, Volume 44, Issue 4, pp 467–480 | Cite as

Sublethal doses of imidacloprid decreased size of hypopharyngeal glands and respiratory rhythm of honeybees in vivo

  • Fani HatjinaEmail author
  • Chrisovalantis Papaefthimiou
  • Leonidas Charistos
  • Taylan Dogaroglu
  • Maria Bouga
  • Christina Emmanouil
  • Gerard Arnold
Original article


Most studies that have shown negative sublethal effects of the pesticide imidacloprid on honeybees concern behavioral effects; only a few concern physiological effects. Therefore, we investigated sublethal effects of imidacloprid on the development of the hypopharyngeal glands (HPGs) and respiratory rhythm in honeybees fed under laboratory conditions. We introduced newly emerged honeybees into wooden mesh-sided cages and provided sugar solution and pollen pastry ad libitum. Imidacloprid was administered in the food: 2 μg/kg in the sugar solution and 3 μg/kg in the pollen pastry. The acini, the lobes of the HPGs of imidacloprid-treated honeybees, were 14.5 % smaller in diameter in 9-day-old honeybees and 16.3 % smaller in 14-day-old honeybees than in the same-aged untreated honeybees; the difference was significant for both age groups. Imidacloprid also significantly affected the bursting pattern of abdominal ventilation movements (AVM) by causing a 59.4 % increase in the inter-burst interval and a 56.99 % decrease in the mean duration of AVM bursts. At the same time, the quantity of food consumed (sugar solution and pollen pastry) per honeybee per day was the same for both treated and untreated honeybees.


imidacloprid honeybee hypopharyngeal gland respiratory rhythm 



This work was supported by a joint project from the EU and the Greek Ministry of Agricultural Development and Food (2008–2010) and by a Greek-French bilateral collaboration project, PLATON 09 FR75. We thank Dimitra Fouka, laboratory technician in Hellenic Institute of Apiculture, for technical assistance. We are also profoundly indebted to Sharilynn Wardrop, for stylistic and linguistic improvements as well to the anonymous reviewers for valuable suggestions.


