: Implicações Biogeográficas. Neotrop. Entomol. 38, 880–882PubMedCrossRefGoogle Scholar
  58. Soberón, J. (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–23PubMedCrossRefGoogle Scholar
  59. Stockwell, D., Peters, D. (1999) The GARP modelling system: problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 13, 143–158CrossRefGoogle Scholar
  60. Tylianakis, J.M., Didham, R.K., Bascompte, J., Wardle, D.A. (2008) Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363PubMedCrossRefGoogle Scholar
  61. Vianna, D.M., De Marco Jr, P. (2012) Higher-taxon and cross-taxon surrogates for odonate biodiversity in Brazil. Nat. Conserv. 10, 34–39CrossRefGoogle Scholar
  62. Whittaker, R.J., Araújo, M.B., Jepson, P., Ladle, R.J., Watson, J.E.M.A., et al. (2005) Conservation biogeography: assessment and prospect. Divers. Distrib. 11, 3–23CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France 2013

Authors and Affiliations

  • Daniel P. Silva
    • 1
  • Antonio J. C. Aguiar
    • 2
  • Gabriel A. R. Melo
    • 3
  • Evandson J. Anjos-Silva
    • 4
  • Paulo De MarcoJr
    • 5
  1. 1.Programa de Pós-Graduação em Ecologia e Evolução, Departamento de Ecologia, ICBUniversidade Federal de GoiásGoiâniaBrazil
  2. 2.Departamento de ZoologiaUniversidade de Brasília, IB-UnBBrasíliaBrazil
  3. 3.Lab. Biol. Comparada Hymenoptera, Setor de Ciências Biológicas, Departamento de ZoologiaUniversidade Federal do ParanáCuritibaBrazil
  4. 4.Lab. de Abelhas e Vespas Neotropicais, Departamento de BiologiaUniversidade do Estado de Mato GrossoCáceresBrazil
  5. 5.Departamento de Ecologia, ICBUniversidade Federal de GoiásGoiâniaBrazil

Personalised recommendations