  1. Alaux, C., Brunet, J.L., Dussaubat, C., Mondet, F., Tchamitchan, S., Cousin, M., Brillard, J., Baldy, A., Belzunces, L.P., Le Conte, Y. (2010) Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ. Microbiol. 12(3), 774–782PubMedCrossRefGoogle Scholar
  2. Babendreier, D., Kalbere, R.N.M., Romeis, J., Fluri, P., Mulligan, E., Bigler, F. (2005) Influence of Bt-transgenic pollen, Bt-toxin and protease inhibitor (SBTI) ingestion on development of the hypopharyngeal glands in honeybees. Apidologie 36, 585–594CrossRefGoogle Scholar
  3. Benson, J.A. (1992) Electrophysiological pharmacology of the nicotinic and muscarinic cholinergic responses of isolated neuronal somata from locust thoracic ganglia. J. Exp. Biol. 170, 203–233Google Scholar
  4. Berger, B., Carmargo Abdalla, F. (2005) Braz. J Morphol. Sci 22(1), 1–4Google Scholar
  5. Bonmatin, J.M., Moineau, I., Lecoublet, S., Colin, M. E., Fléché, C., Bengsch E. R. (2001) Neurotoxiques systémiques: Biodisponibilité, toxicité et risques pour les insectes pollinisateurs - le cas de l’imidaclopride. In Proceedings of the 30éme Congrés du Groupe Français des Pesticides, Produits phytosanitaires; Couderchet, M., Eullaffroy, P., Vernet, G., Eds.; Presses Universitaires de Reims: Reims, France, pp: 175–181.Google Scholar
  6. Bonmatin, J.M., Moineau, I., Charvet, R., Fleche, C., Colin, M.E., Bengsch, E.R. (2003) A LC/APCI-MS/MS method for analysis of imidacloprid in soils, in plants, and in pollens. Anal. Chem. 7, 2027–2033CrossRefGoogle Scholar
  7. Bonmatin, J.M., Marchand, P.A., Charvet, R., Moineau, I., Bengsch, E.R., Colin, M.E. (2005) Quantification of imidacloprid uptake in maize crops. J. Agric. Food. Chem. 53, 5336–5341PubMedCrossRefGoogle Scholar
  8. Bortolotti, L., Montanari, R., Marcelino, J., Medrzycki, P., Maini, S., Porrini, C. (2003) Effects of sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees. Bull. Insectology 56(1), 63–67Google Scholar
  9. Breer, H., Sattelle, D.B. (1987) Molecular properties and functions of insect acetylcholine receptors. J. Insect Physiol. 33, 771–790CrossRefGoogle Scholar
  10. Brown, L.A., Ihara, M., Buckingham, S.D., Matsuda, K., Sattelle, B.D. (2006) Neonicotinoid insecticides display partial and super agonist actions on native insect nicotinic acetylcholine receptors. J. Neurochem. 99, 608–615PubMedCrossRefGoogle Scholar
  11. Buckingham, S.D., Lapied, B., Corronc, H.L., Grolleau, F.D., Sattelle, D.B. (1997) Imidacloprid actions on insect neuronal acetylcholine receptors. J. Exp. Biol. 200, 2685–2692PubMedGoogle Scholar
  12. Bujok, B., Kleinhenz, M., Fuchs, S. (2002) Hot spots in the bee hive. Naturwissenschaften 89, 229–301CrossRefGoogle Scholar
  13. Bustami, H.P., Hustert, R. (2000) Typical ventilatory pattern of the intact locust is produced by the isolated CNS. J. Insect Physiol. 46, 1285–1293PubMedCrossRefGoogle Scholar
  14. Chapman, R.F. (1988) Sensory aspects of host-plant recognition by Acridoidea: questions associated with the multiplicity of receptors and variability of response. J. Insect Physiol. 34, 167–74CrossRefGoogle Scholar
  15. Chauzat, M.P., Faucon, J.P., Martel, A.C., Lachaize, J., Cougoule, N., Aubert, M. (2006) A survey of pesticide residues in pollen loads collected by honey bees in France. J. Econ. Entomol. 99, 253–262PubMedCrossRefGoogle Scholar
  16. Chauzat, M.P., Martel, A.C., Cougoule, N., Porta, P., Lachaize, J., Zeggane, S., Aubert, M., Carpentier, P., Faucon, J.P. (2011) An assessment of honeybee colony matrices, Apis mellifera (Hymenoptera Apidae) to monitor pesticide presences in continental France. Environ. Toxicol. Chem. 30, 103–111PubMedCrossRefGoogle Scholar
  17. Colin, M.E., Bonmatin, J.M., Moineau, I., Gaimon, C., Brun, S., Vermandere, J.P. (2004) A method to quantify and analyze the foraging activity of honey bees: relevance to the sublethal effects induced by systemic insecticides. Arch. Environ. Contam. Toxicol. 47, 387–395PubMedCrossRefGoogle Scholar
  18. Contreras, H.L., Bradley, T.J. (2010) Transitions in insect respiratory patterns are controlled by changes in metabolic rate. J. Insect Physiol. 56, 522–528PubMedCrossRefGoogle Scholar
  19. Crailsheim, K., Stolberg, E. (1989) Influence of diet, age and colony condition upon intestinal proteolytic activity and size of the hypopharyngeal glands in the honeybee (Apis mellifera L.). J. Insect Physiol 35, 595–602CrossRefGoogle Scholar
  20. Crailsheim, K., Schneider, L.H.W., Hrassnigg, N., Bühlmann, G., Brosch, U., Gmeinbauer, R., Schöffmann, B. (1992) Pollen consumption and utilization in worker honeybees (Apis mellifera carnica): Dependence on individual age and function. J. Insect Physiol. 38, 409–419CrossRefGoogle Scholar
  21. Decourtye, A., Lacassie, E., Pham-Delegue, M.H. (2003) Learning performances of honeybees (Apis mellifera L) are differentially affected by imidacloprid according to the season. Pest Manag. Sci. 59, 269–278PubMedCrossRefGoogle Scholar
  22. Decourtye, A., Devillers, J., Cluzeau, S., Charreton, M., Pham-Delegue, M.H. (2004a) Effects of imidacloprid and deltamethrin on associative learning in honeybee under semi-field and laboratory conditions. Ecotoxicol. Environ. Saf. 57, 410–419PubMedCrossRefGoogle Scholar
  23. Decourtye, A., Armengaud, C., Renou, M., Devillers, J., Cluzeau, S., Gauthier, M., Pham-Delegue, M.H. (2004b) Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pest. Biochem. Physiol. 78, 83–92CrossRefGoogle Scholar
  24. Deseyn, J., Billen, J. (2005) Age-dependent morphology and ultrastructure of the hypopharyngeal gland of Apis mellifera L. workers (Hymenoptera, Apidae). Apidologie 36, 49–57CrossRefGoogle Scholar
  25. Fluri, P., Lucher, M., Wille, H., Gerig, L. (1982) Changes in weight of the pharyngeal gland and haemolymph titres of juvenile hormone protein and vitellogenin in worker honey bees. J. Insect Physiol. 28, 61–68CrossRefGoogle Scholar
  26. Girolami, V., Mazzon, L., Squartini, A., Mori, N., Marzaro, M., Di Bernardo, A., Greatti, M., Giorio, C., Tapparo, A. (2009) Translocation of neonicotinoid insecticides from coated seeds to seedling guttation drops: a novel way of intoxication for bees. J. Econ. Entomol. 102(5), 1808–1815PubMedCrossRefGoogle Scholar
  27. Girolami, V., Marzaro, M., Vivan, L., Mazzon, L., Greatti, M., Giorio, C., Marton, D., Tapparo, A. (2011) Fatal powdering of bees in flight with particulates of neonicotinoids seed coating and humidity implication. J. Appl. Entomol. 136(1–2), 17–26Google Scholar
  28. Greatti, M., Sabatini, A.G., Barbattini, R., Rossi, S., Stravisi, A. (2003) Risk of environmental contamination by the active ingredient imidacloprid used for corn seed dressing. Preliminary results. Bull. Insectology 56, 69–72Google Scholar
  29. Greatti, M., Barbattini, R., Stravisi, A., Sabatini, A.G., Rossi, S. (2006) Presence of the a.i. imidacloprid on vegetation near corn fields sown with Gaucho® dressed seeds. Bull. Insectology 59, 99–103Google Scholar
  30. Guez, D., Suchail, S., Gauthier, M., Maleszka, R., Belzunces, L.P. (2001a) Sublethal effects of imidacloprid on learning and memory in honeybees. In: Proceedings of the 7th International Symposium “Hazards of pesticides to bees”, September 7–9, 1999, Avignon, France (Belzunces L. P., Pelissier C., Lewis G. B., Eds). Les Colloques de l’INRA, 98, 279.Google Scholar
  31. Guez, D., Suchail, S., Gauthier, M., Maleszka, R., Belzunces, L.P. (2001b) Contrasting effects of imidacloprid on habituation in 7- and 8- day-old honeybees (Apis mellifera). Neurobiol. Learn. Mem. 76, 183–191PubMedCrossRefGoogle Scholar
  32. Haydak, M.H. (1970) Honey bee nutrition. Annu. Rev. Entomol. 15, 143–156CrossRefGoogle Scholar
  33. Heinrich, B. (1972) Physiology of brood incubation in the bumblebee queens, Bombus vosnesenskii. Nature 239, 223–225CrossRefGoogle Scholar
  34. Heinrich, B. (1985) The social physiology of temperature regulation in honeybees, in: Holldobler J.M., Lindauer G. (Eds.), Experimental Behavioral Ecology. Fortschr. Zool. 31, 393–406Google Scholar
  35. Henry, M., Beguin, M., Requir, F., Rollin, O., Odoux, J-F., Aupinel, P., Aptel, J., Tchamitchian, S., Decourtye, A. (2012) A common pesticide decreases foraging success and survival in honey bees. Scienc 336(6079):348–350. doi: 10.1126/science.1215039.Google Scholar
  36. Heylen, K., Gobin, B., Arckens, L., Huybrechts, R., Billen, J. (2010) The effects of four crop protection products on the morphology and ultrastructure of the hypopharyngeal gland of the European honeybee, Apis mellifera. Apidologie 42, 103–116CrossRefGoogle Scholar
  37. Hrassnigg, N., Crailsheim, K. (1998) The influence of brood on the pollen consumption of worker bees (Apis mellifera L.). J. Insect. Physiol. 44, 393–404PubMedCrossRefGoogle Scholar
  38. Jeschke, P., Nauen, R., Schindler, M., Elbert, A. (2011) Overview of the Status and Global Strategy for Neonicotinoids. J. Agric. Food Chem. 59(7), 2897–2908PubMedCrossRefGoogle Scholar
  39. Ishay, J. (1972) Thermoregulatory pheromones in wasps. Experienta 28, 1185–1187CrossRefGoogle Scholar
  40. Kaiser, W. (1988) Busy bees need rest, too: behavioural and electromyographical sleep signs in honeybees. J. Comp. Physiol. A 163, 565–584CrossRefGoogle Scholar
  41. Khoury, D.S., Myerscough, M.R., Barron, A.B. (2011) A quantitative model of honey bee colony population dynamics. Plos One 6, e18491PubMedCrossRefGoogle Scholar
  42. Kirchner, W.H. (1999) Mad-bee-disease? Sublethal effects of Imidacloprid (Gaucho ®) on the behavior of honey-bees. Apidologie 30, 422CrossRefGoogle Scholar
  43. Knecht, D., Kaatz, H.H. (1990) Patterns of larval food production by hypopharyngeal glands in adult worker honey bees. Apidologie 21, 457–468CrossRefGoogle Scholar
  44. Kovac, H., Stabentheiner, A., Hetz, S.K., Petz, M., Crailsheim, K. (2007) Respiration of resting honeybees. J. Insect. Physiol. 53, 1250–1261PubMedCrossRefGoogle Scholar
  45. Kühnholz, S., Seeley, T.D. (1997) The control of water collection in honey bee colonies. Behav. Ecol. Sociobiol. 41, 407–422CrossRefGoogle Scholar
  46. Lambin, M., Armengaud, C., Raymond, S., Gauthier, M. (2001) Imidacloprid induced facilitation of the proboscis extension reflex habituation in the honeybee. Arch. Insect Biochem. Physiol. 48, 129–134PubMedCrossRefGoogle Scholar
  47. Lass, A., Crailsheim, K. (1996) Influence of age and caging upon protein metabolism, hypopharyngeal glands and trophallactic behavior in the honey bee (Apis mellifera L). Insectes Soc. 43, 347–358CrossRefGoogle Scholar
  48. Lighton, J.R.B., Lovegrove, B.G. (1990) A temperature-induced switch from diffusive to connective ventilation in the honeybee. J. Exp. Biol. 154, 509–516Google Scholar
  49. Maini, S., Medrycki, P., Porrini, C. (2010) The puzzle of honey bee losses: a brief review. Bull. Insectology 63, 153–160Google Scholar
  50. Malone, L.A., Todd, J.H., Burgess, E.P.J., Christeller, J.T. (2004) Development of hypopharyngeal glands in adult honey bees fed with a Bt toxin, a biotin binding protein and a protease inhibitor. Apidologie 35, 655–664CrossRefGoogle Scholar
  51. Marzaro, M., Vivan, L., Targa, A., Mazzon, L., Mori, N., Greatti, M., Toffolo, E.P., Di Bernardo, A., Giorio, C., Marton, D., Tapparo, A., Girolami, V. (2011) Lethal aerial powdering of honey bees with neonicotinoids from fragments of maize seed coat. Bull. Insectology 64, 119–126Google Scholar
  52. Matsuda, K., Buckingham, S.D., Kleier, D., Rauh, J.J., Grauso, M., Sattelle, D.B. (2001) Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol. Sci. 22, 573–580PubMedCrossRefGoogle Scholar
  53. Matsuda, K., Shimomura, M., Ihara, M., Akamatsu, M., Satelle, D.B. (2005) Neonicotinoids show selective and diverse actions on their nicotinic receptor targets: electrophysiology, molecular biology, and receptor modelling studies. Biosci. Biotechnol. Biochem 69, 1442–1452PubMedCrossRefGoogle Scholar
  54. Nicolas, H., Badre, M., Martin, E., Robin, L., Cooper, T. (2005) The physiological and behavioral effects of carbon dioxide on Drosophila melanogaster larvae. Comp. Biochem. Physiol. A 140, 363–376CrossRefGoogle Scholar
  55. Ohashi, K., Natori, S., Kubo, T. (1997) Change in the mode of gene expression of the hypopharingeal gland cells with an age-dependent role change of the worker honeybee Apis mellifera L. Eur. J. Biochem. 249, 797–802PubMedCrossRefGoogle Scholar
  56. Ramirez, J.M., Pearson, K.G. (1989) Distribution of intersegmental interneurones that can reset the respiratory rhythm of the locust. J. Exp. Biol. 141, 151–176Google Scholar
  57. Ramirez-Romero, R., Chaufaux, J., Pham-Delegue, M.H. (2005) Effects of Cry1Ab protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performances of the honeybee Apis mellifera, a comparative approach. Apidologie 36, 601–611CrossRefGoogle Scholar
  58. Rhodes, J.W., Somerrville, D.C. (2003) Introduction and early performance of queen bees. Report : Rural Industries Research & Development Corporation, NSW Agriculture Pub# 03/049.Google Scholar
  59. Rortais, A., Arnold, G., Halm, M.P., Touffet-Briens, F. (2005) Modes of honeybees exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees. Apidologie 36, 71–83CrossRefGoogle Scholar
  60. Seeley, T.D., Heinrich, B. (1981) Regulation of temperature in the nests of social insects. In: Heinrich, B. (ed.) Insect thermoregulation, pp. 159–234. Wiley, New YorkGoogle Scholar
  61. Shawky, S., Abdel-Geleel, Μ., Aly, A. (2005) Sorption of uranium by non-living water hyacinth roots. J. Radioanal. Nucl. Chem. 265(1), 81–84CrossRefGoogle Scholar
  62. Simpson, J. (1961) Nest climate regulation in honey bee colonies. Science 133, 1327–1333PubMedCrossRefGoogle Scholar
  63. Smodiš Šker, M.I., Gregorc, A. (2010) Heat shock proteins and cell death in situ localisation in hypopharyngeal glands of honeybee (Apis mellifera carnica) workers after imidacloprid or coumaphos treatment. Apidologie 41, 73–86CrossRefGoogle Scholar
  64. Standifer, L.N. (1967) A comparison of the protein quality of pollens for growth-stimulation of the hypopharyngeal glands and longevity of honey bees, Apis mellifera. (Hymenoptera: Apidae). Insectes Soc 14, 415–426CrossRefGoogle Scholar
  65. Stork, A. (1999) A residue of 14C-NTN33893 (imidacloprid) in blossoms of sunflowers (Helianthus annus) after seed dressing, p. 56. Bayer A. G., Crop Protection Development, Institute for Metabolism Research and Residue Analysis, LeverkusenGoogle Scholar
  66. Suchail, S., De Sousa, G., Rahmani, R., Belzunces, L. (2004) In vivo distribution and metabolization of 14Cimidacloprid in different compartments of Apis mellifera L. Pest Manag. Sci. 60, 1056–1062PubMedCrossRefGoogle Scholar
  67. Vidau, C., Diogon, M., Aufauvre, J., Fontbonne, R., Viguès, B., et al. (2011) Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS ONE 6(6), e21550PubMedCrossRefGoogle Scholar
  68. Visscher, H., Brinkhuiss, H., Dilcher, D.L., Elsik, W.C., Eshet, Y., Looy, C.V., Rampino, M.R., Traverse, A. (1996) The terminal Paleozoic fungal event: Evidence of terrestrial ecosystem destabilization and collapse. Proc. Natl. Acad. Sci. USA 93, 2155–2158PubMedCrossRefGoogle Scholar
  69. Der Wang, L., Moller, F.E. (1969) Histological comparisons of the development of hypopharyngeal glands in healthy and Nosema-infect worker honey bees. J. Invertebr. Pathol. 17, 308–320CrossRefGoogle Scholar
  70. Winston, M.L. (1987) The biology of the honey bee, p. 281. Harvard University Press, CambridgeGoogle Scholar
  71. Wolf, T.J., Schmid-Hempel, P., Ellington, C.P., Stevenson, R.D. (1989) Physiological correlates of foraging efforts in honey-bees: oxygen consumption and nectar load. Funct. Ecol. 3, 417–424CrossRefGoogle Scholar
  72. Yang, E.C., Chuang, Y.C., Chen, Y.L., Chang, L.H. (2008) Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 101, 1743–1748PubMedCrossRefGoogle Scholar
  73. Zafeiridou, G., Theophilidis, G. (2004) The action of the insecticide imidacloprid on the respiratory rhythm of an insect: the beetle Tenebrio molitor. Neurosci. Lett. 365, 205–209PubMedCrossRefGoogle Scholar
  74. Zafeiridou, G., Theophilidis, G. (2006) A simple method for monitoring the respiratory rhythm in intact insects and assessing the neurotoxicity of insecticide. Pestic. Biochem. Physiol. 87, 211–217CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France 2013

Authors and Affiliations

  • Fani Hatjina
    • 1
    Email author
  • Chrisovalantis Papaefthimiou
    • 2
  • Leonidas Charistos
    • 1
  • Taylan Dogaroglu
    • 3
  • Maria Bouga
    • 4
  • Christina Emmanouil
    • 4
  • Gerard Arnold
    • 5
  1. 1.Hellenic Institute of ApicultureHellenic Agricultural Organization ‘DEMETER’N. MoudaniaGreece
  2. 2.Laboratory of Animal Physiology, Department of ZoologySchool of Biology, Aristotle UniversityThessalonikiGreece
  3. 3.Mugla University, Science Faculty, Biology DepartmentMuglaTurkey
  4. 4.Lab of Agricultural Zoology and EntomologyAgricultural University of AthensAthensGreece
  5. 5.Laboratoire Evolution, Génomes, Spéciation, CNRS UPR 9034, 91198 Gif-sur-YvetteFrance and Université Paris-Sud 11OrsayFrance

Personalised recommendations